In response to the United Nations Sustainable Development Goals and China’s“Dual Carbon”Goals(DCGs means the goals of“Carbon Peak and carbon neutrality”),this paper from the perspective of the construction of Ch...In response to the United Nations Sustainable Development Goals and China’s“Dual Carbon”Goals(DCGs means the goals of“Carbon Peak and carbon neutrality”),this paper from the perspective of the construction of China’s Innovation Demonstration Zones for Sustainable Development Agenda(IDZSDAs),combines carbon emission-related metrics to construct a comprehensive assessment system for Urban Sustainable Development Capacity(USDC).After obtaining USDC assessment results through the assessment system,an approach combining Least Absolute Shrinkage and Selection Operator(LASSO)regression and Random Forest(RF)based on machine learning is proposed for identifying influencing factors and characterizing key issues.Combining Coupling Coordination Degree(CCD)analysis,the study further summarizes the systemic patterns and future directions of urban sustainable development.A case study on the IDZSDAs from 2015 to 2022 reveals that:(1)the combined identification method based on machine learning and CCD models effectively quantifies influencing factors and key issues in the urban sustainable development process;(2)the correspondence between influencing factors and key subsystems identified by the LASSO-RF combination model is generally consistent with the development situations in various cities;and(3)the machine learning-based combined recognition method is scalable and dynamic.It enables decision-makers to accurately identify influencing factors and characterize key issues based on actual urban development needs.展开更多
Metal-free carbon,as the most representative heterogeneous metal-free catalysts,have received considerable interests in electro-and thermo-catalytic reac-tions due to their impressive performance and sustainability.Ov...Metal-free carbon,as the most representative heterogeneous metal-free catalysts,have received considerable interests in electro-and thermo-catalytic reac-tions due to their impressive performance and sustainability.Over the past decade,well-designed carbon catalysts with tunable structures and heteroatom groups coupled with various characterization techniques have proposed numerous reaction mechanisms.However,active sites,key intermediate species,precise structure-activity relationships and dynamic evolution processes of carbon catalysts are still rife with controversies due to the monotony and limitation of used experimental methods.In this Review,we sum-marize the extensive efforts on model catalysts since the 2000s,particularly in the past decade,to overcome the influences of material and structure limitations in metal-free carbon catalysis.Using both nanomolecule model and bulk model,the real contribution of each alien species,defect and edge configuration to a series of fundamentally important reactions,such as thermocatalytic reactions,electrocatalytic reactions,were systematically studied.Combined with in situ techniques,isotope labeling and size control,the detailed reaction mechanisms,the precise 2D structure-activity relationships and the rate-determining steps were revealed at a molecular level.Furthermore,the outlook of model carbon catalysis has also been proposed in this work.展开更多
The efficacy of the oxygen reduction reaction(ORR) in fuel cells can be significantly enhanced by optimizing cobalt-based catalysts,which provide a more stable alternative to iron-based catalysts.However,their perform...The efficacy of the oxygen reduction reaction(ORR) in fuel cells can be significantly enhanced by optimizing cobalt-based catalysts,which provide a more stable alternative to iron-based catalysts.However,their performance is often impeded by weak adsorption of oxygen species,leading to a 2e^(-)pathway that negatively affects fuel cell discharge efficiency.Here,we engineered a high-density cobalt active center catalyst,coordinated with nitrogen and sulfur atoms on a porous carbon substrate.Both experimental and theoretical analyses highlighted the role of sulfur atoms as electron donors,disrupting the charge symmetry of the original Co active center and promoting enhanced interaction with Co 3d orbitals.This modification improves the adsorption of oxygen and reaction intermediates during ORR,significantly reducing the production of hydrogen peroxide(H_(2)O_(2)).Remarkably,the optimized catalyst demonstrated superior fuel cell performance,with peak power densities of 1.32 W cm^(-2) in oxygen and 0.61 W cm^(-2) in air environments,respectively.A significant decrease in H_(2)O_(2) by-product accumulation was observed during the reaction process,reducing catalyst and membrane damage and consequently improving fuel cell durability.This study emphasizes the critical role of coordination symmetry in Co/N/C catalysts and proposes an effective strategy to enhance fuel cell performance.展开更多
Urban expansion is a phenomenon of urban space increase,and an important measuring index of the process of urbanization.Taking Shanghai as an example,the changes of urban average height and built-up area were studied ...Urban expansion is a phenomenon of urban space increase,and an important measuring index of the process of urbanization.Taking Shanghai as an example,the changes of urban average height and built-up area were studied to represent city's vertical and horizontal increases respectively,and statistical methods were used to analyze the driving forces of urban expansion.The research drew following conclusions:1) The urban expansion process of Shanghai from 1985 to 2006 had a clear periodic feature,and could be divided into three stages:vertical expansion in dominance,coordinated vertical and horizontal expansion,and horizontal expansion in dominance.2) The average height and quantity of buildings in core city were significantly bigger than those in suburbs,but the changing speed of the latter was faster.And 3) urbanization process was the major driving force for the city's horizontal expansion,while industrial structure improvement was the key driving factor for the vertical expansion.Those two driving forces were simultaneously affected by city's political factors.展开更多
The pollutants in urban storm runoff, which lead to an non-point source contamination of water environment around cities, are of great concems. The distributions of typical contaminants and the variations of their spe...The pollutants in urban storm runoff, which lead to an non-point source contamination of water environment around cities, are of great concems. The distributions of typical contaminants and the variations of their species in short term storm runoff from different land surfaces in Xiamen City were investigated. The concentrations of various contaminants, including organic matter, nutrients (i.e., N and P) and heavy metals, were significantly higher in parking lot and road runoff than those in roof and lawn runoff. The early runoff samples from traffic road and parking lot contained much high total nitrogen (TN 6-19 mg/L) and total phosphorus (TP 1-3 mg/L). A large proportion (around 60%) of TN existed as total dissolved nitrogen (TDN) species in most runoff. The percentage of TDN and the percentage of total dissolved phosphorus remained relatively stable during the rain events and did not decrease as dramatically as TN and TP. In addition, only parking lot and road runoff were contaminated by heavy metals, and both Pb (25-120 μg/L) and Zn (0.1-1.2 mg/L) were major heavy metals contaminating both runoff. Soluble Pb and Zn were predominantly existed as labile complex species (50%-99%), which may be adsorbed onto the surfaces of suspended particles and could be easily released out when pH decreased. This would have the great impact to the environment.展开更多
The application of human induced oxygen consumption and carbon emission theory in urban region was summed up and on this base a new model of urban carbon and oxygen balance (UCOB) was constructed by calculating the ca...The application of human induced oxygen consumption and carbon emission theory in urban region was summed up and on this base a new model of urban carbon and oxygen balance (UCOB) was constructed by calculating the carbon and oxygen fluxes. The purpose was to highlight the role of vegetation in urban ecosystems and evaluate the effects of various human activities on urban annual oxygen consumption and carbon emission. Hopefully,the model would be helpful in theory to keep the regional balance of carbon and oxygen,and provide guidance and support for urban vegetation planning in the future. To test the UCOB model,the Jimei District of Xiamen City,Fujian Province,China,a very typical urban region,was selected as a case study. The results turn out that Jimei′s vegetation service in oxygen emission and carbon sequestration could not meet the demand of the urban population,and more than 31.49 times of vegetation area should be added to meet the whole oxygen consumption in Jimei while 9.60 times of vegetation area are needed to meet the carbon sequestration targets. The results show that the new UCOB model is of a great potential to be applied to quantitative planning of urban vegetation and regional eco-compensation mechanisms.展开更多
A field experiment of nocturnal mountain wind and corresponding particulate matter (PM) evolution under weak synoptic forcing at five sites within urban Beijing was conducted using a moving Doppler wind lidar and a ...A field experiment of nocturnal mountain wind and corresponding particulate matter (PM) evolution under weak synoptic forcing at five sites within urban Beijing was conducted using a moving Doppler wind lidar and a fixed tower. Clear wind shear and zero-horizontal-wind zones at 40-320 m above the ground with a delay of 1.5 h were found at two sites between 20 km from north to south urban Beijing. The wind speed and height of the low-level jet at the north urban Beijing site were greater than those at the east urban Beijing site. The average horizontal distribution of low-level PM at 240 m was similar to the ground-level PM at night. The PM2.s (aerodynamic diameter ≤2.5 μm) accumulation center showed no abrupt changes with a shift in wind direction until the northerly wind jet arrived.展开更多
Multiaxis differential absorption spectroscopy(MAX-DOAS)is a newly developed advanced vertical profile detection method,but the vertical nitrogen dioxide(NO_(2))profiles measured by MAX-DOAS have not yet been fully ve...Multiaxis differential absorption spectroscopy(MAX-DOAS)is a newly developed advanced vertical profile detection method,but the vertical nitrogen dioxide(NO_(2))profiles measured by MAX-DOAS have not yet been fully verified.In this study,we perform MAX-DOAS and tower gradient observations to simultaneously acquire tropospheric NO_(2)observations in the Beijing urban area from 1 April to 31 May 2019.The average values of the tropospheric NO_(2)vertical column densities measured by MAX-DOAS and the tropospheric monitoring instrument are 15.8×1015 and 12.4×1015 molecules cm−2,respectively,and the correlation coefficient R reaches 0.87.The MAX-DOAS measurements are highly consistent with the tower-based in situ measurements,and the correlation coefficients R from the ground to the upper air are 0.89(60 m),0.87(160 m),and 0.76(280 m).MAX-DOAS accurately measures the trend of NO_(2)vertical profile changes,although a large underestimation occurs by a factor of two.By analyzing the NO_(2)vertical profile,the NO_(2)concentration reveals an exponential decrease with height.The NO_(2)vertical profile also coincides with the evolution of the boundary layer height.The study shows that the NO_(2)over Beijing mainly originates from local sources and occurs in the boundary layer,and its vertical evolution pattern has an important guiding significance to better understand nitrate production and ozone pollution.展开更多
Soil microbial diversity is extremely vulnerable to fertilization,which is one of the main anthropogenic activities associated with global changes.Yet we know little about how and why soil microbial diversity responds...Soil microbial diversity is extremely vulnerable to fertilization,which is one of the main anthropogenic activities associated with global changes.Yet we know little about how and why soil microbial diversity responds to fertilization across contrasting local ecological contexts.This knowledge is fundamental for predicting changes in soil microbial diversity in response to ongoing global changes.We analyzed soils from ten 20-year field fertilization(organic and/or inorganic)experiments across China and found that the national-scale responses of soil bacterial diversity to fertilization are dependent on ecological context.In acidic soils from regions with high precipitation and soil fertility,inorganic fertilization can result in further acidification,resulting in negative impacts on soil bacterial diversity.In comparison,organic fer-tilization causes a smaller disturbance to soil bacterial diversity.Despite the overall role of environmental contexts in driving soil microbial diversity,a small group of bacterial taxa were found to respond to fer-tilization in a consistent way across contrasting regions throughout China.Taxa such as Nitrosospira and Nitrososphaera,which benefit from nitrogen fertilizer addition,as well as Chitinophagaceae,Bacilli,and phototrophic bacteria,which respond positively to organic fertilization,could be used as bioindicators for soil fertility in response to fertilization at the national scale.Overall,our work provides new insights into the importance of local environmental context in determining the responses of soil microbial diver-sity to fertilization,and identifies regions with acidic soils wherein soil microbial diversity is more vul-nerable to fertilization at the national scale.展开更多
As urbanization expands' into the suburbs of Chinese cities, the conversion of farmers into citizens with urban social protection is becoming an important issue facing Chinese megacities. Taking Beijing as an example...As urbanization expands' into the suburbs of Chinese cities, the conversion of farmers into citizens with urban social protection is becoming an important issue facing Chinese megacities. Taking Beijing as an example, this paper has calculated the one-off urbanization cost of farmers in China and arrived at the results of 500, 000 yuan per person for urbanization of centralized target regions in the suburb and 200, 000 yuan per person for urbanization of scattered target regions in the exurb. This paper considers that a diversified cost sharing mechanism should be put into place for the step-by-step urbanization of farmers. In addition, policy recommendations are proposed regarding the functional transformation of collective economic organizations, eradication of the urban-rural divide, enhancement of land system innovation and policy improvements for urbanization of rural residents.展开更多
Climate change and urbanization issues are the two key factors that make humans liable to be affected by disasters, which are overlapped in urban agglomeration. The five big urban agglomerations of China with strong e...Climate change and urbanization issues are the two key factors that make humans liable to be affected by disasters, which are overlapped in urban agglomeration. The five big urban agglomerations of China with strong economic power are the important engines for national economic and social development. However, being in the sea-land mutual interaction belts with a vast hazard-bearing body, they are affected by sea-land compound disasters, and are liable to suffer heavy disaster losses with climate change. It is suggested that government departments concerned should fully recognize the impact of climate change on coastal urban agglomerations, propose strategies as soon as possible, and integrate the impact of climate change and adaptation countermeasures into the various kinds of social-economic development plans for coastal urban regions.展开更多
Air pollution has posed a serious public health issue in China. In the study, we aimed to examine the burden of air pollution and its association with climate factors and total mortality. City-level daily air quality ...Air pollution has posed a serious public health issue in China. In the study, we aimed to examine the burden of air pollution and its association with climate factors and total mortality. City-level daily air quality index (AQI) data in 161 cities of China in 2014, and meteorological factors, socioeconomic status and total morality were obtained from China environmental, meteor-ology and healthcare agencies. Linear regression, spatial autocorrelation analysis and panel fixed models were applied in data analysis. Among 161 cities, monthly average AQI was significantly different by seasons and regions. The highest average AQI was in winter, and the lowest in summer. A significant clustering distribution of AQI by cities was observed, with the highest AQI in north China (22 cities, mean = 117.36). Among the 161 cities, 5 cities (3%) had AQI > 150 (e.g., moderate polluted reference value), and 50 cities (31.1%) had AQI between 100 and 150 (slightly polluted value). Daily heat index, precipitation and sunshine hours were negatively and significantly, but air pressure was positively correlated with AQI. Cities with higher AQI concentrations had higher total mortality than those with lower AQI. This AQI-mortality association remained significant after adjustment for socioeconomic status. In conclusion, the study highlights the burden and seasonal, regional and areas variations in air pollution across the nation. Air pollution is estimated to account for more than 4% of the urban health inequality in total mortality in China.展开更多
Cities of the future will need to cope with the triple challenges of urban growth,planetary boundaries leading to reduced energy and other resources,and rapid climate change.In response to the challenges of these comp...Cities of the future will need to cope with the triple challenges of urban growth,planetary boundaries leading to reduced energy and other resources,and rapid climate change.In response to the challenges of these complexities,urban growth and innovations in networked infrastructure development need to go hand-in-hand to transform urban systems and sustain the urban health advantage.In order to achieve this,knowledge and policy-making need to undergo processes of accelerated learning.The International Science Council’s global science programme“Urban Health and Wellbeing:A Systems Approach”has formulated goals to meet the urban health challenges of future cities.展开更多
Understanding the vertical distribution of ozone is crucial when assessing both its horizontal and vertical transport,as well as when analyzing the physical and chemical properties of the atmosphere.One of the most ef...Understanding the vertical distribution of ozone is crucial when assessing both its horizontal and vertical transport,as well as when analyzing the physical and chemical properties of the atmosphere.One of the most effective ways to obtain high spatial resolution ozone profiles is through satellite observations.The Environmental Trace Gases Monitoring Instrument(EMI)deployed on the Gaofen-5 satellite is the first Chinese ultraviolet-visible hyperspectral spectrometer.However,retrieving ozone profiles using backscattered radiance values measured by the EMI is challenging due to unavailable measurement errors and a low signal-to-noise ratio.The algorithm developed for the Tropospheric Monitoring Instrument did not allow us to retrieve 87%of the EMI pixels.Therefore,we developed an algorithm specific to the characteristics of the EMI.The fitting residuals are smaller than 0.3%in most regions.The retrieved ozone profiles were in good agreement with ozonesonde data,with maximum mean biases of 20%at five latitude bands.By applying EMI averaging kernels to the ozonesonde profiles,the integrated stratospheric column ozone and tropospheric column ozone also showed excellent agreement with ozonesonde data,The lower layers(0-7.5 km)of the EMI ozone profiles reflected the seasonal variation in surface ozone derived from the China National Environmental Monitoring Center(CNEMC).However,the upper layers(9.7-16.7 km)of the ozone profiles show different trends,with the ozone peak occurring at an altitude of 9.7-16.7 km in March,2019.A stratospheric intrusion event in central China from August 11 to 15,2019,is captured using the EMI ozone profiles,potential vorticity data,and relative humidity data.The increase in the CNEMC ozone co ncentration showed that downward transport enhanced surface ozone pollution.展开更多
Urban green spaces play a crucial role in enhancing the well-being of urban residents and promoting sustainable urban development. However, optimizing the planning and management of urban green spaces to meet resident...Urban green spaces play a crucial role in enhancing the well-being of urban residents and promoting sustainable urban development. However, optimizing the planning and management of urban green spaces to meet residents' diverse needs and preferences poses a considerable challenge. This study addresses this challenge by employing a landsenses ecology approach, integrating residents' perspectives into the planning and design of urban green spaces. Starting from human needs, a conceptual framework for the meliorization model of urban green spaces is constructed, grounded in the principles of landsense creation and incorporating a “design-simulation-management” process. Through this model, the mechanisms driving the meliorization process are explored. This study contributes to improving the meliorization process in landsenses ecology, while expanding the theoretical framework and methodology of landscape ecology. By emphasizing the dynamic interactions between land planning, construction, and residents' experiences, this study provides valuable insights into the dynamic development of urban green spaces, facilitating the implementation of sustainable urban development strategies and practices.展开更多
Fe-N-doped carbon materials(Fe-N-C)are promising candidates for oxygen reduction reaction(ORR)relative to Pt-based catalysts in proton exchange membrane fuel cells(PEMFCs).However,the intrinsic contributions of Fe-N_(...Fe-N-doped carbon materials(Fe-N-C)are promising candidates for oxygen reduction reaction(ORR)relative to Pt-based catalysts in proton exchange membrane fuel cells(PEMFCs).However,the intrinsic contributions of Fe-N_(4)moiety with different chemical/spin states(e.g.D1,D2,D3)to ORR are unclear since various states coexist inevitably.In the present work,Fe-N-C core-shell nanocatalyst with single lowspin Fe(Ⅱ)-N_(4)species(D1)is synthesized and identified with ex-situ ultralow temperature Mossbauer spectroscopy(T=1.6 K)that could essentially differentiate various Fe-N_(4)states and invisible Fe-O species.By quantifying with CO-pulse chemisorption,site density and turnover frequency of Fe-N-C catalysts reach 2.4×10^(-9)site g^(-1)and 23 e site~(-1)s^(-1)during the ORR,respectively.Half-wave potential(0.915V_(RHE))of the Fe-N-C catalyst is more positive(approximately 54 mV)than that of Pt/C.Moreover,we observe that the performance of PEMFCs on Fe-N-C almost achieves the 2025 target of the US Department of Energy by demonstrating a current density of 1.037 A cm^(-2)combined with the peak power density of 0,685 W cm^(-2),suggesting the critical role of Fe(Ⅱ)-N_(4)site(D1).After 500 h of running,PEMFCs still deliver a power density of 1.26 W cm^(-2)at 1.0 bar H_(2)-O_(2),An unexpected rate-determining step is figured out by isotopic labelling experiment and theoretical calculation.This work not only offers valuable insights regarding the intrinsic contribution of Fe-N_(4)with a single spin state to alkaline/acidic ORR,but also provides great opportunities for developing high-performance stable PEMFCs.展开更多
Understanding the emergence and spread of antibiotic resistance genes(ARGs)in wildlife is critical for the health of humans and animals from a“One Health”perspective.The gut microbiota serve as a reservoir for ARGs;...Understanding the emergence and spread of antibiotic resistance genes(ARGs)in wildlife is critical for the health of humans and animals from a“One Health”perspective.The gut microbiota serve as a reservoir for ARGs;however,it remains poorly understood how environmental and host genetic factors influence ARGs by affecting the gut microbiota.To elucidate this,we analyzed whole-genome resequencing data from 79 individuals of Brandt’s vole in two geographic locations with different antibiotics usage,together with metabolomic data and shotgun sequencing data.A high diversity of ARGs(851 subtypes)was observed in vole’s gut,with a large variation in ARG composition between individuals from Xilingol and Hulunbuir in China.The diversity and composition of ARGs were strongly correlated with variations in gut microbiota community structure.Genome-wide association studies revealed that 803 loci were significantly associated(P<5.05×10^(−9))with 31 bacterial species,and bipartite networks identified 906 bacterial species-ARGs associations.Structural equation modeling analysis showed that host genetic factors,air temperature,and presence of pollutants(Bisphenol A)significantly affected gut microbiota community structure,which eventually regulated the diversity of ARGs.The present study advances our understanding of the complex host-environment interactions that underlie the spread of ARGs in the natural environments.展开更多
Terrestrial invertebrates in urban ecosystems are extremely species-rich,have many important roles in material flow and energy circulation,and are host to many human pathogens that pose threats to human health.These i...Terrestrial invertebrates in urban ecosystems are extremely species-rich,have many important roles in material flow and energy circulation,and are host to many human pathogens that pose threats to human health.These invertebrates are widely distributed in urban areas,including both out-and in-door environments.Consequently,humans are frequently in contact with them,which provides many opportunities for them to pose human health risks.However,comprehensive knowledge on human pathogen transfer via invertebrates is lacking,with research to date primarily focused on dipterans(e.g.,mosquitoes,flies).Here,we take a broad taxonomic approach and review terrestrial invertebrate hosts(incl.mosquitoes,flies,termites,cockroaches,mites,ticks,earthworms,collembola,fleas,snails,and beetles)of human pathogens,with a focus on transmission pathways.We also discuss how urbanization and global warming are likely to influence the communities of invertebrate hosts and have flow-on risks to human health.Finally,we identify current research gaps and provide perspectives on future directions.展开更多
This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature....This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts.展开更多
The Normalized Diff erence Vegetation Index(NDVI),one of the earliest remote sensing analytical products used to simplify the complexities of multi-spectral imagery,is now the most popular index used for vegetation as...The Normalized Diff erence Vegetation Index(NDVI),one of the earliest remote sensing analytical products used to simplify the complexities of multi-spectral imagery,is now the most popular index used for vegetation assessment.This popularity and widespread use relate to how an NDVI can be calculated with any multispectral sensor with a visible and a near-IR band.Increasingly low costs and weights of multispectral sensors mean they can be mounted on satellite,aerial,and increasingly—Unmanned Aerial Systems(UAS).While studies have found that the NDVI is effective for expressing vegetation status andquantified vegetation attributes,its widespread use and popularity,especially in UAS applications,carry inherent risks of misuse with end users who received little to no remote sensing education.This article summarizes the progress of NDVI acquisition,highlights the areas of NDVI application,and addresses the critical problems and considerations in using NDVI.Detailed discussion mainly covers three aspects:atmospheric eff ect,saturation phenomenon,and sensor factors.The use of NDVI can be highly eff ective as long as its limitations and capabilities are understood.This consideration is particularly important to the UAS user community.展开更多
基金supported by the National Key Research and Development Program of China under the sub-theme“Research on the Path of Enhancing the Sustainable Development Capacity of Cities and Towns under the Carbon Neutral Goal”[Grant No.2022YFC3802902-04].
文摘In response to the United Nations Sustainable Development Goals and China’s“Dual Carbon”Goals(DCGs means the goals of“Carbon Peak and carbon neutrality”),this paper from the perspective of the construction of China’s Innovation Demonstration Zones for Sustainable Development Agenda(IDZSDAs),combines carbon emission-related metrics to construct a comprehensive assessment system for Urban Sustainable Development Capacity(USDC).After obtaining USDC assessment results through the assessment system,an approach combining Least Absolute Shrinkage and Selection Operator(LASSO)regression and Random Forest(RF)based on machine learning is proposed for identifying influencing factors and characterizing key issues.Combining Coupling Coordination Degree(CCD)analysis,the study further summarizes the systemic patterns and future directions of urban sustainable development.A case study on the IDZSDAs from 2015 to 2022 reveals that:(1)the combined identification method based on machine learning and CCD models effectively quantifies influencing factors and key issues in the urban sustainable development process;(2)the correspondence between influencing factors and key subsystems identified by the LASSO-RF combination model is generally consistent with the development situations in various cities;and(3)the machine learning-based combined recognition method is scalable and dynamic.It enables decision-makers to accurately identify influencing factors and characterize key issues based on actual urban development needs.
基金We are grateful for financial support from the“Hundred Talents Program”of the Chinese Academy of Sciences and the“Young Talents Training Program”of the Shanghai Branch of the Chinese Academy of Sciences.We acknowledge the financial support from the National Science Youth Foundation of China(22202205)Xiamen City Natural Science Foundation of China(3502Z20227256)Fujian Provincial Natural Science Foundation of China(2022J01502).
文摘Metal-free carbon,as the most representative heterogeneous metal-free catalysts,have received considerable interests in electro-and thermo-catalytic reac-tions due to their impressive performance and sustainability.Over the past decade,well-designed carbon catalysts with tunable structures and heteroatom groups coupled with various characterization techniques have proposed numerous reaction mechanisms.However,active sites,key intermediate species,precise structure-activity relationships and dynamic evolution processes of carbon catalysts are still rife with controversies due to the monotony and limitation of used experimental methods.In this Review,we sum-marize the extensive efforts on model catalysts since the 2000s,particularly in the past decade,to overcome the influences of material and structure limitations in metal-free carbon catalysis.Using both nanomolecule model and bulk model,the real contribution of each alien species,defect and edge configuration to a series of fundamentally important reactions,such as thermocatalytic reactions,electrocatalytic reactions,were systematically studied.Combined with in situ techniques,isotope labeling and size control,the detailed reaction mechanisms,the precise 2D structure-activity relationships and the rate-determining steps were revealed at a molecular level.Furthermore,the outlook of model carbon catalysis has also been proposed in this work.
基金financially National Natural Science Foundation of China (22288102, 22172134, U1932201, U2032202)Science and Technology Planning Project of Fujian Province (2022H0002)support from the EPSRC (EP/W03784X/1)。
文摘The efficacy of the oxygen reduction reaction(ORR) in fuel cells can be significantly enhanced by optimizing cobalt-based catalysts,which provide a more stable alternative to iron-based catalysts.However,their performance is often impeded by weak adsorption of oxygen species,leading to a 2e^(-)pathway that negatively affects fuel cell discharge efficiency.Here,we engineered a high-density cobalt active center catalyst,coordinated with nitrogen and sulfur atoms on a porous carbon substrate.Both experimental and theoretical analyses highlighted the role of sulfur atoms as electron donors,disrupting the charge symmetry of the original Co active center and promoting enhanced interaction with Co 3d orbitals.This modification improves the adsorption of oxygen and reaction intermediates during ORR,significantly reducing the production of hydrogen peroxide(H_(2)O_(2)).Remarkably,the optimized catalyst demonstrated superior fuel cell performance,with peak power densities of 1.32 W cm^(-2) in oxygen and 0.61 W cm^(-2) in air environments,respectively.A significant decrease in H_(2)O_(2) by-product accumulation was observed during the reaction process,reducing catalyst and membrane damage and consequently improving fuel cell durability.This study emphasizes the critical role of coordination symmetry in Co/N/C catalysts and proposes an effective strategy to enhance fuel cell performance.
基金Under the auspices of the Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No KZCX2-YW-422)National Natural Science Foundation of China (No 40701059)
文摘Urban expansion is a phenomenon of urban space increase,and an important measuring index of the process of urbanization.Taking Shanghai as an example,the changes of urban average height and built-up area were studied to represent city's vertical and horizontal increases respectively,and statistical methods were used to analyze the driving forces of urban expansion.The research drew following conclusions:1) The urban expansion process of Shanghai from 1985 to 2006 had a clear periodic feature,and could be divided into three stages:vertical expansion in dominance,coordinated vertical and horizontal expansion,and horizontal expansion in dominance.2) The average height and quantity of buildings in core city were significantly bigger than those in suburbs,but the changing speed of the latter was faster.And 3) urbanization process was the major driving force for the city's horizontal expansion,while industrial structure improvement was the key driving factor for the vertical expansion.Those two driving forces were simultaneously affected by city's political factors.
基金supported by the Knowledge Innovation Program of Chinese Academy of Sciences for Young Scientists in Frontier Research (No.07l4161b10)the National Natural Science Foundation of China (No.20807033)
文摘The pollutants in urban storm runoff, which lead to an non-point source contamination of water environment around cities, are of great concems. The distributions of typical contaminants and the variations of their species in short term storm runoff from different land surfaces in Xiamen City were investigated. The concentrations of various contaminants, including organic matter, nutrients (i.e., N and P) and heavy metals, were significantly higher in parking lot and road runoff than those in roof and lawn runoff. The early runoff samples from traffic road and parking lot contained much high total nitrogen (TN 6-19 mg/L) and total phosphorus (TP 1-3 mg/L). A large proportion (around 60%) of TN existed as total dissolved nitrogen (TDN) species in most runoff. The percentage of TDN and the percentage of total dissolved phosphorus remained relatively stable during the rain events and did not decrease as dramatically as TN and TP. In addition, only parking lot and road runoff were contaminated by heavy metals, and both Pb (25-120 μg/L) and Zn (0.1-1.2 mg/L) were major heavy metals contaminating both runoff. Soluble Pb and Zn were predominantly existed as labile complex species (50%-99%), which may be adsorbed onto the surfaces of suspended particles and could be easily released out when pH decreased. This would have the great impact to the environment.
基金Under the auspices of Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-450, KZCX2-YW-422)
文摘The application of human induced oxygen consumption and carbon emission theory in urban region was summed up and on this base a new model of urban carbon and oxygen balance (UCOB) was constructed by calculating the carbon and oxygen fluxes. The purpose was to highlight the role of vegetation in urban ecosystems and evaluate the effects of various human activities on urban annual oxygen consumption and carbon emission. Hopefully,the model would be helpful in theory to keep the regional balance of carbon and oxygen,and provide guidance and support for urban vegetation planning in the future. To test the UCOB model,the Jimei District of Xiamen City,Fujian Province,China,a very typical urban region,was selected as a case study. The results turn out that Jimei′s vegetation service in oxygen emission and carbon sequestration could not meet the demand of the urban population,and more than 31.49 times of vegetation area should be added to meet the whole oxygen consumption in Jimei while 9.60 times of vegetation area are needed to meet the carbon sequestration targets. The results show that the new UCOB model is of a great potential to be applied to quantitative planning of urban vegetation and regional eco-compensation mechanisms.
基金supported by the National Natural Science Foundation of China[grant number 91544221],[grant number41571130024],[grant number 41675137],[grant number41505091]the LAPC Free Exploration Fund
文摘A field experiment of nocturnal mountain wind and corresponding particulate matter (PM) evolution under weak synoptic forcing at five sites within urban Beijing was conducted using a moving Doppler wind lidar and a fixed tower. Clear wind shear and zero-horizontal-wind zones at 40-320 m above the ground with a delay of 1.5 h were found at two sites between 20 km from north to south urban Beijing. The wind speed and height of the low-level jet at the north urban Beijing site were greater than those at the east urban Beijing site. The average horizontal distribution of low-level PM at 240 m was similar to the ground-level PM at night. The PM2.s (aerodynamic diameter ≤2.5 μm) accumulation center showed no abrupt changes with a shift in wind direction until the northerly wind jet arrived.
基金This work was supported by the National Key R&D Program of China(Grant No.2017YFC0210000)the National Natural Science Foundation of China(Grant Nos.41705113,41877312)+1 种基金the National Research Program for Key Issues in Air Pollution Control(Grant No.DGQQ202004)the Beijing Major Science and Technology Project(Grant No.Z181100005418014).
文摘Multiaxis differential absorption spectroscopy(MAX-DOAS)is a newly developed advanced vertical profile detection method,but the vertical nitrogen dioxide(NO_(2))profiles measured by MAX-DOAS have not yet been fully verified.In this study,we perform MAX-DOAS and tower gradient observations to simultaneously acquire tropospheric NO_(2)observations in the Beijing urban area from 1 April to 31 May 2019.The average values of the tropospheric NO_(2)vertical column densities measured by MAX-DOAS and the tropospheric monitoring instrument are 15.8×1015 and 12.4×1015 molecules cm−2,respectively,and the correlation coefficient R reaches 0.87.The MAX-DOAS measurements are highly consistent with the tower-based in situ measurements,and the correlation coefficients R from the ground to the upper air are 0.89(60 m),0.87(160 m),and 0.76(280 m).MAX-DOAS accurately measures the trend of NO_(2)vertical profile changes,although a large underestimation occurs by a factor of two.By analyzing the NO_(2)vertical profile,the NO_(2)concentration reveals an exponential decrease with height.The NO_(2)vertical profile also coincides with the evolution of the boundary layer height.The study shows that the NO_(2)over Beijing mainly originates from local sources and occurs in the boundary layer,and its vertical evolution pattern has an important guiding significance to better understand nitrate production and ozone pollution.
基金funding from the National Key R&D Program of China (2016YFD0300802)the Field Station Consortium Program of The Chinese Academy of Sciences (KFJ-SWYW035)+1 种基金funding from the National Key R&D Program (2019YFC1520700)Manuel Delgado-Baquerizo is supported by a Ramón y Cajal grant from the Spanish Ministry of Science and Innovation (RYC2018-025483-I)
文摘Soil microbial diversity is extremely vulnerable to fertilization,which is one of the main anthropogenic activities associated with global changes.Yet we know little about how and why soil microbial diversity responds to fertilization across contrasting local ecological contexts.This knowledge is fundamental for predicting changes in soil microbial diversity in response to ongoing global changes.We analyzed soils from ten 20-year field fertilization(organic and/or inorganic)experiments across China and found that the national-scale responses of soil bacterial diversity to fertilization are dependent on ecological context.In acidic soils from regions with high precipitation and soil fertility,inorganic fertilization can result in further acidification,resulting in negative impacts on soil bacterial diversity.In comparison,organic fer-tilization causes a smaller disturbance to soil bacterial diversity.Despite the overall role of environmental contexts in driving soil microbial diversity,a small group of bacterial taxa were found to respond to fer-tilization in a consistent way across contrasting regions throughout China.Taxa such as Nitrosospira and Nitrososphaera,which benefit from nitrogen fertilizer addition,as well as Chitinophagaceae,Bacilli,and phototrophic bacteria,which respond positively to organic fertilization,could be used as bioindicators for soil fertility in response to fertilization at the national scale.Overall,our work provides new insights into the importance of local environmental context in determining the responses of soil microbial diver-sity to fertilization,and identifies regions with acidic soils wherein soil microbial diversity is more vul-nerable to fertilization at the national scale.
基金supported by CASS Innovation Project"Study on the Evaluation and Improvement of Urbanization Quality in the Chinese Mainland."
文摘As urbanization expands' into the suburbs of Chinese cities, the conversion of farmers into citizens with urban social protection is becoming an important issue facing Chinese megacities. Taking Beijing as an example, this paper has calculated the one-off urbanization cost of farmers in China and arrived at the results of 500, 000 yuan per person for urbanization of centralized target regions in the suburb and 200, 000 yuan per person for urbanization of scattered target regions in the exurb. This paper considers that a diversified cost sharing mechanism should be put into place for the step-by-step urbanization of farmers. In addition, policy recommendations are proposed regarding the functional transformation of collective economic organizations, eradication of the urban-rural divide, enhancement of land system innovation and policy improvements for urbanization of rural residents.
文摘Climate change and urbanization issues are the two key factors that make humans liable to be affected by disasters, which are overlapped in urban agglomeration. The five big urban agglomerations of China with strong economic power are the important engines for national economic and social development. However, being in the sea-land mutual interaction belts with a vast hazard-bearing body, they are affected by sea-land compound disasters, and are liable to suffer heavy disaster losses with climate change. It is suggested that government departments concerned should fully recognize the impact of climate change on coastal urban agglomerations, propose strategies as soon as possible, and integrate the impact of climate change and adaptation countermeasures into the various kinds of social-economic development plans for coastal urban regions.
文摘Air pollution has posed a serious public health issue in China. In the study, we aimed to examine the burden of air pollution and its association with climate factors and total mortality. City-level daily air quality index (AQI) data in 161 cities of China in 2014, and meteorological factors, socioeconomic status and total morality were obtained from China environmental, meteor-ology and healthcare agencies. Linear regression, spatial autocorrelation analysis and panel fixed models were applied in data analysis. Among 161 cities, monthly average AQI was significantly different by seasons and regions. The highest average AQI was in winter, and the lowest in summer. A significant clustering distribution of AQI by cities was observed, with the highest AQI in north China (22 cities, mean = 117.36). Among the 161 cities, 5 cities (3%) had AQI > 150 (e.g., moderate polluted reference value), and 50 cities (31.1%) had AQI between 100 and 150 (slightly polluted value). Daily heat index, precipitation and sunshine hours were negatively and significantly, but air pressure was positively correlated with AQI. Cities with higher AQI concentrations had higher total mortality than those with lower AQI. This AQI-mortality association remained significant after adjustment for socioeconomic status. In conclusion, the study highlights the burden and seasonal, regional and areas variations in air pollution across the nation. Air pollution is estimated to account for more than 4% of the urban health inequality in total mortality in China.
文摘Cities of the future will need to cope with the triple challenges of urban growth,planetary boundaries leading to reduced energy and other resources,and rapid climate change.In response to the challenges of these complexities,urban growth and innovations in networked infrastructure development need to go hand-in-hand to transform urban systems and sustain the urban health advantage.In order to achieve this,knowledge and policy-making need to undergo processes of accelerated learning.The International Science Council’s global science programme“Urban Health and Wellbeing:A Systems Approach”has formulated goals to meet the urban health challenges of future cities.
基金supported by the National Natural Science Foundation of China(42225504 and 41977184)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23020301)+3 种基金the Key Research and Development Project of Anhui Province(202104i07020002)the Major Projects of High Resolution Earth Observation Systems of National Science and Technology(05-Y30B01-9001-19/20-3)the Key Laboratory of Atmospheric Chemistry/China Meteorological Administration(LAC/CMA)(2022B06)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2021443).
文摘Understanding the vertical distribution of ozone is crucial when assessing both its horizontal and vertical transport,as well as when analyzing the physical and chemical properties of the atmosphere.One of the most effective ways to obtain high spatial resolution ozone profiles is through satellite observations.The Environmental Trace Gases Monitoring Instrument(EMI)deployed on the Gaofen-5 satellite is the first Chinese ultraviolet-visible hyperspectral spectrometer.However,retrieving ozone profiles using backscattered radiance values measured by the EMI is challenging due to unavailable measurement errors and a low signal-to-noise ratio.The algorithm developed for the Tropospheric Monitoring Instrument did not allow us to retrieve 87%of the EMI pixels.Therefore,we developed an algorithm specific to the characteristics of the EMI.The fitting residuals are smaller than 0.3%in most regions.The retrieved ozone profiles were in good agreement with ozonesonde data,with maximum mean biases of 20%at five latitude bands.By applying EMI averaging kernels to the ozonesonde profiles,the integrated stratospheric column ozone and tropospheric column ozone also showed excellent agreement with ozonesonde data,The lower layers(0-7.5 km)of the EMI ozone profiles reflected the seasonal variation in surface ozone derived from the China National Environmental Monitoring Center(CNEMC).However,the upper layers(9.7-16.7 km)of the ozone profiles show different trends,with the ozone peak occurring at an altitude of 9.7-16.7 km in March,2019.A stratospheric intrusion event in central China from August 11 to 15,2019,is captured using the EMI ozone profiles,potential vorticity data,and relative humidity data.The increase in the CNEMC ozone co ncentration showed that downward transport enhanced surface ozone pollution.
基金National Natural Science Foundation of China,No.32371650,No.31872688。
文摘Urban green spaces play a crucial role in enhancing the well-being of urban residents and promoting sustainable urban development. However, optimizing the planning and management of urban green spaces to meet residents' diverse needs and preferences poses a considerable challenge. This study addresses this challenge by employing a landsenses ecology approach, integrating residents' perspectives into the planning and design of urban green spaces. Starting from human needs, a conceptual framework for the meliorization model of urban green spaces is constructed, grounded in the principles of landsense creation and incorporating a “design-simulation-management” process. Through this model, the mechanisms driving the meliorization process are explored. This study contributes to improving the meliorization process in landsenses ecology, while expanding the theoretical framework and methodology of landscape ecology. By emphasizing the dynamic interactions between land planning, construction, and residents' experiences, this study provides valuable insights into the dynamic development of urban green spaces, facilitating the implementation of sustainable urban development strategies and practices.
基金financial support from the“Hundred Talents Program”of the Chinese Academy of Sciencesthe“Young Talents Training Program”of the Shanghai Branch of the Chinese Academy of Sciences+3 种基金the financial support from the Xiamen City Natural Science Foundation of China(3502Z20227085,3502Z20227256)the National Science Youth Foundation of China(22202205)the Fujian Provincial Natural Science Foundation of China(2022J01502)Open Source Foundation of State Key Laboratory of Structural Chemistry。
文摘Fe-N-doped carbon materials(Fe-N-C)are promising candidates for oxygen reduction reaction(ORR)relative to Pt-based catalysts in proton exchange membrane fuel cells(PEMFCs).However,the intrinsic contributions of Fe-N_(4)moiety with different chemical/spin states(e.g.D1,D2,D3)to ORR are unclear since various states coexist inevitably.In the present work,Fe-N-C core-shell nanocatalyst with single lowspin Fe(Ⅱ)-N_(4)species(D1)is synthesized and identified with ex-situ ultralow temperature Mossbauer spectroscopy(T=1.6 K)that could essentially differentiate various Fe-N_(4)states and invisible Fe-O species.By quantifying with CO-pulse chemisorption,site density and turnover frequency of Fe-N-C catalysts reach 2.4×10^(-9)site g^(-1)and 23 e site~(-1)s^(-1)during the ORR,respectively.Half-wave potential(0.915V_(RHE))of the Fe-N-C catalyst is more positive(approximately 54 mV)than that of Pt/C.Moreover,we observe that the performance of PEMFCs on Fe-N-C almost achieves the 2025 target of the US Department of Energy by demonstrating a current density of 1.037 A cm^(-2)combined with the peak power density of 0,685 W cm^(-2),suggesting the critical role of Fe(Ⅱ)-N_(4)site(D1).After 500 h of running,PEMFCs still deliver a power density of 1.26 W cm^(-2)at 1.0 bar H_(2)-O_(2),An unexpected rate-determining step is figured out by isotopic labelling experiment and theoretical calculation.This work not only offers valuable insights regarding the intrinsic contribution of Fe-N_(4)with a single spin state to alkaline/acidic ORR,but also provides great opportunities for developing high-performance stable PEMFCs.
基金supported by the National Key Research Development Program of China(2022YFF0802301)the National Natural Science Foundation of China(32090021,32070460).
文摘Understanding the emergence and spread of antibiotic resistance genes(ARGs)in wildlife is critical for the health of humans and animals from a“One Health”perspective.The gut microbiota serve as a reservoir for ARGs;however,it remains poorly understood how environmental and host genetic factors influence ARGs by affecting the gut microbiota.To elucidate this,we analyzed whole-genome resequencing data from 79 individuals of Brandt’s vole in two geographic locations with different antibiotics usage,together with metabolomic data and shotgun sequencing data.A high diversity of ARGs(851 subtypes)was observed in vole’s gut,with a large variation in ARG composition between individuals from Xilingol and Hulunbuir in China.The diversity and composition of ARGs were strongly correlated with variations in gut microbiota community structure.Genome-wide association studies revealed that 803 loci were significantly associated(P<5.05×10^(−9))with 31 bacterial species,and bipartite networks identified 906 bacterial species-ARGs associations.Structural equation modeling analysis showed that host genetic factors,air temperature,and presence of pollutants(Bisphenol A)significantly affected gut microbiota community structure,which eventually regulated the diversity of ARGs.The present study advances our understanding of the complex host-environment interactions that underlie the spread of ARGs in the natural environments.
基金supported by funds of the National Natural Science Foundation of China(No.32361143523,42021005)the National Key Research and Development Program of China(No.2023YFF1304601)+2 种基金the Ningbo S&T project(2021-DST-004)International Partnership Program of Chinese Academy of Sciences(No.322GJHZ2022028FN)the fellowship of China Postdoctoral Science Foundation(Grant No.2022 T150635).
文摘Terrestrial invertebrates in urban ecosystems are extremely species-rich,have many important roles in material flow and energy circulation,and are host to many human pathogens that pose threats to human health.These invertebrates are widely distributed in urban areas,including both out-and in-door environments.Consequently,humans are frequently in contact with them,which provides many opportunities for them to pose human health risks.However,comprehensive knowledge on human pathogen transfer via invertebrates is lacking,with research to date primarily focused on dipterans(e.g.,mosquitoes,flies).Here,we take a broad taxonomic approach and review terrestrial invertebrate hosts(incl.mosquitoes,flies,termites,cockroaches,mites,ticks,earthworms,collembola,fleas,snails,and beetles)of human pathogens,with a focus on transmission pathways.We also discuss how urbanization and global warming are likely to influence the communities of invertebrate hosts and have flow-on risks to human health.Finally,we identify current research gaps and provide perspectives on future directions.
基金supported by the National Natural Science Foundation of China (No. 21507130)the Open Project Program of Beijing National Laboratory for Molecular Sciences (No. 20140142)+3 种基金the Open Project Program of Chongqing Key Laboratory of Environmental Materials and Remediation Technology from Chongqing University of Arts and Sciences (No. CEK1405)the Open Project Program of Jiangsu Key Laboratory of Vehicle Emissions Control (No. OVEC001)the Open Project Program of Chongqing Key Laboratory of Catalysis and Functional Organic Molecules from Chongqing Technology and Business University (1456029)the Chongqing Science & Technology Commission (Nos. cstc2016jcyj A0070, cstc2014pt-gc20002, cstckjcxljrc13)~~
文摘This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts.
基金the USDA National Institute of Food and Agriculture McIntire Stennis project(IND011523MS).
文摘The Normalized Diff erence Vegetation Index(NDVI),one of the earliest remote sensing analytical products used to simplify the complexities of multi-spectral imagery,is now the most popular index used for vegetation assessment.This popularity and widespread use relate to how an NDVI can be calculated with any multispectral sensor with a visible and a near-IR band.Increasingly low costs and weights of multispectral sensors mean they can be mounted on satellite,aerial,and increasingly—Unmanned Aerial Systems(UAS).While studies have found that the NDVI is effective for expressing vegetation status andquantified vegetation attributes,its widespread use and popularity,especially in UAS applications,carry inherent risks of misuse with end users who received little to no remote sensing education.This article summarizes the progress of NDVI acquisition,highlights the areas of NDVI application,and addresses the critical problems and considerations in using NDVI.Detailed discussion mainly covers three aspects:atmospheric eff ect,saturation phenomenon,and sensor factors.The use of NDVI can be highly eff ective as long as its limitations and capabilities are understood.This consideration is particularly important to the UAS user community.