Ion beam-induced luminescence(IBIL) experiments were performed to investigate the in situ luminescence of GaN/Al_(2)O_(3) at varying ion energies,which allowed for the measurement of defects at different depths within...Ion beam-induced luminescence(IBIL) experiments were performed to investigate the in situ luminescence of GaN/Al_(2)O_(3) at varying ion energies,which allowed for the measurement of defects at different depths within the material.The energies of H^(+)were set to 500 keV,640 keV and 2 MeV,the Bragg peaks of which correspond to the GaN film,GaN/Al_(2)O_(3) heterojunction and Al_(2)O_(3) substrate,respectively.A photoluminescence measurement at 250 K was also performed for comparison,during which only near band edge(NBE) and yellow band luminescence in the GaN film were observed.The evolution of the luminescence of the NBE and yellow band in the GaN film was discussed,and both exhibited a decrease with the fluence of H^(+).Additionally,the luminescence of F centers,induced by oxygen vacancies,and Cr^(3+),resulting from the ^(2)E →^(4)A_(2) radiative transition in Al_(2)O_(3),were measured using 2 MeV H^(+).The luminescence intensity of F centers increases gradually with the fluence of H^(+).The luminescence evolution of Cr^(3+)is consistent with a yellow band center,attributed to its weak intensity,and it is situated within the emission band of the yellow band in the GaN film.Our results show that IBIL measurement can effectively detect the luminescence behavior of multilayer films by adjusting the ion energy.Luminescence measurement can be excited by various techniques,but IBIL can satisfy in situ luminescence measurement,and multilayer structural materials of tens of micrometers can be measured through IBIL by adjusting the energy of the inducing ions.The evolution of defects at different layers with ion fluence can be obtained.展开更多
Based on the dinuclear system model,the calculated evaporation residue cross sections matched well with the current experimental results.The synthesis of superheavy elements Z=121 was systematically studied through co...Based on the dinuclear system model,the calculated evaporation residue cross sections matched well with the current experimental results.The synthesis of superheavy elements Z=121 was systematically studied through combinations of stable projectiles with Z=21-30 and targets with half-lives exceeding 50 d.The influence of mass asymmetry and isotopic dependence on the projectile and target nuclei was investigated in detail.The reactions^(254)Es(^(46)Ti,3n)^(297)121 and^(252)Es(^(46)Ti,3n)^(295)121 were found to be experimentally feasible for synthesizing superheavy element Z=121,with maximal evaporation residue cross sections of 6.619 and 4.123 fb at 219.9 and 223.9 MeV,respectively.展开更多
Big Bang nucleosynthesis(BBN)theory predicts the primordial abundances of the light elements^(2) H(referred to as deuterium,or D for short),^(3)He,^(4)He,and^(7) Li produced in the early universe.Among these,deuterium...Big Bang nucleosynthesis(BBN)theory predicts the primordial abundances of the light elements^(2) H(referred to as deuterium,or D for short),^(3)He,^(4)He,and^(7) Li produced in the early universe.Among these,deuterium,the first nuclide produced by BBN,is a key primordial material for subsequent reactions.To date,the uncertainty in predicted deuterium abundance(D/H)remains larger than the observational precision.In this study,the Monte Carlo simulation code PRIMAT was used to investigate the sensitivity of 11 important BBN reactions to deuterium abundance.We found that the reaction rate uncertainties of the four reactions d(d,n)^(3)He,d(d,p)t,d(p,γ)^(3)He,and p(n,γ)d had the largest influence on the calculated D/H uncertainty.Currently,the calculated D/H uncertainty cannot reach observational precision even with the recent LUNA precise d(p,γ)^(3) He rate.From the nuclear physics aspect,there is still room to largely reduce the reaction-rate uncertainties;hence,further measurements of the important reactions involved in BBN are still necessary.A photodisintegration experiment will be conducted at the Shanghai Laser Electron Gamma Source Facility to precisely study the deuterium production reaction of p(n,γ)d.展开更多
Multinucleon transfer in low-energy heavy-ion collisions is increasingly considered a promising approach for generating exotic nuclei.Understanding the complex mechanisms involved in multinucleon transfer processes pr...Multinucleon transfer in low-energy heavy-ion collisions is increasingly considered a promising approach for generating exotic nuclei.Understanding the complex mechanisms involved in multinucleon transfer processes presents significant challenges for the theoretical investigation of nuclear reactions.A Langevin equation model was developed and employed to investigate multinucleon transfer processes.The^(40)Ar+^(232)Th reaction was simulated,and the calculated Wilczyński plot was used to verify the model.Additionally,to study the dynamics of multinucleon transfer reactions,the^(136)Xe+^(238)U and^(136)Xe+^(209)Bi reactions were simulated,and the corresponding TKE-mass and angular distributions were computed to analyze the energy dissipation and scattering angles.This investigation enhances our understanding of the dynamics involved in multinucleon transfer processes.展开更多
Based on the dinuclear system model,the synthesis of the predicted double-magic nuclei^(298)Fl and 304120 was investigated via neutron-rich radioactive beam-induced fusion reactions.The reaction^(58)Ca+^(244)Pu is pre...Based on the dinuclear system model,the synthesis of the predicted double-magic nuclei^(298)Fl and 304120 was investigated via neutron-rich radioactive beam-induced fusion reactions.The reaction^(58)Ca+^(244)Pu is predicted to be favorable for producing^(298)Fl with a maximal ER cross section of 0.301 pb.Investigations of the entrance channel effect reveal that the^(244)Pu target is more promising for synthesizing^(298)Fl than the neutron-rich targets^(248)Cm and^(249)Bk,because of the influence of the Coulomb barrier.For the synthesis of 304120,the maximal ER cross section of 0.046 fb emerges in the reaction^(58)V+^(249)Bk,indicating the need for further advancements in both experimental facilities and reaction mechanisms.展开更多
Precise knowledge of the nuclear symmetry energy can be tentatively calibrated using multimessenger constraints.The neutron skin thickness of a heavy nucleus is one of the most sensitive indicators for probing the iso...Precise knowledge of the nuclear symmetry energy can be tentatively calibrated using multimessenger constraints.The neutron skin thickness of a heavy nucleus is one of the most sensitive indicators for probing the isovector components of effective interactions in asymmetric nuclear matter.Recent studies have suggested that the experimental data from the CREX and PREX2 collaborations are not mutually compatible with existing nuclear models.In this study,we review the quantification of the slope parameter of the symmetry energy L from the neutron skin thicknesses of^(48)Ca and^(208)Pb.Skyrme energy density functionals classified by various isoscalar incompressibility coefficients K were employed to evaluate the bulk properties of finite nuclei.The calculated results suggest that the slope parameter L deduced from^(208)Pb is sensitive to the compression modulus of symmetric nuclear matter,but not that from^(48)Ca.The effective parameter sets classified by K=220 MeV can provide an almost overlapping range of L from^(48)Ca and^(208)Pb.展开更多
The nuclear charge radius plays a vital role in determining the equation of state of isospin asymmetric nuclear matter.Based on the correlation between the differences in charge radii of mirror-partner nuclei and the ...The nuclear charge radius plays a vital role in determining the equation of state of isospin asymmetric nuclear matter.Based on the correlation between the differences in charge radii of mirror-partner nuclei and the slope parameter(L)of symmetry energy at the nuclear saturation density,an analysis of the calibrated slope parameter L was performed in finite nuclei.In this study,relativistic and nonrelativistic energy density functionals were employed to constrain the nuclear symmetry energy through the available databases of the mirror-pair nuclei^(36)Ca–^(36)S,^(38)Ca–^(38)Ar,and ^(54)Ni–^(54)Fe.The deduced nuclear symmetry energy was located in the range 29.89–31.85 MeV,and L of the symmetry energy essentially covered the range 22.50–51.55 MeV at the saturation density.Moreover,the extracted L_(s) at the sensitivity density p_(s)=0.10 fm^(-3) was located in the interval range 30.52–39.76 MeV.展开更多
Effect of linear chirp frequency on the process of electron–positron pairs production from vacuum is investigated by the computational quantum field theory.With appropriate chirp parameters,the number of electrons cr...Effect of linear chirp frequency on the process of electron–positron pairs production from vacuum is investigated by the computational quantum field theory.With appropriate chirp parameters,the number of electrons created under combined potential wells can be increased by two or three times.In the low frequency region,frequency modulation excites interference effect and multiphoton processes,which promotes the generation of electron–positron pairs.In the high frequency region,high frequency suppression inhibits the generation of electron–positron pairs.In addition,for a single potential well,the number of created electron–positron pairs can be enhanced by several orders of magnitude in the low frequency region.展开更多
The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.Ho...The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.However,direct measurement of this reaction is extremely difficult,which makes it necessary to develop indirect methods.In this study,the ^(23)Na+p reaction system was used to study the compound nucleus ^(24)Mg.We employed a thick-target inverse kinematics method combined with the-charged-particle coincidence technique to measure the proton andexit channels of ^(24)Mg.Technical details of the ^(23)Na+p thick-target inverse kinematics experiment and analysis are presented herein.展开更多
Within the framework of isospin-dependent Boltzmann-Langevin model,the production cross sections of proton-rich nuclei with Z=20-25 are investigated.According to the reaction results for different isospin of projectil...Within the framework of isospin-dependent Boltzmann-Langevin model,the production cross sections of proton-rich nuclei with Z=20-25 are investigated.According to the reaction results for different isospin of projectiles^(48)Ni,^(49)Ni,and^(50)Ni,proton-rich fragments tend to be more easily produced in reactions with the protonrich projectile^(48)Ni.The production cross sections of the unknown nuclei in the vicinity of the projectile are sensitive to incident energy.It is observed that incident energy of 345 MeV/u is appropriate for producing proton-rich nuclei with Z=20-25.In projectile fragmentation reactions based on the radioactive ion beam of48Ni at 345MeV/u,several unknown proton-rich nuclei near the proton drip line are generated in the simulations.All these new nuclei are near-projectile elements near Z=28.The production cross sections of the new nuclei^(34)Ca,37,38Sc,^(38)Ti,^(40,41,42)V,^(40,41)Cr,and^(42,43,44,45)Mn are in the range of 10-2-102mb.Hence,projectile fragmentation of radioactive ion beams of Ni is a potential method for generating new proton-rich nuclei with Z=20-25.展开更多
A method to measure the detailed performance of polycapillary x-ray optics by a pinhole and charge coupled device(CCD)detector was proposed in this study.The pinhole was located between the x-ray source and the polyca...A method to measure the detailed performance of polycapillary x-ray optics by a pinhole and charge coupled device(CCD)detector was proposed in this study.The pinhole was located between the x-ray source and the polycapillary x-ray optics to determine the illuminating region of the incident x-ray beam on the input side of the optics.The CCD detector placed downstream of the polycapillary x-ray optics ensured that the incident x-ray beam controlled by the pinhole irradiated a specific region of the input surface of the optics.The intensity of the output beam of the polycapillary x-ray optics was obtained from the far-field image of the output beam of the optics captured by CCD detector.As an application example,the focal spot size,gain in power density,transmission efficiency,and beam divergence of different parts of a polycapillary focusing x-ray lenses(PFXRL)were measured by a pinhole and CCD detector.Three pinholes with diameters of 500,1000,and 2000μm were used to adjust the diameter of the incident x-ray beam illuminating the PFXRL from 500μm to the entire surface of the input side of the PFXRL.The focal spot size of the PFXRL,gain in power density,transmission efficiency,and beam divergence ranged from 27.1μm to 34.6μm,400 to 3460,26.70%to 5.38%,and 16.8 mrad to 84.86 mrad,respectively.展开更多
Discussions pertaining to enhancement in the luminous efficiency of cesium iodide(CsI)detectors doped with sodium(Na)abound.In this study,the defect structure of one Cs atom replaced by one Na atom is calculated using...Discussions pertaining to enhancement in the luminous efficiency of cesium iodide(CsI)detectors doped with sodium(Na)abound.In this study,the defect structure of one Cs atom replaced by one Na atom is calculated using the ab initio method.Subsequently,the electronic band structures,densities of states,optical absorption spectra,phonons,and transport properties of CsI in perfect and defective structures are investigated.The absorption spectra of CsI with and without Na impurities are compared.It is discovered that the impurity levels in the forbidden band are generated from the shell electron distributions of the impurity atoms,not from lattice distortions.Furthermore,it is discovered that the optical absorption can be enhanced by doping CsI with Na.展开更多
Glancing incidence x-ray fluorescence spectrometry using a single-bounce parabolic capillary is proposed for the analysis of layered samples.The divergence of the x-ray beam was 0.33 mrad.In this paper,we used this in...Glancing incidence x-ray fluorescence spectrometry using a single-bounce parabolic capillary is proposed for the analysis of layered samples.The divergence of the x-ray beam was 0.33 mrad.In this paper,we used this instrumental setup to analyze a Si single crystal and a 50 nm HfO_(2) single-layer film deposited on a Si substrate.展开更多
Maize growth and development are regulated by light quality,intensity and photoperiod.Cryptochromes are blue/ultraviolet-A light receptors involved in stem elongation,shade avoidance,and photoperiodic flowering.To inv...Maize growth and development are regulated by light quality,intensity and photoperiod.Cryptochromes are blue/ultraviolet-A light receptors involved in stem elongation,shade avoidance,and photoperiodic flowering.To investigate the function of cryptochrome 1(CRY1) in maize,where it is encoded by Zm CRY1,we obtained two Zm CRY1a genes(Zm CRY1a1 and Zm CRY1a2),both of which share the highest similarity with other gramineous plants,in particular rice CRY1a by phylogenetic analysis.In Arabidopsis,overexpression of Zm CRY1a genes promoted seedling de-etiolation under blue and white light,resulting in dwarfing of mature plants.In seedlings of the maize inbred line Zong 31(Zm CRY1aOE),overexpression of Zm CRY1a genes caused a reduction in the mesocotyl and first leaf sheath lengths due to down-regulation of genes influencing cell elongation.In mature transgenic maize plants,plant height,ear height,and internode length decreased in response to overexpression of Zm CRY1a genes.Expression of Zm CRY1a were insensitive to low blue light(LBL)-induced shade avoidance syndrome(SAS) in Arabidopsis and maize.This prompted us to investigate the regulatory role of the gibberellin and auxin metabolic pathways in the response of Zm CRY1a genes to LBL treatment.We confirmed a link between Zm CRY1a expression and hormonal influence on the growth and development of maize under LBL-induced SAS.These results reveal that Zm CRY1a has a relatively conservative function in regulating maize photomorphogenesis and may guide new strategies for breeding high density-tolerant maize cultivars.展开更多
The charge exchange spin-dipole(SD) excitations of ^(90)Zr are studied using the Skyrme Hartee-Fock plus proton-neutron random phase approximation with SAMi-J interactions.The experimental value of the model-independe...The charge exchange spin-dipole(SD) excitations of ^(90)Zr are studied using the Skyrme Hartee-Fock plus proton-neutron random phase approximation with SAMi-J interactions.The experimental value of the model-independent sum rule obtained from the SD strength distributions of ^(90)Zr(p,n) ^(90)Nb and ^(90)Zr(n,p) ^(90)Y is used to deduce the neutron skin thickness.The neutron skin thickness Δr_(np) of ^(90)Zr is extracted as 0.083±0.032 fm,which is similar to the results of other studies.Based on the correlation analysis of the neutron skin thickness Δr_(np) and the nuclear symmetry energy J as well as its slope parameter L,a constraint from the extracted Δr_(np) leads to the limitation of J to 29.2±2.6 MeV and L to 53.3±28.2 MeV.展开更多
In the framework of the factorization approach we calculate the branching fractions of 100 two-body nonleptonic decay channels in total,including 44 channels of the charm meson decays and 56 channels of the bottom mes...In the framework of the factorization approach we calculate the branching fractions of 100 two-body nonleptonic decay channels in total,including 44 channels of the charm meson decays and 56 channels of the bottom meson decays.For charm meson decays,we test and confirm the previous observation that taking the limit for the number of colors N→∞significantly improves theoretical predictions.For bottom meson decays,the penguin contributions are included in addition.As an essential input,we employ the weak decay form factors obtained in the framework of the relativistic quark model based on the quasi-potential approach.These form factors have well been tested by calculating observables in the semileptonic D and B meson decays and confronting obtained results with experimental data.In general,the predictions for the nonleptonic decay branching fractions are acceptable.However,for a quantitative calculation it is necessary to account for a more subtle effects of the final-state interaction.展开更多
Pronounced changes of nuclear charge radii provide a stringent benchmark on the theoretical models and play a vital role in recognizing various nuclear phenomena.In this work,the systematic evolutions of nuclear charg...Pronounced changes of nuclear charge radii provide a stringent benchmark on the theoretical models and play a vital role in recognizing various nuclear phenomena.In this work,the systematic evolutions of nuclear charge radii along even Z=84-120 isotopic chains are first investigated by the recently developed new ansatz under the covariant density functional.The calculated results show that the shell closure effects of nuclear charge radii appear remarkably at the neutron numbers N=126 and 184.Interestingly,the arch-like shapes of charge radii between these two strong neutron-closed shells are naturally observed.Across the N=184 shell closure,the abrupt increase in charge radii is still evidently emerged.In addition,the rapid raise of nuclear charge radii from the neutron numbers N=138 to N=144 is disclosed clearly in superheavy regions due to the enhanced shape deformation.展开更多
A correlation between the charge radii difference of mirror partner nucleiΔR_(ch) and the slope parameter L of symmetry energy has been built to ascertain the equation of state of isospin asymmetric nuclear matter.In...A correlation between the charge radii difference of mirror partner nucleiΔR_(ch) and the slope parameter L of symmetry energy has been built to ascertain the equation of state of isospin asymmetric nuclear matter.In this work,the influences of pairing correlations and isoscalar compression modulus on theΔRch are systematically investigated based on the Skyrme energy density functional theory.The calculated results suggest that the linear correlation betweenΔR_(ch) and L is decreased by the surface pairing correlations.The slope parameter deduced from the difference of charge radii of mirror-pair nuclei ^(32)Ar-^(32)Si,^(36)Ca-^(36)S,^(38)Ca-^(38)Ar,and ^(54)Ni-^(54)Fe falls into the range of L=42.57−50.64 MeV,that is,the rather soft equation of state of asymmetric nuclear matter.Besides,the range of the slope parameter can also be influenced by the effective forces classified by various isoscalar incompressibility coefficients.展开更多
Systematic trends in nuclear charge radii are of great interest due to universal shell effects and odd-even staggering(OES).The modified root mean square(rms)charge radius formula,which phenomenologically accounts for...Systematic trends in nuclear charge radii are of great interest due to universal shell effects and odd-even staggering(OES).The modified root mean square(rms)charge radius formula,which phenomenologically accounts for the formation of neutron-proton(np)correlations,is here applied for the first time to the study of odd-Z copper and indium isotopes.Theoretical results obtained by the relativistic mean field(RMF)model with NL3,PK1 and NL3^(*)parameter sets are compared with experimental data.Our results show that both OES and the abrupt changes across N=50 and 82 shell closures are clearly reproduced in nuclear charge radii.The inverted parabolic-like behaviors of rms charge radii can also be described remarkably well between two neutron magic numbers,namely N=28 to 50 for copper isotopes and N=50 to 82 for indium isotopes.This implies that the np-correlations play an indispensable role in quantitatively determining the fine structures of nuclear charge radii along odd-Z isotopic chains.Also,our conclusions have almost no dependence on the effective forces.展开更多
We apply the recently proposed RMF(BCS)*ansatz to study the charge radii of the potassium isotopic chain up to^(52)K.It is shown that the experimental data can be reproduced rather well,qualitatively similar to the Fa...We apply the recently proposed RMF(BCS)*ansatz to study the charge radii of the potassium isotopic chain up to^(52)K.It is shown that the experimental data can be reproduced rather well,qualitatively similar to the Fayans nuclear density functional theory,but with a slightly better description of the odd-even staggerings(OES).Nonetheless,both methods fail for ^(50)K and to a lesser extent for ^(48,52)K.It is shown that if these nuclei are deformed with aβ_(20)≈−0.2,then one can obtain results consistent with experiments for both charge radii and spin-parities.We argue that beyond-mean-field studies are needed to properly describe the charge radii of these three nuclei,particularly for ^(50)K.展开更多
文摘Ion beam-induced luminescence(IBIL) experiments were performed to investigate the in situ luminescence of GaN/Al_(2)O_(3) at varying ion energies,which allowed for the measurement of defects at different depths within the material.The energies of H^(+)were set to 500 keV,640 keV and 2 MeV,the Bragg peaks of which correspond to the GaN film,GaN/Al_(2)O_(3) heterojunction and Al_(2)O_(3) substrate,respectively.A photoluminescence measurement at 250 K was also performed for comparison,during which only near band edge(NBE) and yellow band luminescence in the GaN film were observed.The evolution of the luminescence of the NBE and yellow band in the GaN film was discussed,and both exhibited a decrease with the fluence of H^(+).Additionally,the luminescence of F centers,induced by oxygen vacancies,and Cr^(3+),resulting from the ^(2)E →^(4)A_(2) radiative transition in Al_(2)O_(3),were measured using 2 MeV H^(+).The luminescence intensity of F centers increases gradually with the fluence of H^(+).The luminescence evolution of Cr^(3+)is consistent with a yellow band center,attributed to its weak intensity,and it is situated within the emission band of the yellow band in the GaN film.Our results show that IBIL measurement can effectively detect the luminescence behavior of multilayer films by adjusting the ion energy.Luminescence measurement can be excited by various techniques,but IBIL can satisfy in situ luminescence measurement,and multilayer structural materials of tens of micrometers can be measured through IBIL by adjusting the energy of the inducing ions.The evolution of defects at different layers with ion fluence can be obtained.
基金the National Key R&D Program of China(No.2023YFA1606401)the National Natural Science Foundation of China(Nos.12135004,11635003 and 11961141004).
文摘Based on the dinuclear system model,the calculated evaporation residue cross sections matched well with the current experimental results.The synthesis of superheavy elements Z=121 was systematically studied through combinations of stable projectiles with Z=21-30 and targets with half-lives exceeding 50 d.The influence of mass asymmetry and isotopic dependence on the projectile and target nuclei was investigated in detail.The reactions^(254)Es(^(46)Ti,3n)^(297)121 and^(252)Es(^(46)Ti,3n)^(295)121 were found to be experimentally feasible for synthesizing superheavy element Z=121,with maximal evaporation residue cross sections of 6.619 and 4.123 fb at 219.9 and 223.9 MeV,respectively.
基金supported by the National Key R&D Program of China(No.2022YFA1602401)by the National Natural Science Foundation of China(No.11825504)。
文摘Big Bang nucleosynthesis(BBN)theory predicts the primordial abundances of the light elements^(2) H(referred to as deuterium,or D for short),^(3)He,^(4)He,and^(7) Li produced in the early universe.Among these,deuterium,the first nuclide produced by BBN,is a key primordial material for subsequent reactions.To date,the uncertainty in predicted deuterium abundance(D/H)remains larger than the observational precision.In this study,the Monte Carlo simulation code PRIMAT was used to investigate the sensitivity of 11 important BBN reactions to deuterium abundance.We found that the reaction rate uncertainties of the four reactions d(d,n)^(3)He,d(d,p)t,d(p,γ)^(3)He,and p(n,γ)d had the largest influence on the calculated D/H uncertainty.Currently,the calculated D/H uncertainty cannot reach observational precision even with the recent LUNA precise d(p,γ)^(3) He rate.From the nuclear physics aspect,there is still room to largely reduce the reaction-rate uncertainties;hence,further measurements of the important reactions involved in BBN are still necessary.A photodisintegration experiment will be conducted at the Shanghai Laser Electron Gamma Source Facility to precisely study the deuterium production reaction of p(n,γ)d.
基金supported by the National Key R&D Program of China(No.2023YFA1606401)the National Natural Science Foundation of China(Nos.12135004,11635003 and 11961141004)。
文摘Multinucleon transfer in low-energy heavy-ion collisions is increasingly considered a promising approach for generating exotic nuclei.Understanding the complex mechanisms involved in multinucleon transfer processes presents significant challenges for the theoretical investigation of nuclear reactions.A Langevin equation model was developed and employed to investigate multinucleon transfer processes.The^(40)Ar+^(232)Th reaction was simulated,and the calculated Wilczyński plot was used to verify the model.Additionally,to study the dynamics of multinucleon transfer reactions,the^(136)Xe+^(238)U and^(136)Xe+^(209)Bi reactions were simulated,and the corresponding TKE-mass and angular distributions were computed to analyze the energy dissipation and scattering angles.This investigation enhances our understanding of the dynamics involved in multinucleon transfer processes.
基金supported by the National Key R&D Program of China(No.2023YFA1606401)the National Natural Science Foundation of China(Nos.12135004,11635003 and 11961141004)the Guangxi Natural Science Foundation(No.2022GXNSFBA035549).
文摘Based on the dinuclear system model,the synthesis of the predicted double-magic nuclei^(298)Fl and 304120 was investigated via neutron-rich radioactive beam-induced fusion reactions.The reaction^(58)Ca+^(244)Pu is predicted to be favorable for producing^(298)Fl with a maximal ER cross section of 0.301 pb.Investigations of the entrance channel effect reveal that the^(244)Pu target is more promising for synthesizing^(298)Fl than the neutron-rich targets^(248)Cm and^(249)Bk,because of the influence of the Coulomb barrier.For the synthesis of 304120,the maximal ER cross section of 0.046 fb emerges in the reaction^(58)V+^(249)Bk,indicating the need for further advancements in both experimental facilities and reaction mechanisms.
基金supported partly by the National Key R&D Program of China(No.2023YFA1606401)the National Natural Science Foundation of China(Nos.12135004,11635003,11961141004,12047513)+1 种基金the support of the National Natural Science Foundation of China(Nos.12275025 and 11975096)the Fundamental Research Funds for the Central Universities(No.2020NTST06)。
文摘Precise knowledge of the nuclear symmetry energy can be tentatively calibrated using multimessenger constraints.The neutron skin thickness of a heavy nucleus is one of the most sensitive indicators for probing the isovector components of effective interactions in asymmetric nuclear matter.Recent studies have suggested that the experimental data from the CREX and PREX2 collaborations are not mutually compatible with existing nuclear models.In this study,we review the quantification of the slope parameter of the symmetry energy L from the neutron skin thicknesses of^(48)Ca and^(208)Pb.Skyrme energy density functionals classified by various isoscalar incompressibility coefficients K were employed to evaluate the bulk properties of finite nuclei.The calculated results suggest that the slope parameter L deduced from^(208)Pb is sensitive to the compression modulus of symmetric nuclear matter,but not that from^(48)Ca.The effective parameter sets classified by K=220 MeV can provide an almost overlapping range of L from^(48)Ca and^(208)Pb.
基金supported by the Key Laboratory of High Precision Nuclear Spectroscopy,Institute of Modern Physics,Chinese Academy of Sciences,the National Natural Science Foundation of China(Nos.12135004,11635003,11961141004,12275025,and 11975096)the Fundamental Research Funds for Central Universities(No.2020NTST06).
文摘The nuclear charge radius plays a vital role in determining the equation of state of isospin asymmetric nuclear matter.Based on the correlation between the differences in charge radii of mirror-partner nuclei and the slope parameter(L)of symmetry energy at the nuclear saturation density,an analysis of the calibrated slope parameter L was performed in finite nuclei.In this study,relativistic and nonrelativistic energy density functionals were employed to constrain the nuclear symmetry energy through the available databases of the mirror-pair nuclei^(36)Ca–^(36)S,^(38)Ca–^(38)Ar,and ^(54)Ni–^(54)Fe.The deduced nuclear symmetry energy was located in the range 29.89–31.85 MeV,and L of the symmetry energy essentially covered the range 22.50–51.55 MeV at the saturation density.Moreover,the extracted L_(s) at the sensitivity density p_(s)=0.10 fm^(-3) was located in the interval range 30.52–39.76 MeV.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11635003,11025524,11161130520,11875007,and 12047513)the Reform and Development Project of Beijing Academy of Science and Technology (Grant Nos.13001-2110 and 13001-2114)。
文摘Effect of linear chirp frequency on the process of electron–positron pairs production from vacuum is investigated by the computational quantum field theory.With appropriate chirp parameters,the number of electrons created under combined potential wells can be increased by two or three times.In the low frequency region,frequency modulation excites interference effect and multiphoton processes,which promotes the generation of electron–positron pairs.In the high frequency region,high frequency suppression inhibits the generation of electron–positron pairs.In addition,for a single potential well,the number of created electron–positron pairs can be enhanced by several orders of magnitude in the low frequency region.
基金supported by the National Key Research and Development Project(No.2022YFA1602301)the National Natural Science Foundation of China(Nos.U2267205,12275361,12125509,12222514,11961141003,12005304)the CAST Young Talent Support Plan,the CNNC Science Fund for Talented Young Scholars,and the Continuous-Support Basic Scientific Research Project.
文摘The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.However,direct measurement of this reaction is extremely difficult,which makes it necessary to develop indirect methods.In this study,the ^(23)Na+p reaction system was used to study the compound nucleus ^(24)Mg.We employed a thick-target inverse kinematics method combined with the-charged-particle coincidence technique to measure the proton andexit channels of ^(24)Mg.Technical details of the ^(23)Na+p thick-target inverse kinematics experiment and analysis are presented herein.
基金Supported by the National Natural Science Foundation of China(No.12135004,No.11635003 and No.11961141004)。
文摘Within the framework of isospin-dependent Boltzmann-Langevin model,the production cross sections of proton-rich nuclei with Z=20-25 are investigated.According to the reaction results for different isospin of projectiles^(48)Ni,^(49)Ni,and^(50)Ni,proton-rich fragments tend to be more easily produced in reactions with the protonrich projectile^(48)Ni.The production cross sections of the unknown nuclei in the vicinity of the projectile are sensitive to incident energy.It is observed that incident energy of 345 MeV/u is appropriate for producing proton-rich nuclei with Z=20-25.In projectile fragmentation reactions based on the radioactive ion beam of48Ni at 345MeV/u,several unknown proton-rich nuclei near the proton drip line are generated in the simulations.All these new nuclei are near-projectile elements near Z=28.The production cross sections of the new nuclei^(34)Ca,37,38Sc,^(38)Ti,^(40,41,42)V,^(40,41)Cr,and^(42,43,44,45)Mn are in the range of 10-2-102mb.Hence,projectile fragmentation of radioactive ion beams of Ni is a potential method for generating new proton-rich nuclei with Z=20-25.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675019,12105020,and 12075031)the Bud Project of Beijing Academy of Science and Technology(Grant No.BGS202106)the National Key Research and Development Program of China(Grant No.2021YFF0701202)
文摘A method to measure the detailed performance of polycapillary x-ray optics by a pinhole and charge coupled device(CCD)detector was proposed in this study.The pinhole was located between the x-ray source and the polycapillary x-ray optics to determine the illuminating region of the incident x-ray beam on the input side of the optics.The CCD detector placed downstream of the polycapillary x-ray optics ensured that the incident x-ray beam controlled by the pinhole irradiated a specific region of the input surface of the optics.The intensity of the output beam of the polycapillary x-ray optics was obtained from the far-field image of the output beam of the optics captured by CCD detector.As an application example,the focal spot size,gain in power density,transmission efficiency,and beam divergence of different parts of a polycapillary focusing x-ray lenses(PFXRL)were measured by a pinhole and CCD detector.Three pinholes with diameters of 500,1000,and 2000μm were used to adjust the diameter of the incident x-ray beam illuminating the PFXRL from 500μm to the entire surface of the input side of the PFXRL.The focal spot size of the PFXRL,gain in power density,transmission efficiency,and beam divergence ranged from 27.1μm to 34.6μm,400 to 3460,26.70%to 5.38%,and 16.8 mrad to 84.86 mrad,respectively.
基金supported by the National Natural Science Foundation of China (Nos. 12135004, 11635003, 11961141004, and 11875088)
文摘Discussions pertaining to enhancement in the luminous efficiency of cesium iodide(CsI)detectors doped with sodium(Na)abound.In this study,the defect structure of one Cs atom replaced by one Na atom is calculated using the ab initio method.Subsequently,the electronic band structures,densities of states,optical absorption spectra,phonons,and transport properties of CsI in perfect and defective structures are investigated.The absorption spectra of CsI with and without Na impurities are compared.It is discovered that the impurity levels in the forbidden band are generated from the shell electron distributions of the impurity atoms,not from lattice distortions.Furthermore,it is discovered that the optical absorption can be enhanced by doping CsI with Na.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFF0701202)the National Natural Science Foundation of China(Grant No.11875087)。
文摘Glancing incidence x-ray fluorescence spectrometry using a single-bounce parabolic capillary is proposed for the analysis of layered samples.The divergence of the x-ray beam was 0.33 mrad.In this paper,we used this instrumental setup to analyze a Si single crystal and a 50 nm HfO_(2) single-layer film deposited on a Si substrate.
基金supported by the National Natural Science Foundation of China (31871709)the Construction of Support System for National Agricultural Green Development Advance Region of Qushui County,Tibet,China (QYXTZX-LS2022-01)+1 种基金the Key Project of Beijing Natural Science Foundation (6151002)the Startup Grants of Henan Agricultural University (30501038,30500823)。
文摘Maize growth and development are regulated by light quality,intensity and photoperiod.Cryptochromes are blue/ultraviolet-A light receptors involved in stem elongation,shade avoidance,and photoperiodic flowering.To investigate the function of cryptochrome 1(CRY1) in maize,where it is encoded by Zm CRY1,we obtained two Zm CRY1a genes(Zm CRY1a1 and Zm CRY1a2),both of which share the highest similarity with other gramineous plants,in particular rice CRY1a by phylogenetic analysis.In Arabidopsis,overexpression of Zm CRY1a genes promoted seedling de-etiolation under blue and white light,resulting in dwarfing of mature plants.In seedlings of the maize inbred line Zong 31(Zm CRY1aOE),overexpression of Zm CRY1a genes caused a reduction in the mesocotyl and first leaf sheath lengths due to down-regulation of genes influencing cell elongation.In mature transgenic maize plants,plant height,ear height,and internode length decreased in response to overexpression of Zm CRY1a genes.Expression of Zm CRY1a were insensitive to low blue light(LBL)-induced shade avoidance syndrome(SAS) in Arabidopsis and maize.This prompted us to investigate the regulatory role of the gibberellin and auxin metabolic pathways in the response of Zm CRY1a genes to LBL treatment.We confirmed a link between Zm CRY1a expression and hormonal influence on the growth and development of maize under LBL-induced SAS.These results reveal that Zm CRY1a has a relatively conservative function in regulating maize photomorphogenesis and may guide new strategies for breeding high density-tolerant maize cultivars.
基金Supported by the National Natural Science Foundation of China (12275025, 11975096, 12135004, 11961141004, 11635003)the Fundamental Research Funds for the Central Universities (2020NTST06)。
文摘The charge exchange spin-dipole(SD) excitations of ^(90)Zr are studied using the Skyrme Hartee-Fock plus proton-neutron random phase approximation with SAMi-J interactions.The experimental value of the model-independent sum rule obtained from the SD strength distributions of ^(90)Zr(p,n) ^(90)Nb and ^(90)Zr(n,p) ^(90)Y is used to deduce the neutron skin thickness.The neutron skin thickness Δr_(np) of ^(90)Zr is extracted as 0.083±0.032 fm,which is similar to the results of other studies.Based on the correlation analysis of the neutron skin thickness Δr_(np) and the nuclear symmetry energy J as well as its slope parameter L,a constraint from the extracted Δr_(np) leads to the limitation of J to 29.2±2.6 MeV and L to 53.3±28.2 MeV.
基金support from the National Natural Science Foundation of China (NSFC) under Project Nos.11805012 and 12275023.
文摘In the framework of the factorization approach we calculate the branching fractions of 100 two-body nonleptonic decay channels in total,including 44 channels of the charm meson decays and 56 channels of the bottom meson decays.For charm meson decays,we test and confirm the previous observation that taking the limit for the number of colors N→∞significantly improves theoretical predictions.For bottom meson decays,the penguin contributions are included in addition.As an essential input,we employ the weak decay form factors obtained in the framework of the relativistic quark model based on the quasi-potential approach.These form factors have well been tested by calculating observables in the semileptonic D and B meson decays and confronting obtained results with experimental data.In general,the predictions for the nonleptonic decay branching fractions are acceptable.However,for a quantitative calculation it is necessary to account for a more subtle effects of the final-state interaction.
基金funded by the Key Laboratory of High Precision Nuclear Spectroscopy,Institute of Modern Physics,Chinese Academy of Sciencessupported partly by the National Natural Science Foundation of China under Grants No.12135004,No.11635003,No.11961141004 and No.12047513+1 种基金the support of the National Natural Science Foundation of China under Grants No.11975096the Fundamental Research Funds for the Central Universities(2020NTST06)。
文摘Pronounced changes of nuclear charge radii provide a stringent benchmark on the theoretical models and play a vital role in recognizing various nuclear phenomena.In this work,the systematic evolutions of nuclear charge radii along even Z=84-120 isotopic chains are first investigated by the recently developed new ansatz under the covariant density functional.The calculated results show that the shell closure effects of nuclear charge radii appear remarkably at the neutron numbers N=126 and 184.Interestingly,the arch-like shapes of charge radii between these two strong neutron-closed shells are naturally observed.Across the N=184 shell closure,the abrupt increase in charge radii is still evidently emerged.In addition,the rapid raise of nuclear charge radii from the neutron numbers N=138 to N=144 is disclosed clearly in superheavy regions due to the enhanced shape deformation.
基金Supported by the National Natural Science Foundation of China(12275025,11975096)the Fundamental Research Funds for the Central Universities(2020NTST06)。
文摘A correlation between the charge radii difference of mirror partner nucleiΔR_(ch) and the slope parameter L of symmetry energy has been built to ascertain the equation of state of isospin asymmetric nuclear matter.In this work,the influences of pairing correlations and isoscalar compression modulus on theΔRch are systematically investigated based on the Skyrme energy density functional theory.The calculated results suggest that the linear correlation betweenΔR_(ch) and L is decreased by the surface pairing correlations.The slope parameter deduced from the difference of charge radii of mirror-pair nuclei ^(32)Ar-^(32)Si,^(36)Ca-^(36)S,^(38)Ca-^(38)Ar,and ^(54)Ni-^(54)Fe falls into the range of L=42.57−50.64 MeV,that is,the rather soft equation of state of asymmetric nuclear matter.Besides,the range of the slope parameter can also be influenced by the effective forces classified by various isoscalar incompressibility coefficients.
基金Supported by the Reform and Development Project of Beijing Academy of Science and Technology(13001-2110)Supported in part by the National Natural Science Foundation of China(12135004,11635003,11961141004,12047513)+2 种基金the support of the National Natural Science Foundation of China(11705118)the support of the National Natural Science Foundation of China(11975096)the Fundamental Research Funds for the Central Universities(2020NTST06)。
文摘Systematic trends in nuclear charge radii are of great interest due to universal shell effects and odd-even staggering(OES).The modified root mean square(rms)charge radius formula,which phenomenologically accounts for the formation of neutron-proton(np)correlations,is here applied for the first time to the study of odd-Z copper and indium isotopes.Theoretical results obtained by the relativistic mean field(RMF)model with NL3,PK1 and NL3^(*)parameter sets are compared with experimental data.Our results show that both OES and the abrupt changes across N=50 and 82 shell closures are clearly reproduced in nuclear charge radii.The inverted parabolic-like behaviors of rms charge radii can also be described remarkably well between two neutron magic numbers,namely N=28 to 50 for copper isotopes and N=50 to 82 for indium isotopes.This implies that the np-correlations play an indispensable role in quantitatively determining the fine structures of nuclear charge radii along odd-Z isotopic chains.Also,our conclusions have almost no dependence on the effective forces.
基金This work is partly Supported by the National Natural Science Foundation of China(11735003,11975041,11775014,11961141004)the fundamental Research Funds for the Central Universities+1 种基金Supported by the National Natural Science Foundation of China(12135004,11635003,11961141004,12047513)the Reform and Development Project of Beijing Academy of Science and Technology(13001-2110)。
文摘We apply the recently proposed RMF(BCS)*ansatz to study the charge radii of the potassium isotopic chain up to^(52)K.It is shown that the experimental data can be reproduced rather well,qualitatively similar to the Fayans nuclear density functional theory,but with a slightly better description of the odd-even staggerings(OES).Nonetheless,both methods fail for ^(50)K and to a lesser extent for ^(48,52)K.It is shown that if these nuclei are deformed with aβ_(20)≈−0.2,then one can obtain results consistent with experiments for both charge radii and spin-parities.We argue that beyond-mean-field studies are needed to properly describe the charge radii of these three nuclei,particularly for ^(50)K.