The most crucial requirement in radiation therapy treatment planning is a fast and accurate treatment planning system that minimizes damage to healthy tissues surrounding cancer cells. The use of Monte Carlo toolkits ...The most crucial requirement in radiation therapy treatment planning is a fast and accurate treatment planning system that minimizes damage to healthy tissues surrounding cancer cells. The use of Monte Carlo toolkits has become indispensable for research aimed at precisely determining the dose in radiotherapy. Among the numerous algorithms developed in recent years, the GAMOS code, which utilizes the Geant4 toolkit for Monte Carlo simula-tions, incorporates various electromagnetic physics models and multiple scattering models for simulating particle interactions with matter. This makes it a valuable tool for dose calculations in medical applications and throughout the patient’s volume. The aim of this present work aims to vali-date the GAMOS code for the simulation of a 6 MV photon-beam output from the Elekta Synergy Agility linear accelerator. The simulation involves mod-eling the major components of the accelerator head and the interactions of the radiation beam with a homogeneous water phantom and particle information was collected following the modeling of the phase space. This space was po-sitioned under the X and Y jaws, utilizing three electromagnetic physics mod-els of the GAMOS code: Standard, Penelope, and Low-Energy, along with three multiple scattering models: Goudsmit-Saunderson, Urban, and Wentzel-VI. The obtained phase space file was used as a particle source to simulate dose distributions (depth-dose and dose profile) for field sizes of 5 × 5 cm<sup>2</sup> and 10 × 10 cm<sup>2</sup> at depths of 10 cm and 20 cm in a water phantom, with a source-surface distance (SSD) of 90 cm from the target. We compared the three electromagnetic physics models and the three multiple scattering mod-els of the GAMOS code to experimental results. Validation of our results was performed using the gamma index, with an acceptability criterion of 3% for the dose difference (DD) and 3 mm for the distance-to-agreement (DTA). We achieved agreements of 94% and 96%, respectively, between simulation and experimentation for the three electromagnetic physics models and three mul-tiple scattering models, for field sizes of 5 × 5 cm<sup>2</sup> and 10 × 10 cm<sup>2</sup> for depth-dose curves. For dose profile curves, a good agreement of 100% was found between simulation and experimentation for the three electromagnetic physics models, as well as for the three multiple scattering models for a field size of 5 × 5 cm<sup>2</sup> at 10 cm and 20 cm depths. For a field size of 10 × 10 cm<sup>2</sup>, the Penelope model dominated with 98% for 10 cm, along with the three multiple scattering models. The Penelope model and the Standard model, along with the three multiple scattering models, dominated with 100% for 20 cm. Our study, which compared these different GAMOS code models, can be crucial for enhancing the accuracy and quality of radiotherapy, contributing to more effective patient treatment. Our research compares various electro-magnetic physics models and multiple scattering models with experimental measurements, enabling us to choose the models that produce the most reli-able results, thereby directly impacting the quality of simulations. This en-hances confidence in using these models for treatment planning. Our re-search consistently contributes to the progress of Monte Carlo simulation techniques in radiation therapy, enriching the scientific literature.展开更多
The risk of radiation-induced second cancer and the late tissue loss due to Off-field doses in radiotherapy remain a serious concern. Monte Carlo (MC) simulation is currently one of the most accurate methods for calcu...The risk of radiation-induced second cancer and the late tissue loss due to Off-field doses in radiotherapy remain a serious concern. Monte Carlo (MC) simulation is currently one of the most accurate methods for calculating these doses. MC simulation model based on the Particle Simulation Tool (TOPAS) has been developed to simulate the off-field dose of an Elekta Synergy linear accelerator (Linac) emitting 6 MV photons. Measurements were taken in a water phantom using an ionization chamber to validate this model. The Percentage Depth Dose (PDD) at the depth of 0.0, 5.0, 10.0 and 15.0 cm from the beam axis for a 10 × 10 cm2 field size was measured and simulated. Off-field dose profiles at the depth of 1.5 (dmax), 5.0 and 10.0 cm for field sizes of 5 × 5, 10 × 10, 15 × 15, and 20 × 20 cm2 respectively were measured and simulated. Comparison of measured and simulated off-field dose values showed a good agreement. The average gamma passing rate of the PDDs and profiles curves for off-field doses were 87.5% and 98.11% respectively. The local dose difference based on the PDD curve between the measured and simulated was less than 6.0 % for all locations. For all field size considered in this study, the average difference between profile curves for off-field dose measured and simulated was 9.1%. PDDs and Profiles curves for off-field dose simulation uncertainties were less than 2.0% and 1.0% respectively. TOPAS-MC simulation model developed is a good representation of our 6 MV Linac Elekta Synergy for assessing off-field dose, which would be the primary cause of some secondary cancers.展开更多
文摘The most crucial requirement in radiation therapy treatment planning is a fast and accurate treatment planning system that minimizes damage to healthy tissues surrounding cancer cells. The use of Monte Carlo toolkits has become indispensable for research aimed at precisely determining the dose in radiotherapy. Among the numerous algorithms developed in recent years, the GAMOS code, which utilizes the Geant4 toolkit for Monte Carlo simula-tions, incorporates various electromagnetic physics models and multiple scattering models for simulating particle interactions with matter. This makes it a valuable tool for dose calculations in medical applications and throughout the patient’s volume. The aim of this present work aims to vali-date the GAMOS code for the simulation of a 6 MV photon-beam output from the Elekta Synergy Agility linear accelerator. The simulation involves mod-eling the major components of the accelerator head and the interactions of the radiation beam with a homogeneous water phantom and particle information was collected following the modeling of the phase space. This space was po-sitioned under the X and Y jaws, utilizing three electromagnetic physics mod-els of the GAMOS code: Standard, Penelope, and Low-Energy, along with three multiple scattering models: Goudsmit-Saunderson, Urban, and Wentzel-VI. The obtained phase space file was used as a particle source to simulate dose distributions (depth-dose and dose profile) for field sizes of 5 × 5 cm<sup>2</sup> and 10 × 10 cm<sup>2</sup> at depths of 10 cm and 20 cm in a water phantom, with a source-surface distance (SSD) of 90 cm from the target. We compared the three electromagnetic physics models and the three multiple scattering mod-els of the GAMOS code to experimental results. Validation of our results was performed using the gamma index, with an acceptability criterion of 3% for the dose difference (DD) and 3 mm for the distance-to-agreement (DTA). We achieved agreements of 94% and 96%, respectively, between simulation and experimentation for the three electromagnetic physics models and three mul-tiple scattering models, for field sizes of 5 × 5 cm<sup>2</sup> and 10 × 10 cm<sup>2</sup> for depth-dose curves. For dose profile curves, a good agreement of 100% was found between simulation and experimentation for the three electromagnetic physics models, as well as for the three multiple scattering models for a field size of 5 × 5 cm<sup>2</sup> at 10 cm and 20 cm depths. For a field size of 10 × 10 cm<sup>2</sup>, the Penelope model dominated with 98% for 10 cm, along with the three multiple scattering models. The Penelope model and the Standard model, along with the three multiple scattering models, dominated with 100% for 20 cm. Our study, which compared these different GAMOS code models, can be crucial for enhancing the accuracy and quality of radiotherapy, contributing to more effective patient treatment. Our research compares various electro-magnetic physics models and multiple scattering models with experimental measurements, enabling us to choose the models that produce the most reli-able results, thereby directly impacting the quality of simulations. This en-hances confidence in using these models for treatment planning. Our re-search consistently contributes to the progress of Monte Carlo simulation techniques in radiation therapy, enriching the scientific literature.
文摘The risk of radiation-induced second cancer and the late tissue loss due to Off-field doses in radiotherapy remain a serious concern. Monte Carlo (MC) simulation is currently one of the most accurate methods for calculating these doses. MC simulation model based on the Particle Simulation Tool (TOPAS) has been developed to simulate the off-field dose of an Elekta Synergy linear accelerator (Linac) emitting 6 MV photons. Measurements were taken in a water phantom using an ionization chamber to validate this model. The Percentage Depth Dose (PDD) at the depth of 0.0, 5.0, 10.0 and 15.0 cm from the beam axis for a 10 × 10 cm2 field size was measured and simulated. Off-field dose profiles at the depth of 1.5 (dmax), 5.0 and 10.0 cm for field sizes of 5 × 5, 10 × 10, 15 × 15, and 20 × 20 cm2 respectively were measured and simulated. Comparison of measured and simulated off-field dose values showed a good agreement. The average gamma passing rate of the PDDs and profiles curves for off-field doses were 87.5% and 98.11% respectively. The local dose difference based on the PDD curve between the measured and simulated was less than 6.0 % for all locations. For all field size considered in this study, the average difference between profile curves for off-field dose measured and simulated was 9.1%. PDDs and Profiles curves for off-field dose simulation uncertainties were less than 2.0% and 1.0% respectively. TOPAS-MC simulation model developed is a good representation of our 6 MV Linac Elekta Synergy for assessing off-field dose, which would be the primary cause of some secondary cancers.