Invasions by exotic plant species and their impacts on invaded communities are a highly topical field of research because it provides a basis for the management of neophyte populations. However, for many invasive neop...Invasions by exotic plant species and their impacts on invaded communities are a highly topical field of research because it provides a basis for the management of neophyte populations. However, for many invasive neophyte species in Central Europe little is known about their impacts on invaded plant communities. Moreover, it has hardly been considered whether effects vary among habitat conditions. Here, we selected each ten sites with different habitat conditions invaded by Erigeron annuus, Fallopia japonica, Impatiens glandulifera and Solidago canadensis which were listed as invasive in Switzerland. At each site, we established four 4 m × 1 m subplots covering a gradient from very low to very high cover of the particular neophyte species to investigate the effect of increasing neophyte cover on the species richness, Shannon diversity and evenness of the invaded plant communities. Moreover, we measured soil pH and characterized habitat conditions using Ellenberg indicator values to light and soil fertility. Whereas increasing cover of I. glandulifera had no effect on the diversity of invaded plant communities, an increasing cover of E. annuus negatively affected Shannon diversity. An increasing cover of F. japonica combined with a decreasing soil pH negatively affected the Shannon diversity of invaded plant communities. Similarly, an increasing cover of S. canadensis in combination with decreasing soil fertility negatively affected the Shannon diversity and evenness of invaded communities. Our results indicate that significant effects of increasing neophyte cover are mostly coupled to particular habitat conditions and then rather suppress than eliminate native plant species in invaded communities. We therefore suggest including abiotic variables in further impact studies on biotic invasions. Furthermore, adapting measures to the respective environmental context can be a useful tool in priority setting for the management of invasive neophyte populations and the restoration of invaded habitats.展开更多
Soft rot disease caused by Pectobacterium spp.is responsible for severe agricultural losses in potato,vegetables,and ornamentals.The genus Zantedeschia includes two botanical groups of tuberous ornamental flowers that...Soft rot disease caused by Pectobacterium spp.is responsible for severe agricultural losses in potato,vegetables,and ornamentals.The genus Zantedeschia includes two botanical groups of tuberous ornamental flowers that are highly susceptible to the disease.Previous studies revealed that Z.aethiopica,a member of the section Zantedeschia,is signi ficantly more resistant to Pectobacterium spp.than members of the same genus that belong to the section Aestivae.During early infection,we found different patterns of bacterial colonization on leaves of hosts belonging to the different sections.Similar patterns of bacterial colonization were observed on polydimethylsiloxane(PDMS)arti fi cial inert replicas of leaf surfaces.The replicas con fi rmed the physical effect of leaf texture,in addition to a biochemical plant-bacterium interaction.The differential patterns may be associated with the greater roughness of the abaxial leaf surfaces of Aestivae group that have evolutionarily adapted to mountainous environments,as compared to Zantedeschia group species that have adapted to warm,marshy environments.Transverse leafsections also revealed compact aerenchyma and reduced the total volume of leaf tissue air spaces in Aestivae members.Finally,an analysis ofdefense marker genes revealed differential expression patterns in response to infection,with signi ficantly higher levels of lipoxygenase 2(lox 2)and phenylalanine ammonia lyase(pal)observed in the more resistant Z.aethiopica,suggesting greater activation of induced systemic resistance(ISR)mechanisms in this group.The use of Zantedeschia as a model plant sheds light on how natural ecological adaptations may underlay resistance to bacterial soft rot in cultivated agricultural environments.展开更多
Melon(Cucumis melo L.)is an important vegetable crop that has an extensive history of cultivation.However,the genome of wild and semi-wild melon types that can be used for the analysis of agronomic traits is not yet a...Melon(Cucumis melo L.)is an important vegetable crop that has an extensive history of cultivation.However,the genome of wild and semi-wild melon types that can be used for the analysis of agronomic traits is not yet available.Here we report a chromosome-level T2T genome assembly for 821(C.melo ssp.agrestis var.acidulus),a semi-wild melon with two haplotypes of∼373 Mb and∼364 Mb,respectively.Comparative genome analysis discovered a significant number of structural variants(SVs)between melo(C.melo ssp.melo)and agrestis(C.melo ssp.agrestis)genomes,including a copy number variation located in the ToLCNDV resistance locus on chromosome 11.Genome-wide association studies detected a significant signal associated with climacteric ripening and identified one candidate gene CM_ac12g14720.1(CmABA2),encoding a cytoplasmic short chain dehydrogenase/reductase,which controls the biosynthesis of abscisic acid.This study provides valuable genetic resources for future research on melon breeding.展开更多
The propagation of cultivated garlic relies on vegetative cloves,thus flowers become non-essential for reproduction in this species,driving the evolution of reproductive feature-derived traits.To obtain insights into ...The propagation of cultivated garlic relies on vegetative cloves,thus flowers become non-essential for reproduction in this species,driving the evolution of reproductive feature-derived traits.To obtain insights into the evolutionary alteration of reproductive traits in the clonally propagated garlic,the evolutionary histories of two main reproduction-related traits,bolting and flower differentiation,were explored by genome analyses using 134 accessions displaying wide diversity in these two traits.Resequencing identified 272.8 million variations in the garlic genome,198.0million of which represent novel variants.Population analysis identified five garlic groups that have evolved into two clades.Gene expression,single-cell transcriptome sequencing,and genome-wide trait association analyses have identified numerous candidates that correlate with reproductive transition and flower development,some of which display distinct selection signatures.Selective forces acting on the B-box zinc finger protein-encoding Asa2G00291.1,the global transcription factor group E protein-encoding Asa5G01527.1,and VERNALIZATION INSENSITIVE 3-like Asa3G03399.1 appear to be representative of the evolution of garlic bolting.Plenty of novel genomic variations and trait-related candidates represent valuable resources for biological studies of garlic.Numerous selective signatures from genes associated with the two chosen reproductive traits provide important insights into the evolutionary history of reproduction in this clonally propagated crop.展开更多
Sexual reproduction in plants is the main pathway for creating new genetic combinations in modern agriculture.In heterozygous plants,after the identification of a plant with desired traits,vegetative propagation(cloni...Sexual reproduction in plants is the main pathway for creating new genetic combinations in modern agriculture.In heterozygous plants,after the identification of a plant with desired traits,vegetative propagation(cloning)is the primary path to create genetically uniform plants.Another natural plant mechanism that creates genetically uniform plants(clones)is apomixis.In fruit crops like citrus and mango,sporophytic apomixis results in polyembryony,where seeds contain multiple embryos,one of which is sexually originated and the others are vegetative clones of the parent mother tree.Utilizing the mango genome and genetic analysis of a diverse germplasm collection,we identified MiRWP as the gene that causes polyembryony in mango.There is a strong correlation between a specific insertion in the gene’s promoter region and altered expression in flowers and developing fruitlets,inducing multiple embryos.The MiRWP gene is an ortholog of CitRWP that causes polyembryony in citrus.Based on the data,we speculate that promoter insertion events,which occurred independently in citrus and mango,induced nucellar embryogenesis.The results suggest convergent evolution of polyembryony in the two species.Further work is required to demonstrate the utility of these genes(mango and citrus)in other biological systems as a tool for the clonal production of other crops.展开更多
Biomass functions were established to estimate above-ground biomass of Siberian larch (Larix sibirica) in the Altai Mountains of Mon- golia. The functions are based on biomass sampling of trees from 18 different sit...Biomass functions were established to estimate above-ground biomass of Siberian larch (Larix sibirica) in the Altai Mountains of Mon- golia. The functions are based on biomass sampling of trees from 18 different sites, which represent the driest locations within the natural range ofL. sibirica. The best performing regression model was found for the equations y = (D2 H)/(a+bD) for stem biomass, y = aDb for branch biomass, and y=aDb Hc for needle biomass, where D is the stem diameter at breast height and H is the tree height. The robustness of the biomass functions is assessed by comparison with equations which had been previously published from a plantation in Iceland. There, y=aDb Hc was found to be the most significant model for stem and total above-ground biomasses. Applying the equations from Iceland for estimating the above-ground biomass of trees from Mongolia resulted in the underesti- mation of the biomass in large-diameter trees and the overestimation of the biomass in thin trees. The underestimation of thick-stemmed trees is probably attributable to the higher wood density, which has to be ex- pected under the ultracontinental climate of Mongolia compared to the euoceanic climate of Iceland. The overestimation of the biomass in trees with low stem diameter is probably due to the high density of young growth in the not systematically managed forests of the Mongolian Altai Mountains, which inhibits branching, whereas the plantations in Iceland are likely to have been planted in lower densities.展开更多
The adsorption of Cu(Ⅱ) from aqueous solution onto humic acid (HA) which was isolated from cattle manure (CHA), peat (PHA), and leaf litter (LHA) as a function of contact time, pH, ion strength, and initial...The adsorption of Cu(Ⅱ) from aqueous solution onto humic acid (HA) which was isolated from cattle manure (CHA), peat (PHA), and leaf litter (LHA) as a function of contact time, pH, ion strength, and initial concentration was studied using the batch method. X-ray absorption spectroscopy (XAS) was used to examine the coordination environment of the Cu(ll) adsorbed by HA at a molecular level. Moreover, the chemical compositions of the isolated HA were characterized by elemental analysis and solid-state 13C nuclear magnetic resonance spectroscopy (NMR). The kinetic data showed that the adsorption equilibrium can be achieved within 8 h. The adsorption kinetics followed the pseudo-second-order equation. The adsorption isotherms could be well fitted by the Langmuir model, and the maximum adsorption capacities of Cu(ll) on CHA, PHA, and LHA were 229.4,210.4, and 197.7 mg g-1, respectively. The adsorption of Cu(Ⅱ) on HA increased with the increase in pH from 2 to 7, and maintained a high level at pH〉7. The adsorption of Cu(Ⅱ) was also strongly influenced by the low ionic strength of 0.01 to 0.2 mol L-1 NaNO3, but was weakly influenced by high ionic strength of 0.4 to 1 mol L-1 NaNO3. The Cu(Ⅱ) adsorption on HA may be mainly attributed to ion exchange and surface complexation. XAS results revealed that the binding site and oxidation state of Cu adsorbed on HA surface did not change at the initial Cu(Ⅱ) concentrations of 15 to 40 mg L 1. For all the Cu(Ⅱ) adsorption samples, each Cu atom was surrounded by 40/N atoms at a bond distance of 1.95 A in the first coordination shell. The presence of the higher Cu coordination shells proved that Cu(Ⅱ) was adsorbed via an inner-sphere covalent bond onto the HA surface. Among the three HA samples, the adsorption capacity and affinity of CHA for Cu(Ⅱ) was the greatest, followed by that of PHA and LHA. All the three HA samples exhibited similar types of elemental and functional groups, but different contents of elemental and functional groups. CHA contained larger proportions of methoxyl C, phenolic C and carbonyl C, and smaller proportions of alkyl C and carbohydrate C than PHA and LHA. The structural differences of the three HA samples are responsible for their distinct adsorption capacity and affinity toward Cu(Ⅱ). These results are important to achieve better understanding of the behavior of Cu(Ⅱ) in soil and water bodies in the presence of organic materials.展开更多
Direct-seeding of rice has become popular in recent years due to its low cost and convenience,however,hypoxic condition limits seedling establishment.In this study,weedy rice WR04-6 with high germination ability under...Direct-seeding of rice has become popular in recent years due to its low cost and convenience,however,hypoxic condition limits seedling establishment.In this study,weedy rice WR04-6 with high germination ability under anaerobic conditions was used as a gene donor,and we successfully improved the seedling establishment rate of rice cultivar Qishanzhan(QSZ)based on selection of a new rice line R42 from the recombinant inbred line population.R42 inherited high anaerobic germination(AG)ability,and was used for isobaric tags for relative and absolute quantitation(iTRAQ)-based comparative proteomic studies with QSZ to further explore the molecular mechanism of AG.A total of 719 differentially abundant proteins(DAPs)were shared by R42 and QSZ responded to AG,and thus defined as common response DAPs.A total of 300 DAPs that responded to AG were only identified from R42,which were defined as tolerance-specific DAPs.The common response and tolerance-specific DAPs had similar biochemical reaction processes and metabolic pathways in response to anoxic stress,however,they involved different proteins.The tolerance-specific DAPs were involved in amino acid metabolism,starch and sucrose metabolism,tricarboxylic acid cycle pathway,ethylene synthesis pathway,cell wall-associated proteins and activity of active oxygen scavenging enzyme.The in silico protein-protein interactions for the top 60 DAPs indicated that tolerance-specific DAPs had relatively independent protein interaction networks in response to an anoxic environment compared with common response DAPs.The results of physiological indicators showed thatα-amylase and superoxide dismutase activities of R42 were significantly increased under anoxic conditions compared with aerobic conditions.Multiple lines of evidence from western blot,physiological analysis and quantitatDirect seeding of rice has become popular in recent years due to its low cost and convenience,however,hypoxic conditions can limit seedling establishment.In the present study,weedy rice WR04-6 with high germination ability in anaerobic conditions was used as the gene donor and successfully improved the seedling establishment rate of rice cultivar Qishanzhan(QSZ)based on selection of a new rice line R42 from the recombinant inbred line(RIL)population.R42 inherited the had high anaerobic germination(AG)ability,which was used for the isobaric tags for relative and absolute quantitation(iTRAQ)based comparative proteomic studies with QSZ to further explore the molecular mechanism of AG.A total of 719 differentially abundant proteins(DAPs)shared by R42 and QSZ responded to AG and were thus defined as common response DAPs.A total of 300 DAPs that responded to AG were only identified from R42,which were defined as tolerance-specific DAPs.The common response and tolerance-specific DAPs had similar biochemical reaction processes and metabolic pathways in response to anoxic stress,however they involved different proteins.The 300 tolerance-specific DAPs were involved in amino acid metabolism,starch and sucrose metabolism,TCA cycle pathways,ethylene synthesis pathway,cell wall-associated proteins and activity of active oxygen scavenging enzyme.The in silico protein-protein interactions for the top 60 DAPs indicated that tolerance-specific DAPs had relatively independent protein interaction networks in response to an anoxic environment compared with common response DAPs.The results of physiological indicators showed thatα-amylase and SOD activities of R42 were significantly increased under anoxic conditions compared with aerobic conditions.Multiple lines of evidence from western blot,physiological analyses and real-time PCR jointly supported the reliability of proteomics data.In summary,our findings deepened the understanding of the molecular mechanism for the rice response to AG.ive real-time PCR jointly supported the reliability of proteomics data.In summary,our findings deepened the understanding of the molecular mechanism for the rice response to AG.展开更多
Elevated CO2 and high N promote the yield of vegetables interactively, whilst their interactive effects on fruit quality of cucumber (Cucumis sativus L.) are unclear. We studied the effects of three CO2 concentratio...Elevated CO2 and high N promote the yield of vegetables interactively, whilst their interactive effects on fruit quality of cucumber (Cucumis sativus L.) are unclear. We studied the effects of three CO2 concentrations (400 IJmOl mol^-1 (ambient), 625 pmol mol^-1 (moderate) and 1 200 pmol mol^-1(high)) and nitrate levels (2 mmol L^-1 (low), 7 mmol L^-1 (moderate) and 14 mmol L^-1 (high)) on fruit quality of cucumber in open top chambers. Compared with ambient CO2, high CO2 increased the concentrations of fructose and glucose in fruits and maintained the titratable acidity, resulting in the greater ratio of sugar to acid in moderate N, whilst it had no significant effects on these parameters in high N. Moderate and high CO2 had no significant effect on starch concentration and decreased dietary fiber concentration by 13 and 18%, nitrate by 31 and 84% and crude protein by 19 and 20% averagely, without interactions with N levels. The decreases in amino acids under high CO2 were similar, ranging from 10-18%, except for tyrosine (50%). High CO2 also increased the concentrations of P, K, Ca and Mg but decreased the concentrations of Fe and Zn in low N, whilst high CO2 maintained the concentrations of P, K, Ca, Mg, Fe, Mn, Cu and Zn in moderate and high N. In conclusion, high CO2 and moderate N availability can be the best combination for improving the fruit quality of cucumber. The fruit enlargement, carbon transformation and N assimilation are probably the main processes affecting fruit quality under CO2 enrichment.展开更多
More than 200 research papers on the molecular phylogeny and phylogenetic biogeography ofbryophytes have been published since the beginning of this millenium. These papers corroborated assumptions of a complex genetic...More than 200 research papers on the molecular phylogeny and phylogenetic biogeography ofbryophytes have been published since the beginning of this millenium. These papers corroborated assumptions of a complex genetic structure of morphologically circumscribed bryophytes, and raised reservations against many morphologically justified species concepts, especially within the mosses. However, many molecular studies allowed for corrections and modifications of morphological classification schemes. Several studies reported that the phylogenetic structure of disjunctly distributed bryophyte species reflects their geographical ranges rather than morphological disparities. Molecular data led to new appraisals of distribution ranges and allowed for the reconstruction of refugia and migration routes. Intercontinental ranges of bryophytes are often caused by dispersal rather than geographical vicariance. Many distribution patterns of disjunct bryophytes are likely formed by processes such as short distance dispersal, rare long distance dispersal events, extinction, recolonization and diversification.展开更多
Chromium is found in all phases of the environment, including air, water and soil. The contamination of environment by chromium has become a major area of concern. Chromium effluent is highly toxic to plant and is har...Chromium is found in all phases of the environment, including air, water and soil. The contamination of environment by chromium has become a major area of concern. Chromium effluent is highly toxic to plant and is harmful to their growth and development. In present study, a pot experiment was carried out to assess the phytotoxicity of chromium in Hibiscus esculentus at different concentration (0.5, 2.5, 5, 10, 25, 50 and 100 mg·kg-1) of chromium metal. The phytotoxic effect of chromium was observed on seed germination, seedling growth, seedling vigor index, chlorophyll content and tolerance indices of Hibiscus esculentus. All results when compared with control show that chromium metal adversely affects the growth of Hibiscus esculentus by reducing seed germination and decreasing seedling growth. The toxic effects of chromium metal to seed germination and young seedling are arranged in order of inhibition as: 0.5 > 2.5 > 5 > 10 > 25 > 50 > 100 mg·kg-1 respectively. The toxicity of chromium metal to young seedling and their effects on chlorophyll content were increased with higher concentration of chromium in the soil system. The major inhibitory effect of chromium in Hibiscus esculentus seedling was determined as stress tolerance index (%). The present study represents that the seed and seedling of Hibiscus esculentus has potential to counteract the deleterious effects of chromium metal in soil.展开更多
Background:Forests perform various important ecosystem functions that contribute to ecosystem services.In many parts of the world,forest management has shifted from a focus on timber production to multi-purpose forest...Background:Forests perform various important ecosystem functions that contribute to ecosystem services.In many parts of the world,forest management has shifted from a focus on timber production to multi-purpose forestry,combining timber production with the supply of other forest ecosystem services.However,it is unclear which forest types provide which ecosystem services and to what extent forests primarily managed for timber already supply multiple ecosystem services.Based on a comprehensive dataset collected across 150 forest plots in three regions differing in management intensity and species composition,we develop models to predict the potential supply of 13 ecosystem services.We use those models to assess the level of multifunctionality of managed forests at the national level using national forest inventory data.Results:Looking at the potential supply of ecosystem services,we found trade-offs(e.g.between both bark beetle control or dung decomposition and both productivity or soil carbon stocks)as well as synergies(e.g.for temperature regulation,carbon storage and culturally interesting plants)across the 53 most dominant forest types in Germany.No single forest type provided all ecosystem services equally.Some ecosystem services showed comparable levels across forest types(e.g.decomposition or richness of saprotrophs),while others varied strongly,depending on forest structural attributes(e.g.phosphorous availability or cover of edible plants)or tree species composition(e.g.potential nitrification activity).Variability in potential supply of ecosystem services was only to a lesser extent driven by environmental conditions.However,the geographic variation in ecosystem function supply across Germany was closely linked with the distribution of main tree species.Conclusions:Our results show that forest multifunctionality is limited to subsets of ecosystem services.The importance of tree species composition highlights that a lack of multifunctionality at the stand level can be compensated by managing forests at the landscape level,when stands of complementary forest types are combined.These results imply that multi-purpose forestry should be based on a variety of forest types requiring coordinated planning across larger spatial scales.展开更多
The cwp(cuticular water permeability)gene controls the development of cuticular microfissuring and subsequent fruit dehydration in tomato.The gene underwent silencing in the evolution of the fleshy cultivated tomato b...The cwp(cuticular water permeability)gene controls the development of cuticular microfissuring and subsequent fruit dehydration in tomato.The gene underwent silencing in the evolution of the fleshy cultivated tomato but is expressed in the primitive wild tomato relatives.The introgression of the expressed allele from the wild S.habrochaites(cwph)into the cultivated tomato(Solanum lycopersicum)leads to the phenotype of fruit water loss during and following ripening.In this report,we show that low temperature impacts on the severity of the cuticular microfissure phenotype via a combination of effects on both expression and alternative splicing of cwph.The cwp gene,comprising four exons and three introns,undergoes post-transcriptional alternative splicing processes,leading to seven alternative transcripts that differ in reading-frame lengths.Transgenic plants expressing each of the alternative transcripts identified the longest reading frame(VAR1)as the functional splice variant.Low temperature led to a strong upregulation of cwph expression,compounded by an increase in the relative proportion of the functional VAR1 transcript,leading to increased severity of microfissuring of the cuticle.In summary,we demonstrate the molecular mechanism behind the horticultural phenomenon of the low-temperature effect on cuticular microfissures in the dehydrating tomato.展开更多
This work is comprised of anatomical study of fossil wood collected from Chnji formation (72°22'E, 32°41'N) of Miocene age exposed at Chinji National Reservoir. The material consists of a single piec...This work is comprised of anatomical study of fossil wood collected from Chnji formation (72°22'E, 32°41'N) of Miocene age exposed at Chinji National Reservoir. The material consists of a single piece of petrified wood dark brown in colour. The three dimensional sections were prepared by ground thin section technique. Microscopic examination of the characters was compared with modern and fossil wood and found comparable with the family Leguminosae. The closest resemblance of our fossil wood is with the wood of Ougenia. This fossil wood shows close resemblance in respect of vessels, fibers, parenchyma and xylem rays character. Therefore it is considered as new species and it is named Ougenioxylon chienjiensis sp. nov. The specific epithet refers to Chinji formation to which fossil wood belongs.展开更多
The recently domesticated species, Cephalaria joppensis (CJ), is emerging as a new alternative forage crop in Israel. It has high biomass potential and nutritional values that are comparable to forage wheat. However, ...The recently domesticated species, Cephalaria joppensis (CJ), is emerging as a new alternative forage crop in Israel. It has high biomass potential and nutritional values that are comparable to forage wheat. However, CJ emerges slowly under cold conditions, which hinders its development as a major winter crop. Additional tolerance for abiotic stress would improve its performance as a forage crop. We examined the effects of several abiotic factors (i.e., cold, salinity, drought and pH) on CJ germination under controlled conditions. The effect of temperature was studied by incubating seeds at different temperatures between 7°C and 35°C. The effects of salinity, osmotic potential and pH were tested by incubating seeds at different NaCl, PEG and pH levels, respectively. Temperature, salinity and osmotic potential significantly affected germination;whereas pH did not. Temperature did not affect the final proportion of germinated seeds, but did affect other germination-rate variables, indicating that germination rate might be the limiting factor under field conditions. Salinity also affected germination-rate variables, but not the proportion of seeds that germinated. Notably, CJ was found to be relatively resistant to high salt concentrations, with a 273 mM NaCl threshold for germination, indicating its potential as a relatively salt-tolerant forage crop. Both the proportion of germinated seeds and the germination rate were highly sensitive to the osmotic-potential treatments, indicating that drought resistance will remain the biggest challenge for CJ. This study provides baseline data for a rapid and efficient system for further screening for abiotic-stress tolerance among wild and cultivated lines of CJ.展开更多
The investigation on the vegetation and flora of the Ranikot Fort area was undertaken during 2009-2013. Ranikot Fort Area is a historical heritage of Sindh. So far there has been no publication on vegetation of this i...The investigation on the vegetation and flora of the Ranikot Fort area was undertaken during 2009-2013. Ranikot Fort Area is a historical heritage of Sindh. So far there has been no publication on vegetation of this important historic site. 89 plant species belonging to 69 genera and 32 families are identified which include monocot, dicots and pteridophytes. This contribution provides information on plant biodiversity of Ranikot, a natural heritage of Sindh, Pakistan.展开更多
For the purpose of broadening the available genetic resources to improve wheat breeding and to elucidate wheat evolution, 16 accessions of Aegilops tauschii newly collected in North Caucasia named NCT accessions were ...For the purpose of broadening the available genetic resources to improve wheat breeding and to elucidate wheat evolution, 16 accessions of Aegilops tauschii newly collected in North Caucasia named NCT accessions were characterized genetically based on morphology, chloroplast SSR variation and AFLP. Ae. tauschii is one of the most important wild wheat genetic resources because it is the progenitor of the D genome of hexaploid wheat. Since Caucasia is considered to be a center of diversity of both cultivated and wild wheat, a lot of studies have been conducted to evaluate the diversity of Caucasian genetic resources including Ae. tauschii. Such kind of analyses, however, focused on Transcaucasia but little attention has been paid to North Caucasia because of the lack of available genetic resources. Based on the molecular analyses in this study, the 16 NCT accessions were generally divided into two groups although morphologically those are classified into the same subspecies. The grouping also represented geographical distribution, that is, the northern part group and Derbent group. This division is consistent with the two major genepools in Ae. tauschii reported in previous studies. The northern part and Derbent groups correspond to Eurasian wide genepool (called Tauschii genepool) and Caucasia and Caspian coast limited genepool (Strangulata genepool), respectively. Regarding to chloroplast, all the 16 accessions were genotyped as HG7, the most major haplogroup of the species. Although all the 16 NCT accessions were categorized into ssp. tauschii morphologically, accessions of Derbent group showed a tendency to have larger spikelets. Among them, especially NCT3 had the quite large size of spikelets and grains that are at almost the largest level in ssp. tauschii. The results of this study filled the missing information of Ae. tauschii and will be helpful for future utilization.展开更多
The‘seedless’table grape industry relies mainly on stenospermocarpic cultivars,in which endosperm abortion results in berries with seed rudiments and low levels of bioactive gibberellin(GA).Application of GA to enha...The‘seedless’table grape industry relies mainly on stenospermocarpic cultivars,in which endosperm abortion results in berries with seed rudiments and low levels of bioactive gibberellin(GA).Application of GA to enhance berry sizing in these cultivars is often accompanied by adverse effects,one of which is increased proportions of very small berries(termed shot berries).Manual removal of these berries,which is essential to improve uniformity and market value,increases production cost and exposes the cluster to damage.Unraveling the physiological causes of shot berry formation is thus of both scientific and practical value.This study focuses on understanding the GA-mediated regulation of shot berry formation in Vitis vinifera cv.Early Sweet,known for a high proportion of shot berries,which severely damage cluster appearance.As GA is known to induce the parthenocarpic fruit set,we first tested the assumption that the parthenocarpic nature of a fruitlet is a primary cause for shot berry development.We then examined the consequence of the flower load on the proportion of shot berries in the cluster.Our data suggests that:(1)contrary to prior assumptions,the parthenocarpic nature of a fruitlet is not the primary cause for shot berry development,demonstrated by the fact that parthenocarpic fruitlets develop into a full-size berries;(2)the proportion of shot berries on a cluster is a function of the initial flower load on the inflorescence,with high initial flower load resulting in greater shot berry percentage in the cluster;(3)GA treatment bypasses the natural regulation of flower load,resulting in high fruitlet density and increased competition among fruitlets;(4)variation of flower load within the cluster influences berry size uniformity to a greater extent than does the variation in number of cluster per vine.The identity of the factors that determine the fate of a given flower on a high-load cluster remains an open question.展开更多
Previous genetic studies in cowpea [Vigna unguiculata (L.) Walp] have shown that an active bipartite transposable element (TE) is responsible for a range of mutant phenotypes of its leaf, stem and flower. Since type I...Previous genetic studies in cowpea [Vigna unguiculata (L.) Walp] have shown that an active bipartite transposable element (TE) is responsible for a range of mutant phenotypes of its leaf, stem and flower. Since type II TEs have not been characterized at the molecular level in cowpea, this study was initiated to survey the presence of type II TEs in the cowpea genome. Type II TEs: Enhancer/Suppressor-mutator (En/Spm) and Miniature Inverted-repeat Transposable Elements (MITEs) were isolated and characterized. The sequence identity between the EnSpm TE clones was 46% at the nucleotide level (NL) and 30% at the amino acid level (AL) while that of MITEs was 71% at NL and 63% at AL. These cowpea En/Spm TEs were 80% homologous with En/Spm elements of other crops at NL and 46% at AL. The MITEs were 96% similar at NL and 18% homologous at AL. DNA gel blot analysis confirmed the presence of the En/Spm TEs in cowpea. RT-PCR (reverse transcriptase polymerase chain reaction) analysis showed that the VuEnSpm-3 and the MITE clone, VuPIF-1 were actively transcribed in wild type and mutant cowpea tissues. Overall, our data show that multiple, divergent lineages of En/Spm and MITEs are present in the cowpea genome, some of which are actively transcribed. Our findings also offer new molecular resource to further investigate the genetic determinants underlying previously described mutant cowpea phenotypes.展开更多
Above-optimal temperatures reduce yield in many crops, including tomato, largely because of the heat-sensitivity of their reproduction process. A full understanding of heat-stress (HS) response and thermotolerance of ...Above-optimal temperatures reduce yield in many crops, including tomato, largely because of the heat-sensitivity of their reproduction process. A full understanding of heat-stress (HS) response and thermotolerance of tomato reproduction is still lacking. Recently, using external application of the plant <span style="font-family:Verdana;">hormone ethylene, it was demonstrated that ethylene plays a role in</span><span style="font-family:Verdana;"> heat-tolerance of tomato pollen (the male reproductive cells). In order to expand our understanding on involvement of ethylene in tomato pollen thermotolerance, </span><span style="font-family:Verdana;">we analyzed the response of wild type and ethylene-related tomato mutant</span> <span style="font-family:Verdana;">plants to HS, at physiological and molecular levels. We report that mild</span><span style="font-family:Verdana;"> chronic </span><span style="font-family:Verdana;">HS conditions highly reduce the number of viable and germinating pollen </span><span style="font-family:Verdana;">grains as well as the production of seeded fruits in wild type tomato plants, while no significant reduction was detected/observed in pollen quality, number of seeded fruits and seeds per fruit in plants of the ethylene over-producer mutant epinastic. Our findings suggest that ethylene is involved in thermotolerance of tomato reproduction, pointing to an effect on pollen viability and </span><span style="font-family:Verdana;">germination potential, highlighting candidate genes involved in pollen re</span><span style="font-family:Verdana;">sponse to HS (like </span><i><span style="font-family:Verdana;">SlHSP17</span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">SlHSP101</span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">SlMBF1</span></i><span style="font-family:Verdana;">) and suggesting directions for further studies.</span>展开更多
文摘Invasions by exotic plant species and their impacts on invaded communities are a highly topical field of research because it provides a basis for the management of neophyte populations. However, for many invasive neophyte species in Central Europe little is known about their impacts on invaded plant communities. Moreover, it has hardly been considered whether effects vary among habitat conditions. Here, we selected each ten sites with different habitat conditions invaded by Erigeron annuus, Fallopia japonica, Impatiens glandulifera and Solidago canadensis which were listed as invasive in Switzerland. At each site, we established four 4 m × 1 m subplots covering a gradient from very low to very high cover of the particular neophyte species to investigate the effect of increasing neophyte cover on the species richness, Shannon diversity and evenness of the invaded plant communities. Moreover, we measured soil pH and characterized habitat conditions using Ellenberg indicator values to light and soil fertility. Whereas increasing cover of I. glandulifera had no effect on the diversity of invaded plant communities, an increasing cover of E. annuus negatively affected Shannon diversity. An increasing cover of F. japonica combined with a decreasing soil pH negatively affected the Shannon diversity of invaded plant communities. Similarly, an increasing cover of S. canadensis in combination with decreasing soil fertility negatively affected the Shannon diversity and evenness of invaded communities. Our results indicate that significant effects of increasing neophyte cover are mostly coupled to particular habitat conditions and then rather suppress than eliminate native plant species in invaded communities. We therefore suggest including abiotic variables in further impact studies on biotic invasions. Furthermore, adapting measures to the respective environmental context can be a useful tool in priority setting for the management of invasive neophyte populations and the restoration of invaded habitats.
基金the Chief Scientist of the Israeli Ministry of Agriculture(Grant No.20-01-0193).
文摘Soft rot disease caused by Pectobacterium spp.is responsible for severe agricultural losses in potato,vegetables,and ornamentals.The genus Zantedeschia includes two botanical groups of tuberous ornamental flowers that are highly susceptible to the disease.Previous studies revealed that Z.aethiopica,a member of the section Zantedeschia,is signi ficantly more resistant to Pectobacterium spp.than members of the same genus that belong to the section Aestivae.During early infection,we found different patterns of bacterial colonization on leaves of hosts belonging to the different sections.Similar patterns of bacterial colonization were observed on polydimethylsiloxane(PDMS)arti fi cial inert replicas of leaf surfaces.The replicas con fi rmed the physical effect of leaf texture,in addition to a biochemical plant-bacterium interaction.The differential patterns may be associated with the greater roughness of the abaxial leaf surfaces of Aestivae group that have evolutionarily adapted to mountainous environments,as compared to Zantedeschia group species that have adapted to warm,marshy environments.Transverse leafsections also revealed compact aerenchyma and reduced the total volume of leaf tissue air spaces in Aestivae members.Finally,an analysis ofdefense marker genes revealed differential expression patterns in response to infection,with signi ficantly higher levels of lipoxygenase 2(lox 2)and phenylalanine ammonia lyase(pal)observed in the more resistant Z.aethiopica,suggesting greater activation of induced systemic resistance(ISR)mechanisms in this group.The use of Zantedeschia as a model plant sheds light on how natural ecological adaptations may underlay resistance to bacterial soft rot in cultivated agricultural environments.
基金This work was supported by funding from the Agricultural Science and Technology Innovation Program(CAAS-ASTIP-2016-ZFRI-06)the China Agriculture Research System(CARS-25-2023-G6)+3 种基金the Key Research and Development Program of Hainan(ZDYF2021XDNY164)the European Research Council(ERC-NectarGland,101095736)the 111 Project(B17043)Henan Province Science and Technology Research Project(232102110185).
文摘Melon(Cucumis melo L.)is an important vegetable crop that has an extensive history of cultivation.However,the genome of wild and semi-wild melon types that can be used for the analysis of agronomic traits is not yet available.Here we report a chromosome-level T2T genome assembly for 821(C.melo ssp.agrestis var.acidulus),a semi-wild melon with two haplotypes of∼373 Mb and∼364 Mb,respectively.Comparative genome analysis discovered a significant number of structural variants(SVs)between melo(C.melo ssp.melo)and agrestis(C.melo ssp.agrestis)genomes,including a copy number variation located in the ToLCNDV resistance locus on chromosome 11.Genome-wide association studies detected a significant signal associated with climacteric ripening and identified one candidate gene CM_ac12g14720.1(CmABA2),encoding a cytoplasmic short chain dehydrogenase/reductase,which controls the biosynthesis of abscisic acid.This study provides valuable genetic resources for future research on melon breeding.
基金supported by grants from the National Natural Science Foundation of China(31872946,32172566 to H.W.,32372689 to T.L.)the Scientific Research Foundation of Yangzhou University(5018/137012867 to T.L.)+1 种基金the Shandong Provincial Key Research and Development Program(2023CXPT045 to T.L.)the China Agriculture Research System of MOF and MARA(CARS-24-01 to H.W.).
文摘The propagation of cultivated garlic relies on vegetative cloves,thus flowers become non-essential for reproduction in this species,driving the evolution of reproductive feature-derived traits.To obtain insights into the evolutionary alteration of reproductive traits in the clonally propagated garlic,the evolutionary histories of two main reproduction-related traits,bolting and flower differentiation,were explored by genome analyses using 134 accessions displaying wide diversity in these two traits.Resequencing identified 272.8 million variations in the garlic genome,198.0million of which represent novel variants.Population analysis identified five garlic groups that have evolved into two clades.Gene expression,single-cell transcriptome sequencing,and genome-wide trait association analyses have identified numerous candidates that correlate with reproductive transition and flower development,some of which display distinct selection signatures.Selective forces acting on the B-box zinc finger protein-encoding Asa2G00291.1,the global transcription factor group E protein-encoding Asa5G01527.1,and VERNALIZATION INSENSITIVE 3-like Asa3G03399.1 appear to be representative of the evolution of garlic bolting.Plenty of novel genomic variations and trait-related candidates represent valuable resources for biological studies of garlic.Numerous selective signatures from genes associated with the two chosen reproductive traits provide important insights into the evolutionary history of reproduction in this clonally propagated crop.
基金The research was supported by Research Grant No.IS-5106-18R from BARD,The United States-Israel Binational Agricultural Research and Development Fund(granted to A.S.,D.N.K.,Y.C.,and R.O.)by grants No.203-0859(granted to A.S.and R.O.)No.203-0110(granted to Y.C.)from the Chief Scientist of the Israeli Ministry of Agriculture.D.N.K.was supported by a grant from the USDA National Institute of Food and Agriculture(USDA-NIFA 2018-51181-28375).
文摘Sexual reproduction in plants is the main pathway for creating new genetic combinations in modern agriculture.In heterozygous plants,after the identification of a plant with desired traits,vegetative propagation(cloning)is the primary path to create genetically uniform plants.Another natural plant mechanism that creates genetically uniform plants(clones)is apomixis.In fruit crops like citrus and mango,sporophytic apomixis results in polyembryony,where seeds contain multiple embryos,one of which is sexually originated and the others are vegetative clones of the parent mother tree.Utilizing the mango genome and genetic analysis of a diverse germplasm collection,we identified MiRWP as the gene that causes polyembryony in mango.There is a strong correlation between a specific insertion in the gene’s promoter region and altered expression in flowers and developing fruitlets,inducing multiple embryos.The MiRWP gene is an ortholog of CitRWP that causes polyembryony in citrus.Based on the data,we speculate that promoter insertion events,which occurred independently in citrus and mango,induced nucellar embryogenesis.The results suggest convergent evolution of polyembryony in the two species.Further work is required to demonstrate the utility of these genes(mango and citrus)in other biological systems as a tool for the clonal production of other crops.
基金funded by the Asian Research Center (ARC) based in the National University of Mongolia (Ulan Bator) The work was done in association with the project "Forest regeneration and biodiversity at the forest-steppe border of the Altai and Khangai Mountains under contrasting developments of livestock numbers in Kazakhstan and Mongolia" funded by the Volkswagen Foundation
文摘Biomass functions were established to estimate above-ground biomass of Siberian larch (Larix sibirica) in the Altai Mountains of Mon- golia. The functions are based on biomass sampling of trees from 18 different sites, which represent the driest locations within the natural range ofL. sibirica. The best performing regression model was found for the equations y = (D2 H)/(a+bD) for stem biomass, y = aDb for branch biomass, and y=aDb Hc for needle biomass, where D is the stem diameter at breast height and H is the tree height. The robustness of the biomass functions is assessed by comparison with equations which had been previously published from a plantation in Iceland. There, y=aDb Hc was found to be the most significant model for stem and total above-ground biomasses. Applying the equations from Iceland for estimating the above-ground biomass of trees from Mongolia resulted in the underesti- mation of the biomass in large-diameter trees and the overestimation of the biomass in thin trees. The underestimation of thick-stemmed trees is probably attributable to the higher wood density, which has to be ex- pected under the ultracontinental climate of Mongolia compared to the euoceanic climate of Iceland. The overestimation of the biomass in trees with low stem diameter is probably due to the high density of young growth in the not systematically managed forests of the Mongolian Altai Mountains, which inhibits branching, whereas the plantations in Iceland are likely to have been planted in lower densities.
基金supported by the Key Technologies R&D Program of China (2013BAD07B02 and 2013BAC09B01)the Special Fund for Agro-Scientific Research in the Public Interest of China (201103003)+1 种基金the Postdoctoral Project of Jilin Province, China (01912)the Doctoral Initiative Foundation of Jilin Agricultural University, China (201216)
文摘The adsorption of Cu(Ⅱ) from aqueous solution onto humic acid (HA) which was isolated from cattle manure (CHA), peat (PHA), and leaf litter (LHA) as a function of contact time, pH, ion strength, and initial concentration was studied using the batch method. X-ray absorption spectroscopy (XAS) was used to examine the coordination environment of the Cu(ll) adsorbed by HA at a molecular level. Moreover, the chemical compositions of the isolated HA were characterized by elemental analysis and solid-state 13C nuclear magnetic resonance spectroscopy (NMR). The kinetic data showed that the adsorption equilibrium can be achieved within 8 h. The adsorption kinetics followed the pseudo-second-order equation. The adsorption isotherms could be well fitted by the Langmuir model, and the maximum adsorption capacities of Cu(ll) on CHA, PHA, and LHA were 229.4,210.4, and 197.7 mg g-1, respectively. The adsorption of Cu(Ⅱ) on HA increased with the increase in pH from 2 to 7, and maintained a high level at pH〉7. The adsorption of Cu(Ⅱ) was also strongly influenced by the low ionic strength of 0.01 to 0.2 mol L-1 NaNO3, but was weakly influenced by high ionic strength of 0.4 to 1 mol L-1 NaNO3. The Cu(Ⅱ) adsorption on HA may be mainly attributed to ion exchange and surface complexation. XAS results revealed that the binding site and oxidation state of Cu adsorbed on HA surface did not change at the initial Cu(Ⅱ) concentrations of 15 to 40 mg L 1. For all the Cu(Ⅱ) adsorption samples, each Cu atom was surrounded by 40/N atoms at a bond distance of 1.95 A in the first coordination shell. The presence of the higher Cu coordination shells proved that Cu(Ⅱ) was adsorbed via an inner-sphere covalent bond onto the HA surface. Among the three HA samples, the adsorption capacity and affinity of CHA for Cu(Ⅱ) was the greatest, followed by that of PHA and LHA. All the three HA samples exhibited similar types of elemental and functional groups, but different contents of elemental and functional groups. CHA contained larger proportions of methoxyl C, phenolic C and carbonyl C, and smaller proportions of alkyl C and carbohydrate C than PHA and LHA. The structural differences of the three HA samples are responsible for their distinct adsorption capacity and affinity toward Cu(Ⅱ). These results are important to achieve better understanding of the behavior of Cu(Ⅱ) in soil and water bodies in the presence of organic materials.
基金supported by the National Natural Science Foundation of China(Grant No.31701503)the Provincial Matching Funds to the National Foundation of Applied Technology Research and Development Program in Heilongjiang Province(Grant No.GX18B002)the National Key Research and Development Program of China(Grant No.2016YFD0300501).
文摘Direct-seeding of rice has become popular in recent years due to its low cost and convenience,however,hypoxic condition limits seedling establishment.In this study,weedy rice WR04-6 with high germination ability under anaerobic conditions was used as a gene donor,and we successfully improved the seedling establishment rate of rice cultivar Qishanzhan(QSZ)based on selection of a new rice line R42 from the recombinant inbred line population.R42 inherited high anaerobic germination(AG)ability,and was used for isobaric tags for relative and absolute quantitation(iTRAQ)-based comparative proteomic studies with QSZ to further explore the molecular mechanism of AG.A total of 719 differentially abundant proteins(DAPs)were shared by R42 and QSZ responded to AG,and thus defined as common response DAPs.A total of 300 DAPs that responded to AG were only identified from R42,which were defined as tolerance-specific DAPs.The common response and tolerance-specific DAPs had similar biochemical reaction processes and metabolic pathways in response to anoxic stress,however,they involved different proteins.The tolerance-specific DAPs were involved in amino acid metabolism,starch and sucrose metabolism,tricarboxylic acid cycle pathway,ethylene synthesis pathway,cell wall-associated proteins and activity of active oxygen scavenging enzyme.The in silico protein-protein interactions for the top 60 DAPs indicated that tolerance-specific DAPs had relatively independent protein interaction networks in response to an anoxic environment compared with common response DAPs.The results of physiological indicators showed thatα-amylase and superoxide dismutase activities of R42 were significantly increased under anoxic conditions compared with aerobic conditions.Multiple lines of evidence from western blot,physiological analysis and quantitatDirect seeding of rice has become popular in recent years due to its low cost and convenience,however,hypoxic conditions can limit seedling establishment.In the present study,weedy rice WR04-6 with high germination ability in anaerobic conditions was used as the gene donor and successfully improved the seedling establishment rate of rice cultivar Qishanzhan(QSZ)based on selection of a new rice line R42 from the recombinant inbred line(RIL)population.R42 inherited the had high anaerobic germination(AG)ability,which was used for the isobaric tags for relative and absolute quantitation(iTRAQ)based comparative proteomic studies with QSZ to further explore the molecular mechanism of AG.A total of 719 differentially abundant proteins(DAPs)shared by R42 and QSZ responded to AG and were thus defined as common response DAPs.A total of 300 DAPs that responded to AG were only identified from R42,which were defined as tolerance-specific DAPs.The common response and tolerance-specific DAPs had similar biochemical reaction processes and metabolic pathways in response to anoxic stress,however they involved different proteins.The 300 tolerance-specific DAPs were involved in amino acid metabolism,starch and sucrose metabolism,TCA cycle pathways,ethylene synthesis pathway,cell wall-associated proteins and activity of active oxygen scavenging enzyme.The in silico protein-protein interactions for the top 60 DAPs indicated that tolerance-specific DAPs had relatively independent protein interaction networks in response to an anoxic environment compared with common response DAPs.The results of physiological indicators showed thatα-amylase and SOD activities of R42 were significantly increased under anoxic conditions compared with aerobic conditions.Multiple lines of evidence from western blot,physiological analyses and real-time PCR jointly supported the reliability of proteomics data.In summary,our findings deepened the understanding of the molecular mechanism for the rice response to AG.ive real-time PCR jointly supported the reliability of proteomics data.In summary,our findings deepened the understanding of the molecular mechanism for the rice response to AG.
基金funding supports from the National Key Technologies R&D Program of China during the 12th Five-Year Plan period (2014BAD14B04)the Strategic Priority Research Program of the Chinese Academy of Science (XDB15030300)the Frontier Project of Knowledge Innovation Program of Institute of Soil Science, Chinese Academy of Sciences (ISSASIP1635)
文摘Elevated CO2 and high N promote the yield of vegetables interactively, whilst their interactive effects on fruit quality of cucumber (Cucumis sativus L.) are unclear. We studied the effects of three CO2 concentrations (400 IJmOl mol^-1 (ambient), 625 pmol mol^-1 (moderate) and 1 200 pmol mol^-1(high)) and nitrate levels (2 mmol L^-1 (low), 7 mmol L^-1 (moderate) and 14 mmol L^-1 (high)) on fruit quality of cucumber in open top chambers. Compared with ambient CO2, high CO2 increased the concentrations of fructose and glucose in fruits and maintained the titratable acidity, resulting in the greater ratio of sugar to acid in moderate N, whilst it had no significant effects on these parameters in high N. Moderate and high CO2 had no significant effect on starch concentration and decreased dietary fiber concentration by 13 and 18%, nitrate by 31 and 84% and crude protein by 19 and 20% averagely, without interactions with N levels. The decreases in amino acids under high CO2 were similar, ranging from 10-18%, except for tyrosine (50%). High CO2 also increased the concentrations of P, K, Ca and Mg but decreased the concentrations of Fe and Zn in low N, whilst high CO2 maintained the concentrations of P, K, Ca, Mg, Fe, Mn, Cu and Zn in moderate and high N. In conclusion, high CO2 and moderate N availability can be the best combination for improving the fruit quality of cucumber. The fruit enlargement, carbon transformation and N assimilation are probably the main processes affecting fruit quality under CO2 enrichment.
基金support from the German Research Foundation(grants HE 3584/1-4)
文摘More than 200 research papers on the molecular phylogeny and phylogenetic biogeography ofbryophytes have been published since the beginning of this millenium. These papers corroborated assumptions of a complex genetic structure of morphologically circumscribed bryophytes, and raised reservations against many morphologically justified species concepts, especially within the mosses. However, many molecular studies allowed for corrections and modifications of morphological classification schemes. Several studies reported that the phylogenetic structure of disjunctly distributed bryophyte species reflects their geographical ranges rather than morphological disparities. Molecular data led to new appraisals of distribution ranges and allowed for the reconstruction of refugia and migration routes. Intercontinental ranges of bryophytes are often caused by dispersal rather than geographical vicariance. Many distribution patterns of disjunct bryophytes are likely formed by processes such as short distance dispersal, rare long distance dispersal events, extinction, recolonization and diversification.
文摘Chromium is found in all phases of the environment, including air, water and soil. The contamination of environment by chromium has become a major area of concern. Chromium effluent is highly toxic to plant and is harmful to their growth and development. In present study, a pot experiment was carried out to assess the phytotoxicity of chromium in Hibiscus esculentus at different concentration (0.5, 2.5, 5, 10, 25, 50 and 100 mg·kg-1) of chromium metal. The phytotoxic effect of chromium was observed on seed germination, seedling growth, seedling vigor index, chlorophyll content and tolerance indices of Hibiscus esculentus. All results when compared with control show that chromium metal adversely affects the growth of Hibiscus esculentus by reducing seed germination and decreasing seedling growth. The toxic effects of chromium metal to seed germination and young seedling are arranged in order of inhibition as: 0.5 > 2.5 > 5 > 10 > 25 > 50 > 100 mg·kg-1 respectively. The toxicity of chromium metal to young seedling and their effects on chlorophyll content were increased with higher concentration of chromium in the soil system. The major inhibitory effect of chromium in Hibiscus esculentus seedling was determined as stress tolerance index (%). The present study represents that the seed and seedling of Hibiscus esculentus has potential to counteract the deleterious effects of chromium metal in soil.
基金funded through the project‘Bio Holz’(grant no.01LC1323A)in the funding program‘Research for the Implementation of the National Biodiversity Strategy(F&U NBS)’by the German Federal Ministry for Education and Research(BMBF)and the German Federal Agency for Nature Conservation(Bf N)with funds provided by the German Federal Ministry for the Environment,Nature Conservation,Building and Nuclear Safety(BMUB)supported by the DFG Priority Program 1374‘Infrastructure-Biodiversity-Exploratories’。
文摘Background:Forests perform various important ecosystem functions that contribute to ecosystem services.In many parts of the world,forest management has shifted from a focus on timber production to multi-purpose forestry,combining timber production with the supply of other forest ecosystem services.However,it is unclear which forest types provide which ecosystem services and to what extent forests primarily managed for timber already supply multiple ecosystem services.Based on a comprehensive dataset collected across 150 forest plots in three regions differing in management intensity and species composition,we develop models to predict the potential supply of 13 ecosystem services.We use those models to assess the level of multifunctionality of managed forests at the national level using national forest inventory data.Results:Looking at the potential supply of ecosystem services,we found trade-offs(e.g.between both bark beetle control or dung decomposition and both productivity or soil carbon stocks)as well as synergies(e.g.for temperature regulation,carbon storage and culturally interesting plants)across the 53 most dominant forest types in Germany.No single forest type provided all ecosystem services equally.Some ecosystem services showed comparable levels across forest types(e.g.decomposition or richness of saprotrophs),while others varied strongly,depending on forest structural attributes(e.g.phosphorous availability or cover of edible plants)or tree species composition(e.g.potential nitrification activity).Variability in potential supply of ecosystem services was only to a lesser extent driven by environmental conditions.However,the geographic variation in ecosystem function supply across Germany was closely linked with the distribution of main tree species.Conclusions:Our results show that forest multifunctionality is limited to subsets of ecosystem services.The importance of tree species composition highlights that a lack of multifunctionality at the stand level can be compensated by managing forests at the landscape level,when stands of complementary forest types are combined.These results imply that multi-purpose forestry should be based on a variety of forest types requiring coordinated planning across larger spatial scales.
文摘The cwp(cuticular water permeability)gene controls the development of cuticular microfissuring and subsequent fruit dehydration in tomato.The gene underwent silencing in the evolution of the fleshy cultivated tomato but is expressed in the primitive wild tomato relatives.The introgression of the expressed allele from the wild S.habrochaites(cwph)into the cultivated tomato(Solanum lycopersicum)leads to the phenotype of fruit water loss during and following ripening.In this report,we show that low temperature impacts on the severity of the cuticular microfissure phenotype via a combination of effects on both expression and alternative splicing of cwph.The cwp gene,comprising four exons and three introns,undergoes post-transcriptional alternative splicing processes,leading to seven alternative transcripts that differ in reading-frame lengths.Transgenic plants expressing each of the alternative transcripts identified the longest reading frame(VAR1)as the functional splice variant.Low temperature led to a strong upregulation of cwph expression,compounded by an increase in the relative proportion of the functional VAR1 transcript,leading to increased severity of microfissuring of the cuticle.In summary,we demonstrate the molecular mechanism behind the horticultural phenomenon of the low-temperature effect on cuticular microfissures in the dehydrating tomato.
文摘This work is comprised of anatomical study of fossil wood collected from Chnji formation (72°22'E, 32°41'N) of Miocene age exposed at Chinji National Reservoir. The material consists of a single piece of petrified wood dark brown in colour. The three dimensional sections were prepared by ground thin section technique. Microscopic examination of the characters was compared with modern and fossil wood and found comparable with the family Leguminosae. The closest resemblance of our fossil wood is with the wood of Ougenia. This fossil wood shows close resemblance in respect of vessels, fibers, parenchyma and xylem rays character. Therefore it is considered as new species and it is named Ougenioxylon chienjiensis sp. nov. The specific epithet refers to Chinji formation to which fossil wood belongs.
文摘The recently domesticated species, Cephalaria joppensis (CJ), is emerging as a new alternative forage crop in Israel. It has high biomass potential and nutritional values that are comparable to forage wheat. However, CJ emerges slowly under cold conditions, which hinders its development as a major winter crop. Additional tolerance for abiotic stress would improve its performance as a forage crop. We examined the effects of several abiotic factors (i.e., cold, salinity, drought and pH) on CJ germination under controlled conditions. The effect of temperature was studied by incubating seeds at different temperatures between 7°C and 35°C. The effects of salinity, osmotic potential and pH were tested by incubating seeds at different NaCl, PEG and pH levels, respectively. Temperature, salinity and osmotic potential significantly affected germination;whereas pH did not. Temperature did not affect the final proportion of germinated seeds, but did affect other germination-rate variables, indicating that germination rate might be the limiting factor under field conditions. Salinity also affected germination-rate variables, but not the proportion of seeds that germinated. Notably, CJ was found to be relatively resistant to high salt concentrations, with a 273 mM NaCl threshold for germination, indicating its potential as a relatively salt-tolerant forage crop. Both the proportion of germinated seeds and the germination rate were highly sensitive to the osmotic-potential treatments, indicating that drought resistance will remain the biggest challenge for CJ. This study provides baseline data for a rapid and efficient system for further screening for abiotic-stress tolerance among wild and cultivated lines of CJ.
文摘The investigation on the vegetation and flora of the Ranikot Fort area was undertaken during 2009-2013. Ranikot Fort Area is a historical heritage of Sindh. So far there has been no publication on vegetation of this important historic site. 89 plant species belonging to 69 genera and 32 families are identified which include monocot, dicots and pteridophytes. This contribution provides information on plant biodiversity of Ranikot, a natural heritage of Sindh, Pakistan.
文摘For the purpose of broadening the available genetic resources to improve wheat breeding and to elucidate wheat evolution, 16 accessions of Aegilops tauschii newly collected in North Caucasia named NCT accessions were characterized genetically based on morphology, chloroplast SSR variation and AFLP. Ae. tauschii is one of the most important wild wheat genetic resources because it is the progenitor of the D genome of hexaploid wheat. Since Caucasia is considered to be a center of diversity of both cultivated and wild wheat, a lot of studies have been conducted to evaluate the diversity of Caucasian genetic resources including Ae. tauschii. Such kind of analyses, however, focused on Transcaucasia but little attention has been paid to North Caucasia because of the lack of available genetic resources. Based on the molecular analyses in this study, the 16 NCT accessions were generally divided into two groups although morphologically those are classified into the same subspecies. The grouping also represented geographical distribution, that is, the northern part group and Derbent group. This division is consistent with the two major genepools in Ae. tauschii reported in previous studies. The northern part and Derbent groups correspond to Eurasian wide genepool (called Tauschii genepool) and Caucasia and Caspian coast limited genepool (Strangulata genepool), respectively. Regarding to chloroplast, all the 16 accessions were genotyped as HG7, the most major haplogroup of the species. Although all the 16 NCT accessions were categorized into ssp. tauschii morphologically, accessions of Derbent group showed a tendency to have larger spikelets. Among them, especially NCT3 had the quite large size of spikelets and grains that are at almost the largest level in ssp. tauschii. The results of this study filled the missing information of Ae. tauschii and will be helpful for future utilization.
基金supported by the R&D fund of the Ministry of Agriculture Chif Scientist,Israel.
文摘The‘seedless’table grape industry relies mainly on stenospermocarpic cultivars,in which endosperm abortion results in berries with seed rudiments and low levels of bioactive gibberellin(GA).Application of GA to enhance berry sizing in these cultivars is often accompanied by adverse effects,one of which is increased proportions of very small berries(termed shot berries).Manual removal of these berries,which is essential to improve uniformity and market value,increases production cost and exposes the cluster to damage.Unraveling the physiological causes of shot berry formation is thus of both scientific and practical value.This study focuses on understanding the GA-mediated regulation of shot berry formation in Vitis vinifera cv.Early Sweet,known for a high proportion of shot berries,which severely damage cluster appearance.As GA is known to induce the parthenocarpic fruit set,we first tested the assumption that the parthenocarpic nature of a fruitlet is a primary cause for shot berry development.We then examined the consequence of the flower load on the proportion of shot berries in the cluster.Our data suggests that:(1)contrary to prior assumptions,the parthenocarpic nature of a fruitlet is not the primary cause for shot berry development,demonstrated by the fact that parthenocarpic fruitlets develop into a full-size berries;(2)the proportion of shot berries on a cluster is a function of the initial flower load on the inflorescence,with high initial flower load resulting in greater shot berry percentage in the cluster;(3)GA treatment bypasses the natural regulation of flower load,resulting in high fruitlet density and increased competition among fruitlets;(4)variation of flower load within the cluster influences berry size uniformity to a greater extent than does the variation in number of cluster per vine.The identity of the factors that determine the fate of a given flower on a high-load cluster remains an open question.
文摘Previous genetic studies in cowpea [Vigna unguiculata (L.) Walp] have shown that an active bipartite transposable element (TE) is responsible for a range of mutant phenotypes of its leaf, stem and flower. Since type II TEs have not been characterized at the molecular level in cowpea, this study was initiated to survey the presence of type II TEs in the cowpea genome. Type II TEs: Enhancer/Suppressor-mutator (En/Spm) and Miniature Inverted-repeat Transposable Elements (MITEs) were isolated and characterized. The sequence identity between the EnSpm TE clones was 46% at the nucleotide level (NL) and 30% at the amino acid level (AL) while that of MITEs was 71% at NL and 63% at AL. These cowpea En/Spm TEs were 80% homologous with En/Spm elements of other crops at NL and 46% at AL. The MITEs were 96% similar at NL and 18% homologous at AL. DNA gel blot analysis confirmed the presence of the En/Spm TEs in cowpea. RT-PCR (reverse transcriptase polymerase chain reaction) analysis showed that the VuEnSpm-3 and the MITE clone, VuPIF-1 were actively transcribed in wild type and mutant cowpea tissues. Overall, our data show that multiple, divergent lineages of En/Spm and MITEs are present in the cowpea genome, some of which are actively transcribed. Our findings also offer new molecular resource to further investigate the genetic determinants underlying previously described mutant cowpea phenotypes.
文摘Above-optimal temperatures reduce yield in many crops, including tomato, largely because of the heat-sensitivity of their reproduction process. A full understanding of heat-stress (HS) response and thermotolerance of tomato reproduction is still lacking. Recently, using external application of the plant <span style="font-family:Verdana;">hormone ethylene, it was demonstrated that ethylene plays a role in</span><span style="font-family:Verdana;"> heat-tolerance of tomato pollen (the male reproductive cells). In order to expand our understanding on involvement of ethylene in tomato pollen thermotolerance, </span><span style="font-family:Verdana;">we analyzed the response of wild type and ethylene-related tomato mutant</span> <span style="font-family:Verdana;">plants to HS, at physiological and molecular levels. We report that mild</span><span style="font-family:Verdana;"> chronic </span><span style="font-family:Verdana;">HS conditions highly reduce the number of viable and germinating pollen </span><span style="font-family:Verdana;">grains as well as the production of seeded fruits in wild type tomato plants, while no significant reduction was detected/observed in pollen quality, number of seeded fruits and seeds per fruit in plants of the ethylene over-producer mutant epinastic. Our findings suggest that ethylene is involved in thermotolerance of tomato reproduction, pointing to an effect on pollen viability and </span><span style="font-family:Verdana;">germination potential, highlighting candidate genes involved in pollen re</span><span style="font-family:Verdana;">sponse to HS (like </span><i><span style="font-family:Verdana;">SlHSP17</span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">SlHSP101</span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">SlMBF1</span></i><span style="font-family:Verdana;">) and suggesting directions for further studies.</span>