The MINimal emission FLUXes(MINFLUX)technique in optical microscopy,widely recognized as the next innovative fluorescence microscopy method,claims a spatial resolution of 1-3 nm in both dead and living cells.To make u...The MINimal emission FLUXes(MINFLUX)technique in optical microscopy,widely recognized as the next innovative fluorescence microscopy method,claims a spatial resolution of 1-3 nm in both dead and living cells.To make use of the full resolution of the MINFLUX microscope,it is important to select appropriate fluorescence probes and labeling strategies,especially in living-cell imaging.This paper mainly focuses on recent applications and developments of fluorescence probes and the relevant labeling strategy for MINFLUX microscopy.Moreover,we discuss the deficiencies that need to be addressed in the future and a plan for the possible progression of MINFLUX to help investigators who have been involved in or are just starting in the field of super-resolution imaging microscopy with theoretical support.展开更多
Nonlinear materials have gained wide interest as saturable absorbers and pulse compression for pulsed laser applications due to their unique optical properties.This work investigates the third-order nonlinear phenomen...Nonlinear materials have gained wide interest as saturable absorbers and pulse compression for pulsed laser applications due to their unique optical properties.This work investigates the third-order nonlinear phenomenon of tungsten trioxide(WO_(3))thin films.The giant nonlinear absorption and nonlinear refractive index of WO_(3)thin films were characterized by Z-scan method at 800 nm.We experimentally observed the giant saturable absorption(SA)and nonlinear refractive index of WO_(3)thin films prepared by the seedless layer hydrothermal method,with SA coefficient being as high as-2.59×105cm·GW^(-1).The SA coefficient is at least one order of magnitude larger than those of the conventional semiconductors.The nonlinear refractive index n_(2)of WO_(3)film has been observed for the first time in recent studies and the corresponding coefficient can be up to 1.793 cm^(2)·GW^(-1).The large third-order nonlinear optical(NLO)response enables WO_(3)thin films to be promising candidates for optoelectronic and photonic applications in the near-infrared domain.展开更多
Microfuidic systems have been widely utilized in high-throughput biology analysis,but thedificulties in iquid manipulation and cell cultivation limit its application.This work has developed a new digital microfluidic(...Microfuidic systems have been widely utilized in high-throughput biology analysis,but thedificulties in iquid manipulation and cell cultivation limit its application.This work has developed a new digital microfluidic(DMF)system for on-demand droplet control.By adopting anextending-depth-of-field(EDoF)phase modulator to the optical system,the entire depth of themicrofluidic channel can be covered in one image without any refocusing process,ensuring that 95%of the particles in the droplet are captured within three shots together with shaking pro-cesses.With this system,suspension droplets are generated and droplets containing only oneyeast cll can be recognized,then each single cell is cultured in the array of the chip.Byobservingtheir growth in cell numbers and the green fluorescence protein(GFP)production via fluorescence imaging,the single cell with the highest production can be identified.The results haveproved the heterogeneity of yeast cells,and showed that the combined system can be applied forrapid single-cell sorting,cultivation,and analysis.展开更多
Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
Real-world passive radiative cooling requires highly emissive,selective,and omnidirectional thermal emitters to maintain the radiative cooler at a certain temperature below the ambient temperature while maximizing the...Real-world passive radiative cooling requires highly emissive,selective,and omnidirectional thermal emitters to maintain the radiative cooler at a certain temperature below the ambient temperature while maximizing the net cooling power.Despite various selective thermal emitters have been demonstrated,it is still challenging to achieve these conditions sim-ultaneously because of the extreme difficulty in controlling thermal emission of photonic structures in multidimension.Here we demonstrated hybrid polar dielectric metasurface thermal emitters with machine learning inverse design,en-abling a high emissivity of~0.92 within the atmospheric transparency window 8-13μm,a large spectral selectivity of~1.8 and a wide emission angle up to 80 degrees,simultaneously.This selective and omnidirectional thermal emitter has led to a new record of temperature reduction as large as~15.4°C under strong solar irradiation of~800 W/m2,signific-antly surpassing the state-of-the-art results.The designed structures also show great potential in tackling the urban heat island effect,with modelling results suggesting a large energy saving and deployment area reduction.This research will make significant impact on passive radiative cooling,thermal energy photonics and tackling global climate change.展开更多
Significant progress has been made in computational imaging(CI),in which deep convolutional neural networks(CNNs)have demonstrated that sparse speckle patterns can be reconstructed.However,due to the limited“local”k...Significant progress has been made in computational imaging(CI),in which deep convolutional neural networks(CNNs)have demonstrated that sparse speckle patterns can be reconstructed.However,due to the limited“local”kernel size of the convolutional operator,for the spatially dense patterns,such as the generic face images,the performance of CNNs is limited.Here,we propose a“non-local”model,termed the Speckle-Transformer(SpT)UNet,for speckle feature extraction of generic face images.It is worth noting that the lightweight SpT UNet reveals a high efficiency and strong comparative performance with Pearson Correlation Coefficient(PCC),and structural similarity measure(SSIM)exceeding 0.989,and 0.950,respectively.展开更多
Researchers at the University of Oxford have introduced a groundbreaking technique called vectorial adaptive optics(V-AO),which extends the capabilities of traditional adaptive optics to correct for both polarization ...Researchers at the University of Oxford have introduced a groundbreaking technique called vectorial adaptive optics(V-AO),which extends the capabilities of traditional adaptive optics to correct for both polarization and phase aberrations.This novel approach opens new possibilities for manipulating the complex vectorial field in optical systems,enabling higher-dimensional feedback correction.展开更多
Edge detection for low-contrast phase objects cannot be performed directly by the spatial difference of intensity distribution.In this work,an all-optical diffractive neural network(DPENet)based on the differential in...Edge detection for low-contrast phase objects cannot be performed directly by the spatial difference of intensity distribution.In this work,an all-optical diffractive neural network(DPENet)based on the differential interference contrast principle to detect the edges of phase objects in an all-optical manner is proposed.Edge information is encoded into an interference light field by dual Wollaston prisms without lenses and light-speed processed by the diffractive neural network to obtain the scale-adjustable edges.Simulation results show that DPENet achieves F-scores of 0.9308(MNIST)and 0.9352(NIST)and enables real-time edge detection of biological cells,achieving an F-score of 0.7462.展开更多
Owing to the significant development in graphene,an increasing number of studies have been conducted to identify novel two-dimensional(2D)organic materials with Dirac cones and topological properties.Although a series...Owing to the significant development in graphene,an increasing number of studies have been conducted to identify novel two-dimensional(2D)organic materials with Dirac cones and topological properties.Although a series of toy models based on specific lattice patterns has been proposed and demonstrated to possess a Dirac cone,realistic materials corresponding to the lattice models must be identified to achieve excellent properties for practical applications.To understand factors contributing to the rarity of 2D organic Dirac materials and provide guidance for identifying novel organic Dirac systems,we review recent theoretical studies pertaining to various 2D Dirac models and their corresponding organic Dirac materials,including the Haldane,Kagome,Libe,linecentered honeycomb,and Cairo pentagonal models.Subsequently,the corresponding structural and topological electronic properties are summarized.Additionally,we investigate the relationship between the existence of Dirac cones and their structural features,as well as the manner by which Dirac points emerge and propagate in these systems.展开更多
Supercapacitors,with the merits of both capacitors for safe and fast charge and batteries for high energy storage have drawn tremendous attention.Recently,laser scribed graphene has been increasingly studied for super...Supercapacitors,with the merits of both capacitors for safe and fast charge and batteries for high energy storage have drawn tremendous attention.Recently,laser scribed graphene has been increasingly studied for supercapacitor applications due to its unique properties,such as flexible fabrication,large surface area and high electrical conductivity.With the laser direct writing process,graphene can be directly fabricated and patterned as the supercapacitor electrodes.In this review,facile laser direct writing methods for graphene were firstly summarized.Various precursors,mainly graphene oxide and polyimide were employed for laser scribed graphene and the modifications of graphene properties were also discussed.This laser scribed graphene was applied for electrochemical double-layer capacitors,pseudo-capacitors and hybrid supercapacitors.Diverse strategies including doping,composite materials and pattern design were utilized to enhance the electrochemical performances of supercapacitors.Featured supercapacitors with excellent flexible,ultrafinestructured and integrated functions were also reviewed.展开更多
The orbital angular momentum(OAM)of light has been implemented as an information carrier in OAM holography.Holographic information can be multiplexed in theoretical unbounded OAM channels,promoting the applications of...The orbital angular momentum(OAM)of light has been implemented as an information carrier in OAM holography.Holographic information can be multiplexed in theoretical unbounded OAM channels,promoting the applications of optically addressable dynamic display and high-security optical encryption.However,the frame-rate of the dynamic extraction of the information reconstruction process in OAM holography is physically determined by the switching speed of the incident OAM states,which is currently below 30 Hz limited by refreshing rate of the phase-modulation spatial light modulator(SLM).Here,based on a cross convolution with the spatial frequency of the OAM-multiplexing hologram,the spatial frequencies of an elaborately-designed amplitude distribution,namely amplitude decoding key,has been adopted for the extraction of three-dimensional holographic information encoded in a specific OAM information channel.We experimentally demonstrated a dynamic extraction frame rate of 100 Hz from an OAM multiplexing hologram with 10 information channels indicated by individual OAM values from-50 to 50.The new concept of cross convolution theorem can even provide the potential of parallel reproduction and distribution of information encoded in many OAM channels at various positions which boosts the capacity of information processing far beyond the traditional decoding methods.Thus,our results provide a holographic paradigm for high-speed 3D information processing,paving an unprecedented way to achieve the high-capacity short-range optical communication system.展开更多
The fabrication of high-resolution laser-scribed graphene devices is crucial to achieving large surface areas and thus performance breakthroughs.However,since the investigation mainly focuses on the laser-induced redu...The fabrication of high-resolution laser-scribed graphene devices is crucial to achieving large surface areas and thus performance breakthroughs.However,since the investigation mainly focuses on the laser-induced reduction of graphene oxide,the single-beam scribing provides a tremendous challenge to realizing subdiffraction features of graphene patterns.Here,we present an innovative 2-beam laser scribing pathway for the fabrication of subdiffraction graphene patterns.First,an oxidation reaction of highly reduced graphene oxide can be controllably driven by irradiation of a 532-nm femtosecond laser beam.Based on the oxidation mechanism,a 2-beam laser scribing was performed on graphene oxide thin films,in which a doughnut-shaped 375-nm beam reduces graphene oxide and a spherical 532-nm ultrafast beam induces the oxidation of laser-reduced graphene oxide.The spherical beam turns the highly reduced graphene oxide(reduced by the doughnut-shaped beam)to an oxidized state,splitting the laser-scribed graphene oxide line into 2 subdiffraction featured segments and thus forming a laserscribed graphene/oxidized laser-scribed graphene/laser-scribed graphene line.Through the adjustment of the oxidation beam power,the minimum linewidth of laser-scribed graphene was measured to be 90 nm.Next,we fabricated patterned supercapacitor electrodes containing parallel laser-scribed graphene lines with subdiffraction widths and spacings.An outstanding gravimetric capacitance of 308 F/g,which is substantially higher than those of reported graphene-based supercapacitors,has been delivered.The results offer a broadly accessible strategy for the fabrication of high-performance graphene-based devices including high-capacity energy storage,high-resolution holograms,high-sensitivity sensors,triboelectric nanogenerators with high power densities,and artificial intelligence devices with high neuron densities.展开更多
Machine learning with optical neural networks has featured unique advantages of the information processing including high speed,ultrawide bandwidths and low energy consumption because the optical dimensions(time,space...Machine learning with optical neural networks has featured unique advantages of the information processing including high speed,ultrawide bandwidths and low energy consumption because the optical dimensions(time,space,wavelength,and polarization)could be utilized to increase the degree of freedom.However,due to the lack of the capability to extract the information features in the orbital angular momentum(OAM)domain,the theoretically unlimited OAM states have never been exploited to represent the signal of the input/output nodes in the neural network model.Here,we demonstrate OAM-mediated machine learning with an all-optical convolutional neural network(CNN)based on Laguerre-Gaussian(LG)beam modes with diverse diffraction losses.The proposed CNN architecture is composed of a trainable OAM mode-dispersion impulse as a convolutional kernel for feature extraction,and deep-learning diffractive layers as a classifier.The resultant OAM mode-dispersion selectivity can be applied in information mode-feature encoding,leading to an accuracy as high as 97.2%for MNIST database through detecting the energy weighting coefficients of the encoded OAM modes,as well as a resistance to eavesdropping in point-to-point free-space transmission.Moreover,through extending the target encoded modes into multiplexed OAM states,we realize all-optical dimension reduction for anomaly detection with an accuracy of 85%.Our work provides a deep insight to the mechanism of machine learning with spatial modes basis,which can be further utilized to improve the performances of various machine-vision tasks by constructing the unsupervised learning-based auto-encoder.展开更多
Matrix computation,as a fundamental building block of information processing in science and technology,contributes most of the computational overheads in modern signal processing and artificial intelligence algorithms...Matrix computation,as a fundamental building block of information processing in science and technology,contributes most of the computational overheads in modern signal processing and artificial intelligence algorithms.Photonic accelerators are designed to accelerate specific categories of computing in the optical domain,especially matrix multiplication,to address the growing demand for computing resources and capacity.Photonic matrix multiplication has much potential to expand the domain of telecommunication,and artificial intelligence benefiting from its superior performance.Recent research in photonic matrix multiplication has flourished and may provide opportunities to develop applications that are unachievable at present by conventional electronic processors.In this review,we first introduce the methods of photonic matrix multiplication,mainly including the plane light conversion method,Mach–Zehnder interferometer method and wavelength division multiplexing method.We also summarize the developmental milestones of photonic matrix multiplication and the related applications.Then,we review their detailed advances in applications to optical signal processing and artificial neural networks in recent years.Finally,we comment on the challenges and perspectives of photonic matrix multiplication and photonic acceleration.展开更多
The creation of biomimetic neuron interfaces(BNIs)has become imperative for different research fields from neural science to artificial intelligence.BNIs are two-dimensional or three-dimensional(3D)artificial interfac...The creation of biomimetic neuron interfaces(BNIs)has become imperative for different research fields from neural science to artificial intelligence.BNIs are two-dimensional or three-dimensional(3D)artificial interfaces mimicking the geometrical and functional characteristics of biological neural networks to rebuild,understand,and improve neuronal functions.The study of BNI holds the key for curing neuron disorder diseases and creating innovative artificial neural networks(ANNs).To achieve these goals,3D direct laser writing(DLW)has proven to be a powerful method for BNI with complex geometries.However,the need for scaled-up,high speed fabrication of BNI demands the integration of DLW techniques with ANNs.ANNs,computing algorithms inspired by biological neurons,have shown their unprecedented ability to improve efficiency in data processing.The integration of ANNs and DLW techniques promises an innovative pathway for efficient fabrication of large-scale BNI and can also inspire the design and optimization of novel BNI for ANNs.This perspective reviews advances in DLW of BNI and discusses the role of ANNs in the design and fabrication of BNI.展开更多
A memristor is a promising candidate of new electronic synaptic devices for neuromorphic computing.However,conventional memristors often exhibit complex device structures,cumbersome manufacturing processes,and high en...A memristor is a promising candidate of new electronic synaptic devices for neuromorphic computing.However,conventional memristors often exhibit complex device structures,cumbersome manufacturing processes,and high energy consumption.Graphene-based materials show great potential as the building materials of memristors.With direct laser writing technology,this paper proposes a lateral memristor with reduced graphene oxide(rGO)and Pt as electrodes and graphene oxide(GO)as function material.This Pt/GO/rGO memristor with a facile lateral structure can be easily fabricated and demonstrates an ultra-low energy consumption of 200 nW.Typical synaptic behaviors are successfully emulated.Meanwhile,the Pt/GO/rGO memristor array is applied in the reservoir computing network,performing the digital recognition with a high accuracy of 95.74%.This work provides a simple and low-cost preparation method for the massive production of artificial synapses with low energy consumption,which will greatly facilitate the development of neural network computing hardware platforms.展开更多
Passive daytime radiative cooling(PDRC)is one of the promising alternatives to electrical cooling and has a significant impact on worldwide energy consumption and carbon neutrality.Toward real-world applications,howev...Passive daytime radiative cooling(PDRC)is one of the promising alternatives to electrical cooling and has a significant impact on worldwide energy consumption and carbon neutrality.Toward real-world applications,however,the parasitic heat input and heat leakage pose crucial challenges to commercial and residential buildings cooling.The integrating of radiative cooling and thermal insulation properties represents an attractive direction in renewable energy-efficient building envelope materials.Herein,we present a hierarchically porous hybrid film as a scalable and flexible thermal insulating subambient radiative cooler via a simple and inexpensive inverse high internal phase emulsion strategy.The as-prepared porous hybrid film exhibits an intrinsic combination of high solar reflectance(0.95),strong longwave infrared thermal emittance(0.97),and low thermal conductivity(31 mW/(m K)),yielding a subambient cooling temperature of~8.4℃ during the night and~6.5℃ during the hot midday with an average cooling power of~94 W/m^(2) under a solar intensity of~900 W/m^(2).Promisingly,combining the superhydrophobicity,durability,superelasticity,robust mechanical strength,and industrial applicability,the film is favorable for large-scale,sustainable and energy-saving applications in a wide variety of climates and complicated surfaces,enabling a substantial reduction of energy costs,greenhouse gas emission and associated ozone-depleting from traditional cooling systems.展开更多
Sensors are widely used to acquire biological and environmental information for medical diagnosis,and health and environmental monitoring.Graphene is a promising new sensor material that has been widely used in sensor...Sensors are widely used to acquire biological and environmental information for medical diagnosis,and health and environmental monitoring.Graphene is a promising new sensor material that has been widely used in sensor fabrication in recent years.Compared with many other existing graphene preparation methods,laser-scribed graphene(LSG)is simple,low-cost,environmentally friendly,and has good conductivity and high thermal stability,making it widely used in the sensor field.This paper summarizes existing LSG methods for sensor fabrication.Primary LSG preparation methods and their variants are introduced first,followed by a summary of LSG modification methods designed explicitly for sensor fabrication.Subsequently,the applications of LSG in stress,bio,gas,temperature,and humidity sensors are summarized with a particular focus on multifunctional integrated sensors.Finally,the current challenges and prospects of LSG-based sensors are discussed.展开更多
eLight,1(5),2021 https://doi.org/10.1186/s43593-021-00005-9 Simultaneous generation of multiple optical vortex(OV)lies at the heart of the application for orbital angular momentum(OAM)multiplexing both in classical an...eLight,1(5),2021 https://doi.org/10.1186/s43593-021-00005-9 Simultaneous generation of multiple optical vortex(OV)lies at the heart of the application for orbital angular momentum(OAM)multiplexing both in classical and quantum domains.Previous structure with segmented or interleaved functional sub-areas in a single nano-device has been developed at the cost of its compactness and channel capacity.Back-to-nature design inspired by the spiral phyllotaxis pattern in this work offers a fresh way to fabricate a truly space-degenerated nanoscale multipleOVs-generator,namely vortex nanosieves.展开更多
Despite its great success,deep learning severely suffers from robustness;i.e.,deep neural networks are very vulnerable to adversarial attacks,even the simplest ones.Inspired by recent advances in brain science,we prop...Despite its great success,deep learning severely suffers from robustness;i.e.,deep neural networks are very vulnerable to adversarial attacks,even the simplest ones.Inspired by recent advances in brain science,we propose the denoised internal models(DIM),a novel generative autoencoder-based model to tackle this challenge.Simulating the pipeline in the human brain for visual signal processing,DIM adopts a two-stage approach.In the first stage,DIM uses a denoiser to reduce the noise and the dimensions of inputs,reflecting the information pre-processing in the thalamus.Inspired by the sparse coding of memory-related traces in the primary visual cortex,the second stage produces a set of internal models,one for each category.We evaluate DIM over 42 adversarial attacks,showing that DIM effectively defenses against all the attacks and outperforms the SOTA on the overall robustness on the MNIST(Modified National Institute of Standards and Technology)dataset.展开更多
基金supported by the Science and Technology Commission of Shanghai Municipality (21DZ1100500)the Shanghai Municipal Science and Technology Major Project+1 种基金the Shanghai Frontiers Science Center Program (2021-2025 No.20)Shanghai Hong Kong,Macao,and Taiwan Cooperation Project (No.19490760900).
文摘The MINimal emission FLUXes(MINFLUX)technique in optical microscopy,widely recognized as the next innovative fluorescence microscopy method,claims a spatial resolution of 1-3 nm in both dead and living cells.To make use of the full resolution of the MINFLUX microscope,it is important to select appropriate fluorescence probes and labeling strategies,especially in living-cell imaging.This paper mainly focuses on recent applications and developments of fluorescence probes and the relevant labeling strategy for MINFLUX microscopy.Moreover,we discuss the deficiencies that need to be addressed in the future and a plan for the possible progression of MINFLUX to help investigators who have been involved in or are just starting in the field of super-resolution imaging microscopy with theoretical support.
基金the support from the Science and Technology Commission of Shanghai Municipality Municipality(Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,the Shanghai Frontiers Science Center Program(2021-2025 No.20)+3 种基金the National Key Research and Development Program of China(Grant No.2021YFB2802000)the National Natural Science Foundation of China(Grant No.61975123)the National Natural Science Foundation of China(Grant No.52075504)Fund for Shanxi‘1331Project'Key Subject Construction and Shanxi Doctor Innovation Project(2019).
文摘Nonlinear materials have gained wide interest as saturable absorbers and pulse compression for pulsed laser applications due to their unique optical properties.This work investigates the third-order nonlinear phenomenon of tungsten trioxide(WO_(3))thin films.The giant nonlinear absorption and nonlinear refractive index of WO_(3)thin films were characterized by Z-scan method at 800 nm.We experimentally observed the giant saturable absorption(SA)and nonlinear refractive index of WO_(3)thin films prepared by the seedless layer hydrothermal method,with SA coefficient being as high as-2.59×105cm·GW^(-1).The SA coefficient is at least one order of magnitude larger than those of the conventional semiconductors.The nonlinear refractive index n_(2)of WO_(3)film has been observed for the first time in recent studies and the corresponding coefficient can be up to 1.793 cm^(2)·GW^(-1).The large third-order nonlinear optical(NLO)response enables WO_(3)thin films to be promising candidates for optoelectronic and photonic applications in the near-infrared domain.
基金supported by the National Key R&D Program of China(2021YFF0502900)the National Natural Science Foundation of China(62175034,62175036)+7 种基金the Anhui Province KeyR&D Project(202003a07020020)the ShanghaiNatural Science Foundation(grant No.20ZR1405100)the Science and Technology Research Program ofShanghai(grant No.19DZ2282100)the Shanghaikey discipline construction plan(2020-2022)(grantNo.GWV-10.1-XK01)the Shanghai EngineeringTechnology Research Center of Hair Medicine(19DZ2250500)the Medical Engineering Fund of Fudan University(yg2021-022)the Pioneering Project of Academy for Engineering and Technology,the Fudan University(gy2018-001,gy2018-002)the Yantai Returned Scholars'Pioneering Park.
文摘Microfuidic systems have been widely utilized in high-throughput biology analysis,but thedificulties in iquid manipulation and cell cultivation limit its application.This work has developed a new digital microfluidic(DMF)system for on-demand droplet control.By adopting anextending-depth-of-field(EDoF)phase modulator to the optical system,the entire depth of themicrofluidic channel can be covered in one image without any refocusing process,ensuring that 95%of the particles in the droplet are captured within three shots together with shaking pro-cesses.With this system,suspension droplets are generated and droplets containing only oneyeast cll can be recognized,then each single cell is cultured in the array of the chip.Byobservingtheir growth in cell numbers and the green fluorescence protein(GFP)production via fluorescence imaging,the single cell with the highest production can be identified.The results haveproved the heterogeneity of yeast cells,and showed that the combined system can be applied forrapid single-cell sorting,cultivation,and analysis.
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.62175154)the Shanghai Pujiang Program(20PJ1411900)+2 种基金the Shanghai Science and Technology Program(21ZR1445500)the Shanghai Yangfan Program(22YF1430200)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning.
文摘Real-world passive radiative cooling requires highly emissive,selective,and omnidirectional thermal emitters to maintain the radiative cooler at a certain temperature below the ambient temperature while maximizing the net cooling power.Despite various selective thermal emitters have been demonstrated,it is still challenging to achieve these conditions sim-ultaneously because of the extreme difficulty in controlling thermal emission of photonic structures in multidimension.Here we demonstrated hybrid polar dielectric metasurface thermal emitters with machine learning inverse design,en-abling a high emissivity of~0.92 within the atmospheric transparency window 8-13μm,a large spectral selectivity of~1.8 and a wide emission angle up to 80 degrees,simultaneously.This selective and omnidirectional thermal emitter has led to a new record of temperature reduction as large as~15.4°C under strong solar irradiation of~800 W/m2,signific-antly surpassing the state-of-the-art results.The designed structures also show great potential in tackling the urban heat island effect,with modelling results suggesting a large energy saving and deployment area reduction.This research will make significant impact on passive radiative cooling,thermal energy photonics and tackling global climate change.
基金funding support from the Science and Technology Commission of Shanghai Municipality(Grant No.21DZ1100500)the Shanghai Frontiers Science Center Program(2021-2025 No.20)+2 种基金the Zhangjiang National Innovation Demonstration Zone(Grant No.ZJ2019ZD-005)supported by a fellowship from the China Postdoctoral Science Foundation(2020M671169)the International Postdoctoral Exchange Program from the Administrative Committee of Post-Doctoral Researchers of China([2020]33)。
文摘Significant progress has been made in computational imaging(CI),in which deep convolutional neural networks(CNNs)have demonstrated that sparse speckle patterns can be reconstructed.However,due to the limited“local”kernel size of the convolutional operator,for the spatially dense patterns,such as the generic face images,the performance of CNNs is limited.Here,we propose a“non-local”model,termed the Speckle-Transformer(SpT)UNet,for speckle feature extraction of generic face images.It is worth noting that the lightweight SpT UNet reveals a high efficiency and strong comparative performance with Pearson Correlation Coefficient(PCC),and structural similarity measure(SSIM)exceeding 0.989,and 0.950,respectively.
文摘Researchers at the University of Oxford have introduced a groundbreaking technique called vectorial adaptive optics(V-AO),which extends the capabilities of traditional adaptive optics to correct for both polarization and phase aberrations.This novel approach opens new possibilities for manipulating the complex vectorial field in optical systems,enabling higher-dimensional feedback correction.
基金supported by the National Key Research and Development Program of China(Nos.2021YFB2802000 and 2022YFB2804301)Shanghai Municipal Science and Technology Major Project,Science and Technology Commission of Shanghai Municipality(No.21DZ1100500)+2 种基金Shanghai Frontiers Science Center Program(2021-2025 No.20)National Natural Science Foundation of China(Nos.61975123 and 12072200)Science and Technology Development Foundation of Pudong New Area(No.PKX2021-D10)。
文摘Edge detection for low-contrast phase objects cannot be performed directly by the spatial difference of intensity distribution.In this work,an all-optical diffractive neural network(DPENet)based on the differential interference contrast principle to detect the edges of phase objects in an all-optical manner is proposed.Edge information is encoded into an interference light field by dual Wollaston prisms without lenses and light-speed processed by the diffractive neural network to obtain the scale-adjustable edges.Simulation results show that DPENet achieves F-scores of 0.9308(MNIST)and 0.9352(NIST)and enables real-time edge detection of biological cells,achieving an F-score of 0.7462.
基金the Natural Science Foundation of Shandong Province(No.ZR2021YQ04)Peng is grateful for the project funded by the China Postdoctoral Science Foundation(No.2022M712141)N.Ren acknowledges support from the National Natural Science Foundation of China(No.51972148)。
文摘Owing to the significant development in graphene,an increasing number of studies have been conducted to identify novel two-dimensional(2D)organic materials with Dirac cones and topological properties.Although a series of toy models based on specific lattice patterns has been proposed and demonstrated to possess a Dirac cone,realistic materials corresponding to the lattice models must be identified to achieve excellent properties for practical applications.To understand factors contributing to the rarity of 2D organic Dirac materials and provide guidance for identifying novel organic Dirac systems,we review recent theoretical studies pertaining to various 2D Dirac models and their corresponding organic Dirac materials,including the Haldane,Kagome,Libe,linecentered honeycomb,and Cairo pentagonal models.Subsequently,the corresponding structural and topological electronic properties are summarized.Additionally,we investigate the relationship between the existence of Dirac cones and their structural features,as well as the manner by which Dirac points emerge and propagate in these systems.
基金the funding support of Zhangjiang National Innovation Demonstration Zone(ZJ2019-ZD-005)the support from National Natural Science Foundation of China(Grant No.11974247)the support of Shanghai Super Postdoctoral Incentive Programand and China Postdoctoral Science Foundation(No.2021M692137)。
文摘Supercapacitors,with the merits of both capacitors for safe and fast charge and batteries for high energy storage have drawn tremendous attention.Recently,laser scribed graphene has been increasingly studied for supercapacitor applications due to its unique properties,such as flexible fabrication,large surface area and high electrical conductivity.With the laser direct writing process,graphene can be directly fabricated and patterned as the supercapacitor electrodes.In this review,facile laser direct writing methods for graphene were firstly summarized.Various precursors,mainly graphene oxide and polyimide were employed for laser scribed graphene and the modifications of graphene properties were also discussed.This laser scribed graphene was applied for electrochemical double-layer capacitors,pseudo-capacitors and hybrid supercapacitors.Diverse strategies including doping,composite materials and pattern design were utilized to enhance the electrochemical performances of supercapacitors.Featured supercapacitors with excellent flexible,ultrafinestructured and integrated functions were also reviewed.
文摘The orbital angular momentum(OAM)of light has been implemented as an information carrier in OAM holography.Holographic information can be multiplexed in theoretical unbounded OAM channels,promoting the applications of optically addressable dynamic display and high-security optical encryption.However,the frame-rate of the dynamic extraction of the information reconstruction process in OAM holography is physically determined by the switching speed of the incident OAM states,which is currently below 30 Hz limited by refreshing rate of the phase-modulation spatial light modulator(SLM).Here,based on a cross convolution with the spatial frequency of the OAM-multiplexing hologram,the spatial frequencies of an elaborately-designed amplitude distribution,namely amplitude decoding key,has been adopted for the extraction of three-dimensional holographic information encoded in a specific OAM information channel.We experimentally demonstrated a dynamic extraction frame rate of 100 Hz from an OAM multiplexing hologram with 10 information channels indicated by individual OAM values from-50 to 50.The new concept of cross convolution theorem can even provide the potential of parallel reproduction and distribution of information encoded in many OAM channels at various positions which boosts the capacity of information processing far beyond the traditional decoding methods.Thus,our results provide a holographic paradigm for high-speed 3D information processing,paving an unprecedented way to achieve the high-capacity short-range optical communication system.
基金supported by the National Natural Science Foundation of China(grant no.11974247)the Shanghai Science&Technology Commission(21DZ1100500)the Shanghai Municipal Science and Technology Major Project.
文摘The fabrication of high-resolution laser-scribed graphene devices is crucial to achieving large surface areas and thus performance breakthroughs.However,since the investigation mainly focuses on the laser-induced reduction of graphene oxide,the single-beam scribing provides a tremendous challenge to realizing subdiffraction features of graphene patterns.Here,we present an innovative 2-beam laser scribing pathway for the fabrication of subdiffraction graphene patterns.First,an oxidation reaction of highly reduced graphene oxide can be controllably driven by irradiation of a 532-nm femtosecond laser beam.Based on the oxidation mechanism,a 2-beam laser scribing was performed on graphene oxide thin films,in which a doughnut-shaped 375-nm beam reduces graphene oxide and a spherical 532-nm ultrafast beam induces the oxidation of laser-reduced graphene oxide.The spherical beam turns the highly reduced graphene oxide(reduced by the doughnut-shaped beam)to an oxidized state,splitting the laser-scribed graphene oxide line into 2 subdiffraction featured segments and thus forming a laserscribed graphene/oxidized laser-scribed graphene/laser-scribed graphene line.Through the adjustment of the oxidation beam power,the minimum linewidth of laser-scribed graphene was measured to be 90 nm.Next,we fabricated patterned supercapacitor electrodes containing parallel laser-scribed graphene lines with subdiffraction widths and spacings.An outstanding gravimetric capacitance of 308 F/g,which is substantially higher than those of reported graphene-based supercapacitors,has been delivered.The results offer a broadly accessible strategy for the fabrication of high-performance graphene-based devices including high-capacity energy storage,high-resolution holograms,high-sensitivity sensors,triboelectric nanogenerators with high power densities,and artificial intelligence devices with high neuron densities.
基金the support from the National Natural Science Foundation of China(62005164,62005166)the Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(23SG41)+5 种基金the Young Elite Scientist Sponsorship Program by Cast(No.20220042)the Shanghai Natural Science Foundation(23ZR1443700)the Shanghai Rising-Star Program(20QA1404100)the Science and Technology Commission of Shanghai Municipality(Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,the Shanghai Frontiers Science Center Program(2021-2025 No.20)the National Key Research and Development program of China(Grant Nos.2022YFB2874271).
文摘Machine learning with optical neural networks has featured unique advantages of the information processing including high speed,ultrawide bandwidths and low energy consumption because the optical dimensions(time,space,wavelength,and polarization)could be utilized to increase the degree of freedom.However,due to the lack of the capability to extract the information features in the orbital angular momentum(OAM)domain,the theoretically unlimited OAM states have never been exploited to represent the signal of the input/output nodes in the neural network model.Here,we demonstrate OAM-mediated machine learning with an all-optical convolutional neural network(CNN)based on Laguerre-Gaussian(LG)beam modes with diverse diffraction losses.The proposed CNN architecture is composed of a trainable OAM mode-dispersion impulse as a convolutional kernel for feature extraction,and deep-learning diffractive layers as a classifier.The resultant OAM mode-dispersion selectivity can be applied in information mode-feature encoding,leading to an accuracy as high as 97.2%for MNIST database through detecting the energy weighting coefficients of the encoded OAM modes,as well as a resistance to eavesdropping in point-to-point free-space transmission.Moreover,through extending the target encoded modes into multiplexed OAM states,we realize all-optical dimension reduction for anomaly detection with an accuracy of 85%.Our work provides a deep insight to the mechanism of machine learning with spatial modes basis,which can be further utilized to improve the performances of various machine-vision tasks by constructing the unsupervised learning-based auto-encoder.
基金Chaoran Huang would like to thank Alexander Tait,Bhavin Shastri and Paul Prucnal for the fruitful discussions.J.J.D.acknowledges the support of the National Key Research and Development Project of China(2018YFB2201901)the National Natural Science Foundation of China(61805090,62075075).
文摘Matrix computation,as a fundamental building block of information processing in science and technology,contributes most of the computational overheads in modern signal processing and artificial intelligence algorithms.Photonic accelerators are designed to accelerate specific categories of computing in the optical domain,especially matrix multiplication,to address the growing demand for computing resources and capacity.Photonic matrix multiplication has much potential to expand the domain of telecommunication,and artificial intelligence benefiting from its superior performance.Recent research in photonic matrix multiplication has flourished and may provide opportunities to develop applications that are unachievable at present by conventional electronic processors.In this review,we first introduce the methods of photonic matrix multiplication,mainly including the plane light conversion method,Mach–Zehnder interferometer method and wavelength division multiplexing method.We also summarize the developmental milestones of photonic matrix multiplication and the related applications.Then,we review their detailed advances in applications to optical signal processing and artificial neural networks in recent years.Finally,we comment on the challenges and perspectives of photonic matrix multiplication and photonic acceleration.
基金the support from the Science and Technology Commission of Shanghai Municipality(Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,the Shanghai Frontiers Science Center Program(2021-2025 No.20)+2 种基金the Zhangjiang National Innovation Demonstration Zone(Grant No.ZJ2019-ZD-005)the National Key Research and Development Program of China(Grant No.2021YFB2802000)the National Natural Science Foundation of China(Grant No.61975123).
文摘The creation of biomimetic neuron interfaces(BNIs)has become imperative for different research fields from neural science to artificial intelligence.BNIs are two-dimensional or three-dimensional(3D)artificial interfaces mimicking the geometrical and functional characteristics of biological neural networks to rebuild,understand,and improve neuronal functions.The study of BNI holds the key for curing neuron disorder diseases and creating innovative artificial neural networks(ANNs).To achieve these goals,3D direct laser writing(DLW)has proven to be a powerful method for BNI with complex geometries.However,the need for scaled-up,high speed fabrication of BNI demands the integration of DLW techniques with ANNs.ANNs,computing algorithms inspired by biological neurons,have shown their unprecedented ability to improve efficiency in data processing.The integration of ANNs and DLW techniques promises an innovative pathway for efficient fabrication of large-scale BNI and can also inspire the design and optimization of novel BNI for ANNs.This perspective reviews advances in DLW of BNI and discusses the role of ANNs in the design and fabrication of BNI.
基金supported by the Science and Technology Commission of Shanghai Municipality(21DZ1100500)the Shanghai Municipal Science and Technology Major Project,the Shanghai Frontiers Science Center Program(2021-2025 No.20)+3 种基金the Zhangjiang National Innovation Demonstration Zone(ZJ2019-ZD-005)the National Key Research and Development Program of China(2021YFB2802000)the National Natural Science Foundation of China(61975123 and 62105206)China Postdoctoral Science Foundation(2021M692137)。
文摘A memristor is a promising candidate of new electronic synaptic devices for neuromorphic computing.However,conventional memristors often exhibit complex device structures,cumbersome manufacturing processes,and high energy consumption.Graphene-based materials show great potential as the building materials of memristors.With direct laser writing technology,this paper proposes a lateral memristor with reduced graphene oxide(rGO)and Pt as electrodes and graphene oxide(GO)as function material.This Pt/GO/rGO memristor with a facile lateral structure can be easily fabricated and demonstrates an ultra-low energy consumption of 200 nW.Typical synaptic behaviors are successfully emulated.Meanwhile,the Pt/GO/rGO memristor array is applied in the reservoir computing network,performing the digital recognition with a high accuracy of 95.74%.This work provides a simple and low-cost preparation method for the massive production of artificial synapses with low energy consumption,which will greatly facilitate the development of neural network computing hardware platforms.
基金This work was supported by the National Key Research and Development Program of China(2017YFA0204600)the National Natural Science Foundation of China(51721002 and 52033003)+4 种基金Y.Z.acknowledges the support by the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningthe National Natural Science Foundation of China(62175154)Shanghai Pujiang Program(20PJ1411900)Shanghai Science and Technology Program(21ZR1445500)T.W.acknowledges the support of Shanghai Yangfan Program(22YF1430200).
文摘Passive daytime radiative cooling(PDRC)is one of the promising alternatives to electrical cooling and has a significant impact on worldwide energy consumption and carbon neutrality.Toward real-world applications,however,the parasitic heat input and heat leakage pose crucial challenges to commercial and residential buildings cooling.The integrating of radiative cooling and thermal insulation properties represents an attractive direction in renewable energy-efficient building envelope materials.Herein,we present a hierarchically porous hybrid film as a scalable and flexible thermal insulating subambient radiative cooler via a simple and inexpensive inverse high internal phase emulsion strategy.The as-prepared porous hybrid film exhibits an intrinsic combination of high solar reflectance(0.95),strong longwave infrared thermal emittance(0.97),and low thermal conductivity(31 mW/(m K)),yielding a subambient cooling temperature of~8.4℃ during the night and~6.5℃ during the hot midday with an average cooling power of~94 W/m^(2) under a solar intensity of~900 W/m^(2).Promisingly,combining the superhydrophobicity,durability,superelasticity,robust mechanical strength,and industrial applicability,the film is favorable for large-scale,sustainable and energy-saving applications in a wide variety of climates and complicated surfaces,enabling a substantial reduction of energy costs,greenhouse gas emission and associated ozone-depleting from traditional cooling systems.
基金the Science and Technology Commission of Shanghai Municipality(Grant No.21DZ1100500)Shanghai Municipal Science and Technology Major Project,and Shanghai Frontiers Science Center Program(2021-2025 No.20)+2 种基金Fangyi Zhang acknowledges the continued support from the Queensland University of Technology(QUT)through the Centre for Robotics.Zhengfen Wan thanks the National Natural Science Foundation of China(Grant No.62105206)the China Postdoctoral Science Foundation(No.2021M692137)for their supportXi Chen acknowledges the support from the National Natural Science Foundation of China(Grant No.11974247).
文摘Sensors are widely used to acquire biological and environmental information for medical diagnosis,and health and environmental monitoring.Graphene is a promising new sensor material that has been widely used in sensor fabrication in recent years.Compared with many other existing graphene preparation methods,laser-scribed graphene(LSG)is simple,low-cost,environmentally friendly,and has good conductivity and high thermal stability,making it widely used in the sensor field.This paper summarizes existing LSG methods for sensor fabrication.Primary LSG preparation methods and their variants are introduced first,followed by a summary of LSG modification methods designed explicitly for sensor fabrication.Subsequently,the applications of LSG in stress,bio,gas,temperature,and humidity sensors are summarized with a particular focus on multifunctional integrated sensors.Finally,the current challenges and prospects of LSG-based sensors are discussed.
文摘eLight,1(5),2021 https://doi.org/10.1186/s43593-021-00005-9 Simultaneous generation of multiple optical vortex(OV)lies at the heart of the application for orbital angular momentum(OAM)multiplexing both in classical and quantum domains.Previous structure with segmented or interleaved functional sub-areas in a single nano-device has been developed at the cost of its compactness and channel capacity.Back-to-nature design inspired by the spiral phyllotaxis pattern in this work offers a fresh way to fabricate a truly space-degenerated nanoscale multipleOVs-generator,namely vortex nanosieves.
基金supported by the Science and Technology Innovation 2030 Project of China(Nos.2021ZD02023501 and 2021ZD0202600)National Science Foundation of China(NSFC)(Nos.31970903,31671104,31371059 and 32225023)+1 种基金Shanghai Ministry of Science and Technology(No.19ZR1477400)NSFC and the German Research Foundation(DFG)in Project Crossmodal Learning(No.62061136001/TRR-169)。
文摘Despite its great success,deep learning severely suffers from robustness;i.e.,deep neural networks are very vulnerable to adversarial attacks,even the simplest ones.Inspired by recent advances in brain science,we propose the denoised internal models(DIM),a novel generative autoencoder-based model to tackle this challenge.Simulating the pipeline in the human brain for visual signal processing,DIM adopts a two-stage approach.In the first stage,DIM uses a denoiser to reduce the noise and the dimensions of inputs,reflecting the information pre-processing in the thalamus.Inspired by the sparse coding of memory-related traces in the primary visual cortex,the second stage produces a set of internal models,one for each category.We evaluate DIM over 42 adversarial attacks,showing that DIM effectively defenses against all the attacks and outperforms the SOTA on the overall robustness on the MNIST(Modified National Institute of Standards and Technology)dataset.