期刊文献+
共找到121篇文章
< 1 2 7 >
每页显示 20 50 100
Targeted regeneration and upcycling of spent graphite by defect‐driven tin nucleation 被引量:1
1
作者 Zhiheng Cheng Zhiling Luo +7 位作者 Hao Zhang Wuxing Zhang Wang Gao Yang Zhang Long Qie Yonggang Yao Yunhui Huang Kun Kelvin Fu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期91-103,共13页
The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite ofte... The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture. 展开更多
关键词 battery recycling spent graphite targeted regeneration upcycling graphite
下载PDF
Graphene-loaded nickel−vanadium bimetal oxides as hydrogen pumps to boost solid-state hydrogen storage kinetic performance of magnesium hydride
2
作者 Dong-qiang GAO Fu-ying WU +4 位作者 Zhi ZHANG Zi-chuan LU Ren ZHOU Hu ZHAO Liu-ting ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2645-2657,共13页
To modify the thermodynamics and kinetic performance of magnesium hydride(MgH_(2))for solid-state hydrogen storage,Ni_(3)V_(2)O_(8)-rGO(rGO represents reduced graphene oxide)and Ni_(3)V_(2)O_(8)nanocomposites were pre... To modify the thermodynamics and kinetic performance of magnesium hydride(MgH_(2))for solid-state hydrogen storage,Ni_(3)V_(2)O_(8)-rGO(rGO represents reduced graphene oxide)and Ni_(3)V_(2)O_(8)nanocomposites were prepared by hydrothermal and subsequent heat treatment.The beginning hydrogen desorption temperature of 7 wt.%Ni_(3)V_(2)O_(8)-rGO modified MgH_(2)was reduced to 208℃,while the additive-free MgH_(2)and 7 wt.%Ni_(3)V_(2)O_(8)doped MgH_(2)appeared to discharge hydrogen at 340 and 226℃,respectively.A charging capacity of about 4.7 wt.%H_(2)for MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO was achieved at 125℃ in 10 min,while the dehydrogenated MgH_(2)took 60 min to absorb only 4.6 wt.%H_(2)at 215℃.The microstructure analysis confirmed that the in-situ generated Mg_(2)Ni/Mg_(2)N_(i)H_(4) and metallic V contributed significantly to the enhanced performance of MgH_(2).In addition,the presence of rGO in the MgH_(2)+7 wt.%Ni_(3)V_(2)O_(8)-rGO composite reduced particle aggregation tendency of Mg/MgH_(2),leading to improving the cyclic stability of MgH_(2)during 20 cycles. 展开更多
关键词 hydrogen storage properties MgH_(2) graphene-loaded Ni−V bimetal oxides catalytic mechanism
下载PDF
Interfacial Electronic Modulation of Dual-Monodispersed Pt–Ni_(3)S_(2) as Efficacious Bi-Functional Electrocatalysts for Concurrent H_(2) Evolution and Methanol Selective Oxidation
3
作者 Qianqian Zhao Bin Zhao +7 位作者 Xin Long Renfei Feng Mohsen Shakouri Alisa Paterson Qunfeng Xiao Yu Zhang Xian‑Zhu Fu Jing‑Li Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期415-431,共17页
Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the develop... Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the development of electrochemicallydriven technologies for efficient hydrogen production and avoid CO_(2) emission. Herein, the hetero-nanocrystals between monodispersed Pt(~ 2 nm) and Ni_(3)S_(2)(~ 9.6 nm) are constructed as active electrocatalysts through interfacial electronic modulation, which exhibit superior bi-functional activities for methanol selective oxidation and H_(2) generation. The experimental and theoretical studies reveal that the asymmetrical charge distribution at Pt–Ni_(3)S_(2) could be modulated by the electronic interaction at the interface of dual-monodispersed heterojunctions, which thus promote the adsorption/desorption of the chemical intermediates at the interface. As a result, the selective conversion from CH_(3)OH to formate is accomplished at very low potentials(1.45 V) to attain 100 m A cm^(-2) with high electronic utilization rate(~ 98%) and without CO_(2) emission. Meanwhile, the Pt–Ni_(3)S_(2) can simultaneously exhibit a broad potential window with outstanding stability and large current densities for hydrogen evolution reaction(HER) at the cathode. Further, the excellent bi-functional performance is also indicated in the coupled methanol oxidation reaction(MOR)//HER reactor by only requiring a cell voltage of 1.60 V to achieve a current density of 50 m A cm^(-2) with good reusability. 展开更多
关键词 Dual-monodispersed heterostructure Electronic interactive modulation Reaction mechanism Methanol oxidation reaction Hydrogen generation
下载PDF
Structures and magnetism of dinuclear Co complexes based on imine derivatives
4
作者 SUN Yadan LI Xinfeng +2 位作者 LIU Qiang Hiroki Oshio MENG Yinshan 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第11期2212-2220,共9页
This study presents the synthesis of three dinuclear cobalt complexes based on three imine derivatives:bis-[4-(2-pyridylmethyleneamino)-phenyl]thioether(L1),bis-[4-(2-pyridylmethyleneamino)-phenyl]ether(L2),and bis-[4... This study presents the synthesis of three dinuclear cobalt complexes based on three imine derivatives:bis-[4-(2-pyridylmethyleneamino)-phenyl]thioether(L1),bis-[4-(2-pyridylmethyleneamino)-phenyl]ether(L2),and bis-[4-(2-pyridylmethyleneamino)-phenyl]methane(L3).Single-crystal X-ray diffraction analysis reveals that the complexes[Co_(2)(L1)3](ClO_(4))4·2CH_(3)CN(1),[Co_(2)(L2)3](ClO_(4))4·2CH_(3)OH(2),and[Co_(2)(L3)3](ClO_(4))4·2CH_(3)OH(3)all exhibit a dinuclear structure.Magnetic test results show that complex 3 exhibited irreversible SCO behavior induced by loss of solvent at 300 K,with the average Co-N bond length increasing from 0.2139(3)to 0.2153(3)nm.Meanwhile,the desolvated complex 3 exhibited paramagnetic behavior similar to that of complexes 1 and 2.Variable-temperature UV-Vis spectroscopic studies also indicate that complex 3 undergoes a solvent-loss-induced spin-state transition.CCDC:2347354,1(120 K);2347355,2(120 K);2347356,3(120 K);2347357,3(400 K). 展开更多
关键词 spin crossover dinuclear cobalt complex imine derivatives
下载PDF
Cytological and Proteomic Analysis of Ginkgo biloba Pollen Intine 被引量:3
5
作者 Weixing Li Yunling Ye +3 位作者 Fangmei Cheng Yan Lu Biao Jin Li Wang 《Horticultural Plant Journal》 SCIE 2020年第4期257-266,共10页
The pollen intine plays important roles in pollen germination and tube growth,but related information in Ginkgo biloba remains unclear.We isolated and obtained de-exined pollen from G.biloba.Using fluorescent probes,w... The pollen intine plays important roles in pollen germination and tube growth,but related information in Ginkgo biloba remains unclear.We isolated and obtained de-exined pollen from G.biloba.Using fluorescent probes,we observed the strongest cellulose fluorescence in the pollen intine.De-esterified pectin immunolabeled with JIM5 was present throughout the entire cell wall,whereas esterified pectin recognized by the monoclonal antibody JIM7 was concentrated in some regions.Callose staining with aniline blue was observed across the entire surface of the pollen intine.These results were confirmed by Fourier Transform InfraRed(FTIR)analysis.We also used proteomic approaches to identify different proteins between mature and de-exined pollen(48h after hydration)in vitro.Based on mass spectrometry,de-exined pollen had more proteins than mature pollen,including calmodulin,serine hydroxymethyltransferase,β-galactosidase 6,and class IV chitinase.According to Gene Ontology(GO)analysis,the differentially expressed proteins were mainly associated with transportation,defense reaction,sugar metabolism,energy metabolism,signal transduction,and cell wall formation.These findings suggest that most proteins involved in pollen germination and pollen tube growth are synthesized during pollen hydration,indicating the important role of pollen hydration in the reproductive process of G.Biloba. 展开更多
关键词 Ginkgo biloba pollen intine cytological analysis PROTEOMICS mass spectrometry
下载PDF
A novel integrated non-targeted metabolomic analysis reveals significant metabolite variations between different lettuce (Lactuca sativa. L) varieties 被引量:5
6
作者 Xiao Yang Shiwei Wei +7 位作者 Bin Liu Doudou Guo Bangxiao Zheng Lei Feng Yumin Liu Francisco A.Tomás-Barberán Lijun Luo Danfeng Huang 《Horticulture Research》 SCIE 2018年第1期513-526,共14页
Lettuce is an important leafy vegetable that represents a significant dietary source of antioxidants and bioactive compounds.However,the levels of metabolites in different lettuce cultivars are poorly characterized.In... Lettuce is an important leafy vegetable that represents a significant dietary source of antioxidants and bioactive compounds.However,the levels of metabolites in different lettuce cultivars are poorly characterized.In this study,we used combined GC×GC-TOF/MS and UPLC-IMS-QTOF/MS to detect and relatively quantify metabolites in 30 lettuce cultivars representing large genetic diversity.Comparison with online databases,the published literature,standards as well using collision cross-section values enabled putative identification of 171 metabolites.Sixteen of these 171 metabolites(including phenolic acid derivatives,glycosylated flavonoids,and one iridoid)were present at significantly different levels in leaf and head type lettuces,which suggested the significant metabolomic variations between the leaf and head types of lettuce are related to secondary metabolism.A combination of the results and metabolic network analysis techniques suggested that leaf and head type lettuces contain not only different levels of metabolites but also have significant variations in the corresponding associated metabolic networks.The novel lettuce metabolite library and novel non-targeted metabolomics strategy devised in this study could be used to further characterize metabolic variations between lettuce cultivars or other plants.Moreover,the findings of this study provide important insight into metabolic adaptations due to natural and human selection,which could stimulate further research to potentially improve lettuce quality,yield,and nutritional value. 展开更多
关键词 CULTIVAR ANALYSIS representing
下载PDF
Nanostructuring of Mg-Based Hydrogen Storage Materials:Recent Advances for Promoting Key Applications 被引量:9
7
作者 Li Ren Yinghui Li +6 位作者 Ning Zhang Zi Li Xi Lin Wen Zhu Chong Lu Wenjiang Ding Jianxin Zou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期30-56,共27页
With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels... With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels,due to its high gravimetric energy density(142 MJ kg^(-1)),high abundance(H_(2)O),and environmentalfriendliness.However,due to its low volume density,effective and safe hydrogen storage techniques are now becoming the bottleneck for the"hydrogen economy".Under such a circumstance,Mg-based hydrogen storage materials garnered tremendous interests due to their high hydrogen storage capacity(~7.6 wt%for MgH_(2)),low cost,and excellent reversibility.However,the high thermodynamic stability(ΔH=-74.7 kJ mol^(-1)H_(2))and sluggish kinetics result in a relatively high desorption temperature(>300℃),which severely restricts widespread applications of MgH_(2).Nano-structuring has been proven to be an effective strategy that can simultaneously enhance the ab/de-sorption thermodynamic and kinetic properties of MgH_(2),possibly meeting the demand for rapid hydrogen desorption,economic viability,and effective thermal management in practical applications.Herein,the fundamental theories,recent advances,and practical applications of the nanostructured Mg-based hydrogen storage materials are discussed.The synthetic strategies are classified into four categories:free-standing nano-sized Mg/MgH_(2)through electrochemical/vapor-transport/ultrasonic methods,nanostructured Mg-based composites via mechanical milling methods,construction of core-shell nano-structured Mg-based composites by chemical reduction approaches,and multi-dimensional nano-sized Mg-based heterostructure by nanoconfinement strategy.Through applying these strategies,near room temperature ab/de-sorption(<100℃)with considerable high capacity(>6 wt%)has been achieved in nano Mg/MgH_(2)systems.Some perspectives on the future research and development of nanostructured hydrogen storage materials are also provided. 展开更多
关键词 Mg-based hydrogen storage materials NANOSTRUCTURE Hydrogen storage THERMODYNAMICS KINETICS On-board hydrogen storage
下载PDF
Bullet-like vanadium-based MOFs as a highly active catalyst for promoting the hydrogen storage property in MgH_(2) 被引量:2
8
作者 Zhiyu Lu Jiahuan He +5 位作者 Mengchen Song Yan Zhang Fuying Wu Jiaguang Zheng Liuting Zhang Lixin Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期44-53,共10页
The practical application of magnesium hydride(MgH_(2))was seriously limited by its high desorption temperature and slow desorp-tion kinetics.In this study,a bullet-like catalyst based on vanadium related MOFs(MOFs-V)... The practical application of magnesium hydride(MgH_(2))was seriously limited by its high desorption temperature and slow desorp-tion kinetics.In this study,a bullet-like catalyst based on vanadium related MOFs(MOFs-V)was successfully synthesized and doped with MgH_(2) by ball milling to improve its hydrogen storage performance.Microstructure analysis demonstrated that the as-synthesized MOFs was consisted of V_(2)O_(3) with a bullet-like structure.After adding 7wt%MOFs-V,the initial desorption temperature of MgH_(2) was reduced from 340.0 to 190.6℃.Besides,the MgH_(2)+7wt%MOFs-V composite released 6.4wt%H_(2) within 5 min at 300℃.Hydrogen uptake was started at 60℃under 3200 kPa hydrogen pressure for the 7wt%MOFs-V containing sample.The desorption and absorption apparent activity energies of the MgH_(2)+7wt%MOFs-V composite were calculated to be(98.4±2.9)and(30.3±2.1)kJ·mol^(-1),much lower than(157.5±3.3)and(78.2±3.4)kJ·mol^(−1) for the as-prepared MgH_(2).The MgH_(2)+7wt%MOFs-V composite exhibited superior cyclic property.During the 20 cycles isothermal dehydrogenation and hydrogenation experiments,the hydrogen storage capacity stayed almost unchanged.X-ray diffraction(XRD)and X-ray photoelectron spectrometer(XPS)measurements confirmed the presence of metallic vanadium in the MgH_(2)+7wt%MOFs-V composite,which served as catalytic unit to markedly improve the hydrogen storage properties of Mg/MgH_(2) system. 展开更多
关键词 hydrogen storage magnesium hydrides vanadium based MOFs catalytic mechanism
下载PDF
FeCoNiCrMo high entropy alloy nanosheets catalyzed magnesium hydride for solid-state hydrogen storage 被引量:1
9
作者 Tao Zhong Haoyu Zhang +4 位作者 Mengchen Song Yiqun Jiang Danhong Shang Fuying Wu Liuting Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2270-2279,共10页
The catalytic effect of FeCoNiCrMo high entropy alloy nanosheets on the hydrogen storage performance of magnesium hydride(MgH_(2))was investigated for the first time in this paper.Experimental results demonstrated tha... The catalytic effect of FeCoNiCrMo high entropy alloy nanosheets on the hydrogen storage performance of magnesium hydride(MgH_(2))was investigated for the first time in this paper.Experimental results demonstrated that 9wt%FeCoNiCrMo doped MgH_(2)started to dehydrogenate at 200℃and discharged up to 5.89wt%hydrogen within 60 min at 325℃.The fully dehydrogenated composite could absorb3.23wt%hydrogen in 50 min at a temperature as low as 100℃.The calculated de/hydrogenation activation energy values decreased by44.21%/55.22%compared with MgH_(2),respectively.Moreover,the composite’s hydrogen capacity dropped only 0.28wt%after 20 cycles,demonstrating remarkable cycling stability.The microstructure analysis verified that the five elements,Fe,Co,Ni,Cr,and Mo,remained stable in the form of high entropy alloy during the cycling process,and synergistically serving as a catalytic union to boost the de/hydrogenation reactions of MgH_(2).Besides,the FeCoNiCrMo nanosheets had close contact with MgH_(2),providing numerous non-homogeneous activation sites and diffusion channels for the rapid transfer of hydrogen,thus obtaining a superior catalytic effect. 展开更多
关键词 hydrogen storage magnesium hydride high entropy alloy nano-sheets CATALYSIS
下载PDF
Wide temperature range-and damage-tolerant microsupercapacitors from salt-tolerant, anti-freezing and self-healing organohydrogel via dynamic bonds modulation
10
作者 Cheng Tang Manni Li +5 位作者 Yaling Wang Yan Zhang Yinzhuo Yao Guolong Wang Jiamei Liu Lei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期283-293,I0009,共12页
The advance of microelectronics requires the micropower of microsupercapacitors(MSCs) to possess wide temperature-and damage-tolerance beyond high areal energy density.The properties of electrolyte are crucial for MSC... The advance of microelectronics requires the micropower of microsupercapacitors(MSCs) to possess wide temperature-and damage-tolerance beyond high areal energy density.The properties of electrolyte are crucial for MSCs to meet the above requirements.Here,an organohydrogel electrolyte,featured with high salt tolerance,ultralow freezing point,and strong self-healing ability,is experimentally realized via modulating its inner dynamic bonds.Spectroscopic and theoretical analysis reveal that dimethyl sulfoxide has the ability to reconstruct Li^(+)solvation structure,and interact with free water and polyvinyl alcohol chains via forming hydrogen bonds.The organohydrogel electrolyte is employed to build MSCs,which show a boosted energy density,promising wide temperature range-and damage-tolerant ability.These attractive features make the designed organohydrogel electrolyte have great potential to advance MSCs. 展开更多
关键词 Microsupercapacitor Organohydrogel Salt tolerance ANTI-FREEZING SELF-HEALING
下载PDF
Lotus root polysaccharide inhibits the growth of ovarian cancer cells by blocking the cell cycle
11
作者 Pei-Yu Dong Sheng-Lin Liang +2 位作者 Long Li Jing Liu Xi-Feng Zhang 《Traditional Medicine Research》 2023年第8期18-24,共7页
Background:Lotus root polysaccharide is a natural antioxidant.As a new anticancer drug,it has anti-proliferation and pro-apoptotic effects in a variety of tumour cells,but its effect on ovarian cancer is not clear.In ... Background:Lotus root polysaccharide is a natural antioxidant.As a new anticancer drug,it has anti-proliferation and pro-apoptotic effects in a variety of tumour cells,but its effect on ovarian cancer is not clear.In study,we attempted to elucidate the role and mechanism of lotus root polysaccharide in SKOV3 cells.Methods:In this study,the effect of lotus root polysaccharide on mRNA of SKVO3 cells was analyzed by RNA-seq,and verified by Western blot,flow cytometry,fluorescence detection and other techniques.Results:The results showed that lotus root polysaccharide could inhibit the proliferation of ovarian cancer cells.Then,a change in gene expression was found by RNA-seq.In the mRNA(differentially expressed mRNA)with these differences,significant changes in the cell cycle were found by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis.Subsequently,the proportion of cells in S phase decreases and G2/M phase increases,as seen with propidium iodide staining.Gene Set Enrichment Analysis showed inhibition of the cell cycle,and the gene and protein expression of CDK1,CCNA1 and CCNB1 were inhibited.Conclusion:Our results show that lotus root polysaccharide can inhibit the growth of SKOV3 cells in vitro by blocking the cell cycle at the G2/M phase,which reveals the potential of lotus root polysaccharide in the treatment of ovarian cancer. 展开更多
关键词 lotus root polysaccharide ovarian cancer SKOV3 RNA-SEQ
下载PDF
Microstructural evolution of Mg-14Gd-0.4Zr alloy during compressive creep
12
作者 Hui Shi Yuanding Huang +6 位作者 Lixiang Yang Chunquan Liu Hajo Dieringa Chong Lu Lv Xiao Regine Willumeit-Römer Norbert Hort 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3161-3173,共13页
The present work reports the creep behavior and microstructural evolution of the sand-cast Mg-14Gd-0.4Zr alloy(wt.%) prepared by the differential pressure casting machine. Their compressive creep tests at 250 ℃ were ... The present work reports the creep behavior and microstructural evolution of the sand-cast Mg-14Gd-0.4Zr alloy(wt.%) prepared by the differential pressure casting machine. Their compressive creep tests at 250 ℃ were performed under various applied stresses(i.e., 60, 80 and100 MPa). Among them, the sand-cast Mg-14Gd-0.4Zr samples examined under 250 ℃/80 MPa for 39 and 95 h, respectively, were chosen to systemically analyze their creep mechanisms using high-angle annular dark field-scanning transmission electron microscopy(HAADF-STEM).The obtained results showed that the enhancement of creep resistance can be mainly attributed to the coherent β' and β'_F phases with an alternate distribution, effectively impeding the basal dislocations movement. However, with the creep time increasing, the fine β'+β'_F precipitate chains coarsened and transformed to semi-coherent β_1 phase and even to large incoherent β phase(surrounded by precipitate-free areas) in grain interiors. The precipitate-free zones(PFZs) at grain boundaries(GBs) were formed, and they could expand during creep deformation. Apart from the main cross-slip of basal and prismatic dislocations, type dislocations were activated and tended to distribute near the GBs. The aforementioned phenomena induced the stress concentrations, consequently leading to the increment of the creep strain. 展开更多
关键词 Magnesium alloys Creep property MICROSTRUCTURES Precipitate chains DISLOCATION
下载PDF
Atomic-level quantitative analysis of electronic functional materials by aberration-corrected STEM
13
作者 Wanbo Qu Zhihao Zhao +6 位作者 Yuxuan Yang Yang Zhang Shengwu Guo Fei Li Xiangdong Ding Jun Sun Haijun Wu 《Chinese Physics B》 SCIE EI CAS 2024年第11期12-25,共14页
The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope(ACSTEM)makes it an advanced and practical characterization technique for all materials.Owing to the prosperous a... The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope(ACSTEM)makes it an advanced and practical characterization technique for all materials.Owing to the prosperous advancement in computational technology,specialized software and programs have emerged as potent facilitators across the entirety of electron microscopy characterization process.Utilizing advanced image processing algorithms promotes the rectification of image distortions,concurrently elevating the overall image quality to superior standards.Extracting high-resolution,pixel-level discrete information and converting it into atomic-scale,followed by performing statistical calculations on the physical matters of interest through quantitative analysis,represent an effective strategy to maximize the value of electron microscope images.The efficacious utilization of quantitative analysis of electron microscope images has become a progressively prominent consideration for materials scientists and electron microscopy researchers.This article offers a concise overview of the pivotal procedures in quantitative analysis and summarizes the computational methodologies involved from three perspectives:contrast,lattice and strain,as well as atomic displacements and polarization.It further elaborates on practical applications of these methods in electronic functional materials,notably in piezoelectrics/ferroelectrics and thermoelectrics.It emphasizes the indispensable role of quantitative analysis in fundamental theoretical research,elucidating the structure–property correlations in high-performance systems,and guiding synthesis strategies. 展开更多
关键词 AC-STEM quantitative analysis polarization electronic functional materials
下载PDF
Risk assessment of heavy metals in soils and vegetables around nonferrous metals mining and smelting sites,Baiyin,China 被引量:87
14
作者 LI Yu WANG Yan-bin +2 位作者 GOU Xin SU Yi-bing WANG Gang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第6期1124-1134,共11页
A field survey was conducted to investigate the metal and arsenic contamination in soils and vegetables on four villages (Shuichuan (SCH), Beiwan (BWA), Dongwan (DWA) and Wufe (WFE)) located along, Baiyin, C... A field survey was conducted to investigate the metal and arsenic contamination in soils and vegetables on four villages (Shuichuan (SCH), Beiwan (BWA), Dongwan (DWA) and Wufe (WFE)) located along, Baiyin, China, and to evaluate the possible health risks to local population through foodchain. Results show that the most significantly contaminated soils occurred upstream at SCH where Cd, Cu and As concentrations exceeded maximum allowable concentrations for Chinese agricultural soil. Further downstream the degree of contamination semi-systematically decreased in concentrations of metal. Generally, the leafy vegetables were more heavily contaminated than non-leafy vegetables. Chinese cabbage is the most severely contaminated, the concentrations of Cd exceeded the maximum permit levels (0.05 mg/kg) by 4.5 times. Bio-accumulate factor also shows that an entry of Cd to food chain plants is the greatest potential. Furthermore, the estimated daily intake amounts of the considered toxic elements (Cd, Pb and Cu) from the vegetables grown at SCH and BWA and DWA have exceeded the recommended dietary allowance levels. Thus, the vegetables grown in three villages above, which affected by Baiyin mining and smelting have a health hazard for human consumption. 展开更多
关键词 vegetable species heavy metals mining and smelting pollution
下载PDF
In-situ investigation of deformation behavior and fracture forms of Ti/Al/Mg/Al/Ti laminates 被引量:10
15
作者 Hui-hui NIE Liu-wei ZHENG +3 位作者 Xiao-ping KANG Xin-wei HAO Xian-rong LI Wei LIANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第6期1656-1664,共9页
In-situ bending and stretching were conducted on hot-rolled and annealed Ti/Al/Mg/Al/Ti laminates,with a focus on crack initiation and propagation of intermetallics and component layers,which helps to clarify their de... In-situ bending and stretching were conducted on hot-rolled and annealed Ti/Al/Mg/Al/Ti laminates,with a focus on crack initiation and propagation of intermetallics and component layers,which helps to clarify their deformation behavior and fracture forms.The results show that delamination is the early fracture form of laminate with or without intermetallics at Al/Mg interface,so Al/Mg interfacial bonding strength determines the mechanical properties of laminate.Various and irregular intermetallics cracks lead to Al/Mg interface delamination in annealed laminate and help to release stress.Necking and fracture of component layers are observed at the late deformation stage,and the sequence is Al,Mg and Ti layers,resulting from their strength.Angle between crack propagation direction and stretching direction of Mg layer both in rolled and annealed laminates is around 45°due to the effect of shear deformation,and crack convergence leads to final complete fracture of Mg layer. 展开更多
关键词 Ti/Al/Mg/Al/Ti laminate in-situ test INTERMETALLICS crack initiation fracture form
下载PDF
Effects of La substitution on microstructure and hydrogen storage properties of Ti−Fe−Mn-based alloy prepared through melt spinning 被引量:6
16
作者 Ze-ming YUAN Zhen QI +3 位作者 Ting-ting ZHAI Hong-zhang WANG Hai-yan WANG Yang-huan ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期3087-3095,共9页
The as-spun Ti_(1−x)La_(x)Fe_(0.8)Mn_(0.2)(x=0,0.01,0.03,0.06,0.09,molar fraction)alloys were prepared by melt spinning.The effects of La substitution for Ti on the microstructure,hydrogen storage kinetics and thermod... The as-spun Ti_(1−x)La_(x)Fe_(0.8)Mn_(0.2)(x=0,0.01,0.03,0.06,0.09,molar fraction)alloys were prepared by melt spinning.The effects of La substitution for Ti on the microstructure,hydrogen storage kinetics and thermodynamics of TiFe-type Ti−Fe−Mn-based alloy were investigated.The as-spun alloys hold the TiFe single phase,which transforms to TiFeH_(0.06),TiFeH,and TiFeH_(2) hydrides after hydrogenation.La substitution promotes the formation of micro-defects(such as dislocations and grain boundaries)in the alloys,thus facilitating hydrogen diffusion.In addition,the hydrogen storage kinetics properties are improved after introducing La element.With the rise of La content,the hydrogen storage capacity decreases firstly and then increases,but the absolute value of hydriding enthalpy change(|ΔH|)increases firstly and then reduces.When x=0.01,the maximum value of|ΔH|is obtained to be(25.23±0.50)kJ/mol for hydriding,and the alloy has the maximum hydrogen absorption capacity of(1.80±0.04)wt.%under the conditions of 323 K and 3 MPa. 展开更多
关键词 La substitution Ti−Fe−Mn-based alloy melt spinning hydrogen storage kinetics thermodynamics
下载PDF
Facile synthesis of UCNPs/Zn_xCd_(1-x)S nanocomposites excited by near-infrared light for photochemical reduction and removal of Cr(Ⅵ) 被引量:7
17
作者 Mengli Zhao Wanni Wang +5 位作者 Chenxi Huang Wang Dong Yang Wang Sheng Cheng Huiqing Wang Haisheng Qian 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第7期1240-1248,共9页
Photocatalysis driven by near-infrared(NIR)light is of scientific and technological interest for ex-ploiting solar energy.In this study,we demonstrate a facile hydrothermal process to synthesize core-shell nanoparti... Photocatalysis driven by near-infrared(NIR)light is of scientific and technological interest for ex-ploiting solar energy.In this study,we demonstrate a facile hydrothermal process to synthesize core-shell nanoparticles combining upconversion nanoparticles(UCNPs)and alloyed ZnxCwhich can be excited using NIR or visible light.Morphologies,phase,and chemical composition have been investigated using field-emission scanning electron microscopy,transmission electron mi-croscopy,X-ray diffraction analysis,and atomic absorption spectroscopy.Moreover,we found that amorphous TiO2 layers existing in the final samples play an important role in formation ofyolk-shell nanoparticles,which bind the as-prepared ZnxCnanoparticlescan be tuna-ble by adjusting the amount of the Cd and Zn source compounds.The photochemical reduction of Cr(Ⅵ)in water has been performed to study the photocatalytic performance under irradiation by NIR light or a simulated solar light,showing efficient photoreduction and Cr(Ⅵ)removal over the/TiO2 yolk-shell nanoparticles.The as-prepared UCNPs@ZnxC/TiO2 nanoparticles show excellent production of hydroxyl radicals,which are responsible for the photochemical reduction of Cr(Ⅵ)to Cr(Ⅲ).This study will provide an alternative strategy for en-vironmental wastewater treatment,making full use of solar energy. 展开更多
关键词 Upconversion nanoparticle ZnxCd1-xS alloyed semiconductor Yolk-shell PHOTOCATALYSIS Hydrothermal synthesis
下载PDF
Supercritical Antisolvent-based Technology for Preparation of Vitamin D3 Proliposome and Its Characteristics 被引量:6
18
作者 夏菲 金鹤阳 +1 位作者 赵亚平 郭新秋 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第6期1039-1046,共8页
Vitamin D3 (VD3) proliposomes (VDP), consisted of hydrogenated phosphatidycholine (HPC) and VD3, were prepared using supercritical anti-solvent technology (SAS). The effects of operation conditions (temperatu... Vitamin D3 (VD3) proliposomes (VDP), consisted of hydrogenated phosphatidycholine (HPC) and VD3, were prepared using supercritical anti-solvent technology (SAS). The effects of operation conditions (temperature, pressure and components) on the VD3 loading in VDP were studied. At the optimum conditions of pressure of 8.0 MPa, temperature of 45 ℃, and the mass ratio of 15.0% between VD3 and HPC, the VD3 loading reached 12.89%. VD3 liposomes (VDL) were obtained by hydrating VDP and the entrapment efficiency of VD3 in VDL reached 98.5%. The morphology and structure of VDP and VDL were characterized by SEM (scanning electron micro-scope), TEM (transmission electron microscope) and XRD (X-ray diffractometer). The structure of VD3 nanoparti-cles in HPC matrix was formed. The size of VDL with an average diameter of about 1μm was determined by dynamic light scattering instrument (DLS). The results indicated that VDP can be made by SAS and VDL with high entrapment efficiency can be formed easily via the hydration of VDP. 展开更多
关键词 hydrogenated phosphatidych'oline LIPOSOME ENCAPSULATION supercritical anti-solvent
下载PDF
Metabolic Response of Pakchoi Leaves to Amino Acid Nitrogen 被引量:5
19
作者 WANG Xiao-li YU Wen-juan +2 位作者 ZHOU Qian HAN Rui-feng HUANG Dan-feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第4期778-788,共11页
Different nitrogen (N) forms may cause changes in the metabolic profiles of plants. However, few studies have been conducted on the effects of amino acid-N on plant metabolic profiles. The main objective of this stu... Different nitrogen (N) forms may cause changes in the metabolic profiles of plants. However, few studies have been conducted on the effects of amino acid-N on plant metabolic profiles. The main objective of this study was to identify primary metabolites associated with amino acid-N (Gly, Gln and Ala) through metabolic profile analysis using gas chromatography- mass spectrometry (GC-MS). Plants of pakchoi (Brassica campestris L. ssp. chinensis L.), Huawang and Wuyueman cultivars, were grown with different nitrogen forms (i.e., Gly, Gln, Ala, NO3-N, and N starvation) applied under sterile hydroponic conditions. The fresh weight and plant N accumulation of Huawang were greater than those of Wuyueman, which indicates that the former exhibited better N-use efficiency than the latter. The physiological performances of the applied N forms were generally in the order of NO3-N〉Gln〉Gly〉Ala. The metabolic analysis of leaf polar extracts revealed 30 amino acid N-responsive metabolites in the two pakchoi cultivars, mainly consisting of sugars, amino acids, and organic acids. Changes in the carbon metabolism of pakchoi leaves under amino acid treatments occurred via the accumulation of fructose, glucose, xylose, and arabinose. Disruption of amino acid metabolism resulted in accumulation of endogenous Gly in Gly treatment, Pro in Ala treatment, and Asn in three amino acid (Gly, Gln and Ala) treatments. By contrast, the levels of endogenous Gln and Leu decreased. However, this reduction varied among cultivars and amino acid types. Amino acid-N supply also affected the citric acid cycle, namely, the second stage of respiration, where leaves in Gly, Gln and Ala treatments contained low levels of malic, citric and succinic acids compared with leaves in NO3-N treatments. No significant difference in the metabolic responses was observed between the two cultivars which differed in their capability to use N. The response of primary metabolites in pakchoi leaves to amino acid-N supply may serve an important function in pakchoi adaptation to amino acid-N sources. 展开更多
关键词 amino acid metabolite profile PAKCHOI
下载PDF
TiO_2 composite nanotubes embedded with CdS and upconversion nanoparticles for near infrared light driven photocatalysis 被引量:6
20
作者 Wanni Wang Fu Zhang +4 位作者 Chuanling Zhang Yang Wang Wei Tao Sheng Cheng Haisheng Qian 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第11期1851-1859,共9页
We report a colloidal process to coat a layer of TiO2onto SiO2composite nanofibers containing embedded CdS and upconversion nanoparticles(UCNPs).The SiO2composite nanofibers were fabricated by electrospinning.To impro... We report a colloidal process to coat a layer of TiO2onto SiO2composite nanofibers containing embedded CdS and upconversion nanoparticles(UCNPs).The SiO2composite nanofibers were fabricated by electrospinning.To improve the energy transfer efficiency,UCNPs and CdS nanoparticles were bound in close proximity to each other within the SiO2matrix.β‐NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)core–shell nanoparticles were used as nanotransducers for near infrared light.These nanoparticles exhibited enhanced upconversion fluorescence compared withβ‐NaYF4:Yb(30%),Tm(0.5%)orβ–NaYF4:Yb(30%),Tm(0.5%)@NaYF4nanoparticles.The morphologies,size and chemical compositions have been extensively investigated using field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),X‐ray diffraction(XRD)and X‐ray photoelectron spectra(XPS),respectively.The TEM images showed that the TiO2composite nanotubes were embedded with a large amount of UCNPs and CdS nanoparticles.The composite TiO2nanotubes degraded more than90%of rhodamine B(RhB)dye during20min of irradiation by simulated solar light.In particular,more than50%of RhB was decomposed in70min,under irradiation of near infrared light(NIR).This high degradation was attributed to the full spectrum absorption of solar light,and the enhanced transfer efficiency for near infrared light.The as‐prepared nanostructures can harness solar energy,and provide an alternative to overcome energy shortages and environmental protection. 展开更多
关键词 TiO2 nanotubes Upconversion nanoparticles Energy transfer PHOTOCATALYSIS Nanotransducer
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部