Both radiation-induced excess vacancies and solute-interstitials may enhance solute diffusion. The radiation-enhanced solute diffusion promotes the kinetic process of equilibrium segregation. This effect is especially...Both radiation-induced excess vacancies and solute-interstitials may enhance solute diffusion. The radiation-enhanced solute diffusion promotes the kinetic process of equilibrium segregation. This effect is especially considerable in the low temperature range. As a complement to modelling of radiation-induced non-equilibrium segregation, the radiation-created vacancy and solute-interstitial-accelerated equilibrium grain boundary solute segregation were theoretically treated. The models were applied to phosphorus segregation in α-Fe subjected to neutron irradiation.展开更多
Irradiation-induced impurity segregation to grain boundaries is one of the important radiation effects on materials. For this reason, phosphorus segregation to prior austenite grain boundaries in a P-doped 2.25Cr1Mo s...Irradiation-induced impurity segregation to grain boundaries is one of the important radiation effects on materials. For this reason, phosphorus segregation to prior austenite grain boundaries in a P-doped 2.25Cr1Mo steel subjected to neutron irradiation is examined using field emission gun scanning transmission electron microscopy (FEGSTEM) with energy dispersive X-ray microanalysis (EDX). The steel samples are irradiated around 270 and 400℃, respectively. The irradiation dose rate and dose are -1.05×10-8 dpa/s and -0.042 dpa respectively for 270℃ irradiation, and 1.7×10-8 dpa/s and 0.13 dpa respectively for 400℃ irradiation. The FEGSTEM results indicate that there is no apparent phosphorus segregation during 270℃ irradiation but there is some during 400℃ irradiation.展开更多
Irradiation-induced grain boundary segregation of solute atoms frequently bring about grain boundary precipitation of a second phase because of its making the solubility limit of the solute surpassed at grain boundari...Irradiation-induced grain boundary segregation of solute atoms frequently bring about grain boundary precipitation of a second phase because of its making the solubility limit of the solute surpassed at grain boundaries. Until now the kinetic models for irradiation-induced grain boundary precipitation have been sparse. For this reason, we have theoretically treated grain boundary precipitation under irradiation in dilute binary alloys. Predictions of γ' -Ni3Si precipitation at grain boundaries are made for a dilute Ni-Si alloy subjected to irradiation. It is demonstrated that grain boundary silicon segregation under irradiation may lead to grain boundary γ'-Ni3Si precipitation over a certain temperature range.展开更多
基金This work was partly supported by the N ational N atural Science Foundation of China(project title:Nonequilibrium Grain Boundary Segregation Kinetics and Brittle Intergran-ular Fracturegrant No.50331020).
文摘Both radiation-induced excess vacancies and solute-interstitials may enhance solute diffusion. The radiation-enhanced solute diffusion promotes the kinetic process of equilibrium segregation. This effect is especially considerable in the low temperature range. As a complement to modelling of radiation-induced non-equilibrium segregation, the radiation-created vacancy and solute-interstitial-accelerated equilibrium grain boundary solute segregation were theoretically treated. The models were applied to phosphorus segregation in α-Fe subjected to neutron irradiation.
文摘Irradiation-induced impurity segregation to grain boundaries is one of the important radiation effects on materials. For this reason, phosphorus segregation to prior austenite grain boundaries in a P-doped 2.25Cr1Mo steel subjected to neutron irradiation is examined using field emission gun scanning transmission electron microscopy (FEGSTEM) with energy dispersive X-ray microanalysis (EDX). The steel samples are irradiated around 270 and 400℃, respectively. The irradiation dose rate and dose are -1.05×10-8 dpa/s and -0.042 dpa respectively for 270℃ irradiation, and 1.7×10-8 dpa/s and 0.13 dpa respectively for 400℃ irradiation. The FEGSTEM results indicate that there is no apparent phosphorus segregation during 270℃ irradiation but there is some during 400℃ irradiation.
文摘Irradiation-induced grain boundary segregation of solute atoms frequently bring about grain boundary precipitation of a second phase because of its making the solubility limit of the solute surpassed at grain boundaries. Until now the kinetic models for irradiation-induced grain boundary precipitation have been sparse. For this reason, we have theoretically treated grain boundary precipitation under irradiation in dilute binary alloys. Predictions of γ' -Ni3Si precipitation at grain boundaries are made for a dilute Ni-Si alloy subjected to irradiation. It is demonstrated that grain boundary silicon segregation under irradiation may lead to grain boundary γ'-Ni3Si precipitation over a certain temperature range.