The corona-like spikes or peplomers on the surface of the virion under electronic microscope are the most striking features of coronaviruses. The S (spike) protein is the largest structural protein, with 1,255 amino a...The corona-like spikes or peplomers on the surface of the virion under electronic microscope are the most striking features of coronaviruses. The S (spike) protein is the largest structural protein, with 1,255 amino acids, in the viral genome. Its structure can be divided into three regions: a long N-terminal region in the exterior, a characteristic transmembrane (TM) region, and a short C-terminus in the interior of a virion. We detected fifteen substitutions of nucleotides by comparisons with the seventeen published SARS-CoV genome sequences, eight (53.3%) of which are non-synonymous mutations leading to amino acid alternations with predicted physiochemical changes. The possible antigenic determinants of the S protein are predicted, and the result is confirmed by ELISA (enzyme-linked immunosorbent assay) with synthesized peptides. Another profound finding is that three disulfide bonds are defined at the C-terminus with the N-terminus of the E (envelope) protein, based on the typical sequence and positions, thus establishing the structural connection with these two important structural proteins, if confirmed. Phyloge-netic analysis reveals several conserved regions that might be potent drug targets.展开更多
We report a complete genomic sequence of rare isolates (minor genotype) of the SARS-CoV from SARS patients in Guangdong, China, where the first few cases emerged. The most striking discovery from the isolate is an ext...We report a complete genomic sequence of rare isolates (minor genotype) of the SARS-CoV from SARS patients in Guangdong, China, where the first few cases emerged. The most striking discovery from the isolate is an extra 29-nucleotide sequence located at the nucleotide positions between 27,863 and 27,864 (referred to the complete sequence of BJ01) within an overlapped region composed of BGI-PUP5 (BGI-postulated uncharacterized protein 5) and BGI-PUP6 upstream of the N (nucleocapsid) protein. The discovery of this minor genotype, GD-Ins29, suggests a significant genetic event and differentiates it from the previously reported genotype, the dominant form among all sequenced SARS-CoV isolates. A 17-nt segment of this extra sequence is identical to a segment of the same size in two human mRNA sequences that may interfere with viral genome replication and transcription in the cytosol of the infected cells. It provides a new avenue for the exploration of the virus-host interaction in viral evolution, host pathogenesis, and vaccine development.展开更多
The Coronaviridae family is characterized by a nucleocapsid that is composed of the genome RNA molecule in combination with the nucleoprotein (N protein) within a virion. The most striking physiochemical feature of th...The Coronaviridae family is characterized by a nucleocapsid that is composed of the genome RNA molecule in combination with the nucleoprotein (N protein) within a virion. The most striking physiochemical feature of the N protein of SARS-CoV is that it is a typical basic protein with a high predicted pI and high hydrophilicity, which is consistent with its function of binding to the ribophosphate backbone of the RNA molecule. The predicted high extent of phosphorylation of the N protein on multiple candidate phosphorylation sites demonstrates that it would be related to important functions, such as RNA-binding and localization to the nucleolus of host cells. Subsequent study shows that there is an SR-rich region in the N protein and this region might be involved in the protein-protein interaction. The abundant antigenic sites predicted in the N protein, as well as experimental evidence with synthesized polypeptides, indicate that the N protein is one of the major antigens of the SARS-CoV. Compared with other viral structural proteins, the low variation rate of the N protein with regards to its size suggests its importance to the survival of the virus.展开更多
The E (envelope) protein is the smallest structural protein in all coronaviruses and is the only viral structural protein in which no variation has been detected. We conducted genome sequencing and phylogenetic analys...The E (envelope) protein is the smallest structural protein in all coronaviruses and is the only viral structural protein in which no variation has been detected. We conducted genome sequencing and phylogenetic analyses of SARS-CoV. Based on genome sequencing, we predicted the E protein is a transmembrane (TM) protein characterized by a TM region with strong hydrophobicity and α-helix conformation. We identified a segment (NH2-_L-Cys-A-Y-Cys-Cys-N_-COOH) in the carboxyl-terminal region of the E protein that appears to form three disulfide bonds with another segment of corresponding cysteines in the carboxyl-terminus of the S (spike) protein. These bonds point to a possible structural association between the E and S proteins. Our phylogenetic analyses of the E protein sequences in all published coronaviruses place SARS-CoV in an independent group in Coronaviridae and suggest a non-human animal origin.展开更多
Since pig is an important livestock species worldwide, its gene expressionhas been investigated intensively, but rarely in brain. In order to study gene expression profilesin the pig central nervous system, we sequenc...Since pig is an important livestock species worldwide, its gene expressionhas been investigated intensively, but rarely in brain. In order to study gene expression profilesin the pig central nervous system, we sequenced and analyzed 43,122 high-quality 5'' end expressedsequence tags (ESTs) from porcine cerebellum, cortex cerebrum, and brain stem cDNA libraries,involving several different prenatal and postnatal developmental stages. The initial ESTs wereassembled into 16,101 clusters and compared to protein and nucleic acid databases in GenBank. Ofthese sequences, 30.6% clusters matched protein databases and represented function known sequences;75.1% had significant hits to nucleic acid databases and partial represented known function; 73.3%matched known porcine ESTs; and 21.5% had no matches to any known sequences in GenBank. We used thecategories defined by the Gene Ontology to survey gene expression in the porcine brain.展开更多
We studied structural and immunological properties of the SARS-CoV M (membrane) protein, based on comparative analyses of sequence features, phylogenetic investigation, and experimental results. The M protein is predi...We studied structural and immunological properties of the SARS-CoV M (membrane) protein, based on comparative analyses of sequence features, phylogenetic investigation, and experimental results. The M protein is predicted to contain a triple-spanning transmembrane (TM) region, a single N-glycosylation site near its N-terminus that is in the exterior of the virion, and a long C-terminal region in the interior. The M protein harbors a higher substitution rate (0.6% correlated to its size) among viral open reading frames (ORFs) from published data. The four substitutions detected in the M protein, which cause non-synonymous changes, can be classified into three types. One of them results in changes of pI (isoelectric point) and charge, affecting antigenicity. The second changes hydrophobicity of the TM region, and the third one relates to hydrophilicity of the interior structure. Phylogenetic tree building based on the variations of the M protein appears to support the non-human origin of SARS-CoV. To investigate its immunogenicity, we synthesized eight oligopeptides covering 69.2% of the entire ORF and screened them by using ELISA (enzyme-linked immunosorbent assay) with sera from SARS patients. The results confirmed our predictions on antigenic sites.展开更多
Beijing has been one of the epicenters attacked most severely by the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) since the first patient was diagnosed in one of the city's hospitals. We now...Beijing has been one of the epicenters attacked most severely by the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) since the first patient was diagnosed in one of the city's hospitals. We now report complete genome sequences of the BJ Group, including four isolates (Isolates BJ01, BJ02, BJ03, and BJ04) of the SARS-CoV.It is remarkable that all members of the BJ Group share a common haplotype, consisting of seven loci that differentiate the group from other isolates published to date. Among 42 substitutions uniquely identified from the BJ group, 32 are non-synonymous changes at the amino acid level. Rooted phylogenetic trees, proposed on the basis of haplotypes and other sequence variations of SARS-CoV isolates from Canada, USA, Singapore, and China, gave rise to different paradigms but positioned the BJ Group, together with the newly discovered GD01 (GD-Ins29) in the same clade, followed by the H-U Group (from Hong Kong to USA) and the H-T Group (from Hong Kong to Toronto), leaving the SP Group (Singapore) more distant. This result appears to suggest a possible transmission path from Guangdong to Beijing/Hong Kong, then to other countries and regions.展开更多
There is a large gap between the number of membrane protein (MP) sequencesand that of their decoded 3D structures, especially high-resolution structures, due to difficultiesin crystal preparation of MPs. However, deta...There is a large gap between the number of membrane protein (MP) sequencesand that of their decoded 3D structures, especially high-resolution structures, due to difficultiesin crystal preparation of MPs. However, detailed knowledge of the 3D structure is required for thefundamental understanding of the function of an MP and the interactions between the protein and itsinhibitors or activators. In this paper, some computational approaches that have been used topredict MP structures are discussed and compared.展开更多
To obtain a primary overview of gene diversity and expression pattern inLycoris longituba, 4,992 ESTs (Expressed Sequence Tags) from L. longituba bud were se-quenced and4,687 cleaned ESTs were used for gene expression...To obtain a primary overview of gene diversity and expression pattern inLycoris longituba, 4,992 ESTs (Expressed Sequence Tags) from L. longituba bud were se-quenced and4,687 cleaned ESTs were used for gene expression analysis. Clustered by the PHRAP program, 967contigs and 1,343 singlets were obtained. Blast search showed that 179 contigs and 227 singlets(totally 1,066 ESTs) had homologues in GenBank and 3,621 ESTs were novel.展开更多
Knowledge of the evolution of pathogens is of great medical and biological significance to the prevention, diagnosis, and therapy of infectious diseases. In order to understand the origin and evolution of the SARS-CoV...Knowledge of the evolution of pathogens is of great medical and biological significance to the prevention, diagnosis, and therapy of infectious diseases. In order to understand the origin and evolution of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus), we collected complete genome sequences of all viruses available in GenBank, and made comparative analyses with the SARS-CoV. Genomic signature analysis demonstrates that the coronaviruses all take the TGTT as their richest tetranucleotide except the SARS-CoV. A detailed analysis of the forty-two complete SARS-CoV genome sequences revealed the existence of two distinct genotypes, and showed that these isolates could be classified into four groups. Our manual analysis of the BLASTN results demonstrates that the HE (hemagglutinin-esterase) gene exists in the SARS-CoV, and many mutations made it unfamiliar to us.展开更多
Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SA...Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SARS-CoV genome sequences by using annotation programs publicly available or developed by ourselves. Totally, 21 open reading frames (ORFs) of genes or putative uncharacterized proteins (PUPs) were predicted. Seven PUPs had not been reported previously, and two of them were predicted to contain transmembrane regions. Eight ORFs partially overlapped with or embedded into those of known genes, revealing that the SARS-CoV genome is a small and compact one with overlapped coding regions. The most striking discovery is that an ORF locates on the minus strand. We have also annotated non-coding regions and identified the transcription regulating sequences (TRS) in the intergenic regions. The analysis of TRS supports the minus strand extending transcription mechanism of coronavirus. The SNP analysis of different isolates reveals that mutations of the sequences do not affect the prediction results of ORFs.展开更多
文摘The corona-like spikes or peplomers on the surface of the virion under electronic microscope are the most striking features of coronaviruses. The S (spike) protein is the largest structural protein, with 1,255 amino acids, in the viral genome. Its structure can be divided into three regions: a long N-terminal region in the exterior, a characteristic transmembrane (TM) region, and a short C-terminus in the interior of a virion. We detected fifteen substitutions of nucleotides by comparisons with the seventeen published SARS-CoV genome sequences, eight (53.3%) of which are non-synonymous mutations leading to amino acid alternations with predicted physiochemical changes. The possible antigenic determinants of the S protein are predicted, and the result is confirmed by ELISA (enzyme-linked immunosorbent assay) with synthesized peptides. Another profound finding is that three disulfide bonds are defined at the C-terminus with the N-terminus of the E (envelope) protein, based on the typical sequence and positions, thus establishing the structural connection with these two important structural proteins, if confirmed. Phyloge-netic analysis reveals several conserved regions that might be potent drug targets.
文摘We report a complete genomic sequence of rare isolates (minor genotype) of the SARS-CoV from SARS patients in Guangdong, China, where the first few cases emerged. The most striking discovery from the isolate is an extra 29-nucleotide sequence located at the nucleotide positions between 27,863 and 27,864 (referred to the complete sequence of BJ01) within an overlapped region composed of BGI-PUP5 (BGI-postulated uncharacterized protein 5) and BGI-PUP6 upstream of the N (nucleocapsid) protein. The discovery of this minor genotype, GD-Ins29, suggests a significant genetic event and differentiates it from the previously reported genotype, the dominant form among all sequenced SARS-CoV isolates. A 17-nt segment of this extra sequence is identical to a segment of the same size in two human mRNA sequences that may interfere with viral genome replication and transcription in the cytosol of the infected cells. It provides a new avenue for the exploration of the virus-host interaction in viral evolution, host pathogenesis, and vaccine development.
文摘The Coronaviridae family is characterized by a nucleocapsid that is composed of the genome RNA molecule in combination with the nucleoprotein (N protein) within a virion. The most striking physiochemical feature of the N protein of SARS-CoV is that it is a typical basic protein with a high predicted pI and high hydrophilicity, which is consistent with its function of binding to the ribophosphate backbone of the RNA molecule. The predicted high extent of phosphorylation of the N protein on multiple candidate phosphorylation sites demonstrates that it would be related to important functions, such as RNA-binding and localization to the nucleolus of host cells. Subsequent study shows that there is an SR-rich region in the N protein and this region might be involved in the protein-protein interaction. The abundant antigenic sites predicted in the N protein, as well as experimental evidence with synthesized polypeptides, indicate that the N protein is one of the major antigens of the SARS-CoV. Compared with other viral structural proteins, the low variation rate of the N protein with regards to its size suggests its importance to the survival of the virus.
文摘The E (envelope) protein is the smallest structural protein in all coronaviruses and is the only viral structural protein in which no variation has been detected. We conducted genome sequencing and phylogenetic analyses of SARS-CoV. Based on genome sequencing, we predicted the E protein is a transmembrane (TM) protein characterized by a TM region with strong hydrophobicity and α-helix conformation. We identified a segment (NH2-_L-Cys-A-Y-Cys-Cys-N_-COOH) in the carboxyl-terminal region of the E protein that appears to form three disulfide bonds with another segment of corresponding cysteines in the carboxyl-terminus of the S (spike) protein. These bonds point to a possible structural association between the E and S proteins. Our phylogenetic analyses of the E protein sequences in all published coronaviruses place SARS-CoV in an independent group in Coronaviridae and suggest a non-human animal origin.
基金This work was supported by the National High-Tech Research and Development Program of China (No.2002AA229061)the Major Knowledge Innovation Programs of the Chinese Academy of Sciences (No.KSCX1-01).
文摘Since pig is an important livestock species worldwide, its gene expressionhas been investigated intensively, but rarely in brain. In order to study gene expression profilesin the pig central nervous system, we sequenced and analyzed 43,122 high-quality 5'' end expressedsequence tags (ESTs) from porcine cerebellum, cortex cerebrum, and brain stem cDNA libraries,involving several different prenatal and postnatal developmental stages. The initial ESTs wereassembled into 16,101 clusters and compared to protein and nucleic acid databases in GenBank. Ofthese sequences, 30.6% clusters matched protein databases and represented function known sequences;75.1% had significant hits to nucleic acid databases and partial represented known function; 73.3%matched known porcine ESTs; and 21.5% had no matches to any known sequences in GenBank. We used thecategories defined by the Gene Ontology to survey gene expression in the porcine brain.
文摘We studied structural and immunological properties of the SARS-CoV M (membrane) protein, based on comparative analyses of sequence features, phylogenetic investigation, and experimental results. The M protein is predicted to contain a triple-spanning transmembrane (TM) region, a single N-glycosylation site near its N-terminus that is in the exterior of the virion, and a long C-terminal region in the interior. The M protein harbors a higher substitution rate (0.6% correlated to its size) among viral open reading frames (ORFs) from published data. The four substitutions detected in the M protein, which cause non-synonymous changes, can be classified into three types. One of them results in changes of pI (isoelectric point) and charge, affecting antigenicity. The second changes hydrophobicity of the TM region, and the third one relates to hydrophilicity of the interior structure. Phylogenetic tree building based on the variations of the M protein appears to support the non-human origin of SARS-CoV. To investigate its immunogenicity, we synthesized eight oligopeptides covering 69.2% of the entire ORF and screened them by using ELISA (enzyme-linked immunosorbent assay) with sera from SARS patients. The results confirmed our predictions on antigenic sites.
文摘Beijing has been one of the epicenters attacked most severely by the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) since the first patient was diagnosed in one of the city's hospitals. We now report complete genome sequences of the BJ Group, including four isolates (Isolates BJ01, BJ02, BJ03, and BJ04) of the SARS-CoV.It is remarkable that all members of the BJ Group share a common haplotype, consisting of seven loci that differentiate the group from other isolates published to date. Among 42 substitutions uniquely identified from the BJ group, 32 are non-synonymous changes at the amino acid level. Rooted phylogenetic trees, proposed on the basis of haplotypes and other sequence variations of SARS-CoV isolates from Canada, USA, Singapore, and China, gave rise to different paradigms but positioned the BJ Group, together with the newly discovered GD01 (GD-Ins29) in the same clade, followed by the H-U Group (from Hong Kong to USA) and the H-T Group (from Hong Kong to Toronto), leaving the SP Group (Singapore) more distant. This result appears to suggest a possible transmission path from Guangdong to Beijing/Hong Kong, then to other countries and regions.
文摘There is a large gap between the number of membrane protein (MP) sequencesand that of their decoded 3D structures, especially high-resolution structures, due to difficultiesin crystal preparation of MPs. However, detailed knowledge of the 3D structure is required for thefundamental understanding of the function of an MP and the interactions between the protein and itsinhibitors or activators. In this paper, some computational approaches that have been used topredict MP structures are discussed and compared.
基金Hi-tech Research &Development Program of China (863 Program, No. 2002AA241051) and Science & Technology Program for Agriculture Development of Shanghai.
文摘To obtain a primary overview of gene diversity and expression pattern inLycoris longituba, 4,992 ESTs (Expressed Sequence Tags) from L. longituba bud were se-quenced and4,687 cleaned ESTs were used for gene expression analysis. Clustered by the PHRAP program, 967contigs and 1,343 singlets were obtained. Blast search showed that 179 contigs and 227 singlets(totally 1,066 ESTs) had homologues in GenBank and 3,621 ESTs were novel.
文摘Knowledge of the evolution of pathogens is of great medical and biological significance to the prevention, diagnosis, and therapy of infectious diseases. In order to understand the origin and evolution of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus), we collected complete genome sequences of all viruses available in GenBank, and made comparative analyses with the SARS-CoV. Genomic signature analysis demonstrates that the coronaviruses all take the TGTT as their richest tetranucleotide except the SARS-CoV. A detailed analysis of the forty-two complete SARS-CoV genome sequences revealed the existence of two distinct genotypes, and showed that these isolates could be classified into four groups. Our manual analysis of the BLASTN results demonstrates that the HE (hemagglutinin-esterase) gene exists in the SARS-CoV, and many mutations made it unfamiliar to us.
文摘Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SARS-CoV genome sequences by using annotation programs publicly available or developed by ourselves. Totally, 21 open reading frames (ORFs) of genes or putative uncharacterized proteins (PUPs) were predicted. Seven PUPs had not been reported previously, and two of them were predicted to contain transmembrane regions. Eight ORFs partially overlapped with or embedded into those of known genes, revealing that the SARS-CoV genome is a small and compact one with overlapped coding regions. The most striking discovery is that an ORF locates on the minus strand. We have also annotated non-coding regions and identified the transcription regulating sequences (TRS) in the intergenic regions. The analysis of TRS supports the minus strand extending transcription mechanism of coronavirus. The SNP analysis of different isolates reveals that mutations of the sequences do not affect the prediction results of ORFs.