期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimization Design of the Multi-Layer Cross-Sectional Layout of An Umbilical Based on the GA-GLM 被引量:1
1
作者 YANG Zhi-xun YIN Xu +5 位作者 FAN Zhi-rui YAN Jun LU Yu-cheng SU Qi MAO Yandong WANG Hua-lin 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期247-254,共8页
Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components direct... Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry. 展开更多
关键词 UMBILICAL cross-sectional layout MULTI-LAYERS GA-GLM optimization
下载PDF
Study on the Nonlinear Tension-Torsion Coupled Stiffness of the High-Current Composite Umbilical Considering the Thermal Effect 被引量:1
2
作者 YAN Jun SU Qi +2 位作者 BU Yu-feng LU Qing-zhen YANG Zhi-xun 《China Ocean Engineering》 SCIE EI CSCD 2022年第4期588-600,共13页
The gradual advances of offshore oil and gas exploitation and the development tendency of equipment integration have prompted the design of a new type of the high-current composite umbilical to meet development needs.... The gradual advances of offshore oil and gas exploitation and the development tendency of equipment integration have prompted the design of a new type of the high-current composite umbilical to meet development needs.In order to study the mechanical behavior of the high-current composite umbilical(HCCU)and provide design suggestions,a theoretical analysis framework of the tension-torsion coupled behavior of the spirally wound structure is proposed,which focuses more on the radial mechanical behavior.Then,by considering the mechanical and thermal conditions during the operation of HCCU,a semi-analytical method of the tension and torsion stiffness of the high-current composite umbilical considering the temperature effect is established.Furthermore,a practical case of HCCU is given,and the thermal effect on the radial and axial mechanical behaviors are analyzed.It is found that the thermal effect has a significant influence on the radial stiffness,and shows non-linear variation characteristics.Finally,the sensitivity analysis is carried out to study the influence of the design parameter on the stiffness of tension and torsion.The results indicated that the equivalent radial stiffness and helical angle have obvious effect on the tension-torsion coupled stiffness,which can provide reasonable reference for the design of HCCU. 展开更多
关键词 high-current composite umbilical tension-torsion coupled thermo-mechanical coupled radial stiffness
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部