Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer...Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.展开更多
Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development.Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gas...Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development.Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gaseous water has been considered a promising strategy for mitigating the energy crisis.Fibrous materials with unique flexibility,processability,multifunctionality,and practicability have been widely applied for fibrous materials-based hydroelectricity generation(FHG).In this review,the power generation mechanisms,design principles,and electricity enhancement factors of FHG are first introduced.Then,the fabrication strategies and characteristics of varied constructions including 1D fiber,1D yarn,2D fabric,2D membrane,3D fibrous framework,and 3D fibrous gel are demonstrated.Afterward,the advanced functions of FHG during water harvesting,proton dissociation,ion separation,and charge accumulation processes are analyzed in detail.Moreover,the potential applications including power supply,energy storage,electrical sensor,and information expression are also discussed.Finally,some existing challenges are considered and prospects for future development are sincerely proposed.展开更多
Current and future structural applications for composite laminates frequently involve design solutions combining composite laminates and metal; the materials must be joined. Two conventional means of joining are avail...Current and future structural applications for composite laminates frequently involve design solutions combining composite laminates and metal; the materials must be joined. Two conventional means of joining are available mechanical joining and adhesive bonding. Both methods have critical disadvantages. A novel surface treatment for metals developed at TWI, Surfi-Sculpt, leads to the formation of surface protrusions on metal surfaces. These protrusions are typically 1.0 mm high and 0.6 mm in diameter. The surface modified metal can be bonded with composite laminates to form a Comeld~TM joint. These joints can be described as a combination of mechanical fastening and adhesive bonding. This paper describes our current work using finite element modelling to optimize the protrusions in respect to their geometry and distribution. The simulations require multi-scale modelling techniques to transfer results between the global model of the whole joint and the unit cell models containing a protrusion. Results from the simulations show critical effects on stress distributions arising from changing protrusion geometry. These joints show significant advantages over conventional adhesive joining technologies and their application would allow improved performance for combinations of metal and composite laminates.展开更多
This article focuses on the potential impact of big data analysis to improve health, prevent and detect disease at an earlier stage, and personalize interventions. The role that big data analytics may have in interrog...This article focuses on the potential impact of big data analysis to improve health, prevent and detect disease at an earlier stage, and personalize interventions. The role that big data analytics may have in interrogating the patient electronic health record toward improved clinical decision support is discussed. Weexamine developments in pharmacogenetics that have increased our appreciation of the reasons why patients respond differently to chemotherapy. We also assess the expansion of online health communications and the way in which this data may be capitalized on in order to detect public health threats and control or contain epidemics. Finally, we describe how a new generation of wearable and implantable body sensors may improve wellbeing, streamline management of chronic diseases, and improve the quality of surgical implants.展开更多
AIM To analyse ground reaction forces at higher speeds using another method to be more sensitive in assessing significant gait abnormalities. METHODS A total of 44 subjects, consisting of 24 knee osteoarthritis(OA) pa...AIM To analyse ground reaction forces at higher speeds using another method to be more sensitive in assessing significant gait abnormalities. METHODS A total of 44 subjects, consisting of 24 knee osteoarthritis(OA) patients and 20 healthy controls were analysed. The knee OA patients were recruited from an orthopaedic clinic that were awaiting knee replacement. All subjects had their gait patterns during stance phase at top walking speed assessed on a validated treadmill instrumented with tandem force plates. Temporal measurements and ground reaction forces(GRFs) along with a novel impulse technique were collected for both limbs and a symmetry ratio was applied to all variables to assess inter-limb asymmetry. All continuous variables for each group were compared using a student t-test and χ2 analysis for categorical variables with significance set at α = 0.05. Receiver operator characteristics curves were utilised to determine best discriminating ability.RESULTS The knee OA patients were older(66 ± 7 years vs 53 ± 9 years, P = 0.01) and heavier(body mass index: 31 ± 6 vs 23 ± 7, P < 0.001) but had a similar gender ratio when compared to the control group. Knee OA patients were predictably slower at top walking speed(1.37 ± 0.23 m/s vs 2.00 ± 0.20 m/s, P < 0.0001) with shorter mean step length(79 ± 12 cm vs 99 ± 8 cm, P < 0.0001) and broader gait width(14 ± 5 cm vs 11 ± 3 cm, P = 0.015) than controls without any known lower-limb joint disease. At a matched mean speed(1.37 ± 0.23 vs 1.34 ± 0.07), ground reaction results revealed that pushoff forces and impulse were significantly(P < 0.0001) worse(18% and 12% respectively) for the knee OA patients when compared to the controls. Receiver operating characteristic curves analysis demonstrated total impulse to be the best discriminator of asymmetry, with an area under the curve of 0.902, with a cut-off of-3% and a specificity of 95% and sensitivity of 88%.CONCLUSION Abnormal GRFs in knee osteoarthritis are clearly evident at higher speeds. Analysing GRFs with another method may explain the general decline in knee OA patient's gait.展开更多
Lithium metal anodes are of great interest for advanced high-energy density batteries such as lithiumair, lithium-sulfur and solid-state batteries, due to their low electrode potential and ultra-high theoretical capac...Lithium metal anodes are of great interest for advanced high-energy density batteries such as lithiumair, lithium-sulfur and solid-state batteries, due to their low electrode potential and ultra-high theoretical capacity. There are, however, several challenges limiting their practical applications, which include low coulombic efficiency, the uncontrollable growth of dendrites and poor rate capability. Here, a rational design of 3D structured lithium metal anodes comprising of in-situ growth of cobalt-decorated nitrogen-doped carbon nanotubes on continuous carbon nanofibers is demonstrated via electrospinning.The porous and free-standing scaffold can enhance the tolerance to stresses resulting from the intrinsic volume change during Li plating/stripping, delivering a significant boost in both charge/discharge rates and stable cycling performance. A binary Co-Li alloying phase was generated at the initial discharge process, creating more active sites for the Li nucleation and uniform deposition. Characterization and density functional theory calculations show that the conductive and uniformly distributed cobalt-decorated carbon nanotubes with hierarchical structure can effectively reduce the local current density and more easily absorb Li atoms, leading to more uniform Li nucleation during plating. The current work presents an advance on scalable and cost-effective strategies for novel electrode materials with 3D hierarchical microstructures and mechanical flexibility for lithium metal anodes.展开更多
To the Editor: We would like to congratulate Tian and colleagues on their recent article: Diagnostic value of contrast-enhanced ultrasonography for intrahepatic cholangiocarcinoma with tumor diameter larger than 5 cm ...To the Editor: We would like to congratulate Tian and colleagues on their recent article: Diagnostic value of contrast-enhanced ultrasonography for intrahepatic cholangiocarcinoma with tumor diameter larger than 5 cm [1]. They argued that, despite not being included in the American Association for the Study of Liver Diseases(AASLD) guidelines for the diagnosis of liver diseases, contrast-enhanced ultrasonography(CEUS) can be of use for diagnosis of large(>5 cm), mass-forming intrahepatic cholangiocarcinoma(ICC).展开更多
Hybrid photovoltaic-thermal(PV-T)collectors,which are capable of cogenerating useful thermal energy and electricity from the same aperture area,have a significantly higher overall efficiency and ability to displace em...Hybrid photovoltaic-thermal(PV-T)collectors,which are capable of cogenerating useful thermal energy and electricity from the same aperture area,have a significantly higher overall efficiency and ability to displace emissions compared to independent,separate photovoltaic panels,solar thermal collectors or combinations thereof.Spectral splitting has emerged as a promising route towards next-generation high-performance PV-T collectors,and nanotechnology plays an important role in meeting the optical and thermal requirements of advanced spectral splitting PV-T collector designs.This paper presents a comprehensive review of spectral splitting technologies based on nanomaterials for PV-T applications.Emerging nanomaterials(nanofluids,nanofilms and nanowires)suitable for achieving spectral splitting based on reflection,diffraction,refraction and/or absorption approaches in PV-T collectors are presented,along with the associated challenges and opportunities of these design approaches.The requirements from such materials in terms of optical properties,thermal properties,stability and cost are discussed with the aim of guiding future research and innovation,and developing this technology towards practical application.Nanofluids and nanofilms are currently the most common nanomaterials used for spectral splitting,with significant progress made in recent years in the development of these materials.Nevertheless,there still remains a considerable gap between the optical properties of currently-available filters and the desired properties of ideal filters.Aiming to instruct and guide the future development of filter materials,a simple generalized method is further proposed in this paper to identify optimal filters and efficiency limits of spectral splitting PV-T systems for different scenarios.It is found that the optimal filter of a spectral splitting PV-T system is highly sensitive to the value of thermal energy relative to that of electricity,which therefore depends strongly on the application and location.The efficiency limit of spectral splitting PV-T collectors is significantly higher than that of standalone PV panels.The stability of nanomaterial filters remains a critical challenge for their long-term employment and also for high-temperature operation in practical applications.展开更多
Chlorine is usually applied in the urban water treatment process to deactivate pathogens and prevent waterborne diseases.As a pre-treatment,it remains unclear whether chlorinated water can effectively alleviate membra...Chlorine is usually applied in the urban water treatment process to deactivate pathogens and prevent waterborne diseases.As a pre-treatment,it remains unclear whether chlorinated water can effectively alleviate membrane fouling during ultrafiltration(UF).In this study,tap water was investigated for its effect on biofilm formation and biofouling in a gravity-driven membrane(GDM)filtration system.For comparison,biofilm/biofouling with untreated surface(lake)water was studied in parallel.It was found that more severe membrane fouling occurred with the filtration of tap water than lake water,and larger quantities of polysaccharide and extracellular DNA(eDNA)were present in the tap-water biofilm than in the lake-water biofilm.The tap-water biofilm had a densely compact morphology.In contrast,a porous,spider-like structure was observed for the lake-water biofilm,which was assumed to be associated with the bacteria in the biofilm.This hypothesis was verified by 16S ribosomal RNA(rRNA)sequencing,which demonstrated that Xanthobacter was the dominant taxon in the tap-water biofilm.Additionally,membrane hydrophobicity/hydrophilicity played a minor role in affecting the membrane fouling properties and microbial community.This study revealed the significant role of chlorine-resistant bacteria in biofouling formation and provides a deeper understanding of membrane fouling,which can potentially aid in searching for effective ways of controlling membrane fouling.展开更多
We obtain the H?lder continuity and joint H?lder continuity in space and time for the random field solution to the parabolic Anderson equation ■ in d-dimensional space, where ■ is a mean zero Gaussian noise with tem...We obtain the H?lder continuity and joint H?lder continuity in space and time for the random field solution to the parabolic Anderson equation ■ in d-dimensional space, where ■ is a mean zero Gaussian noise with temporal covariance γ0 and spatial covariance given by a spectral density μ(ξ). We assume that ■ and ■ , where αi, i = 1, · · ·, d(or α) can take negative value.展开更多
The lithium(Li) metal anode is an integral component in an emerging high-energy-density rechargeable battery.A composite Li anode with a three-dimensional(3 D) host exhibits unique advantages in suppressing Li dendrit...The lithium(Li) metal anode is an integral component in an emerging high-energy-density rechargeable battery.A composite Li anode with a three-dimensional(3 D) host exhibits unique advantages in suppressing Li dendrites and maintaining dimensional stability.However,the fundamental understanding and regulation of solid electrolyte interphase(SEI),which directly dictates the behavior of Li plating/stripping,are rarely researched in composite Li metal anodes.Herein,the interaction between a polar polymer host and solvent molecules was proposed as an emerging but effective strategy to enable a stable SEI and a uniform Li deposition in a working battery.Fluoroethylene carbonate molecules in electrolytes are enriched in the vicinity of a polar polyacrylonitrile(PAN) host due to a strong dipole-dipole interaction,resulting in a LiF-rich SEI on Li metal to improve the uniformity of Li deposition.A composite Li anode with a PAN host delivers 145 cycles compared with 90 cycles when a non-polar host is employed.Moreover,60 cycles are demonstrated in a 1:0 Ah pouch cell without external pressure.This work provides a fresh guidance for designing practical composite Li anodes by unraveling the vital role of the synergy between a 3 D host and solvent molecules for regulating a robust SEI.展开更多
This paper reviews and discusses the current research status, trends, and future needs in the field of beach morphodynamics under the influence of storm sequences.The paper reviews how the three main research methods,...This paper reviews and discusses the current research status, trends, and future needs in the field of beach morphodynamics under the influence of storm sequences.The paper reviews how the three main research methods, field investigations, numerical modelling, and physical modelling, have been used to study beach morphodynamics during storm sequences.Available quantitative definitions of storm sequences at different sites are presented and discussed.It is shown that the definition of storm sequences is site-specific and requires knowledge of the storm climate, beach characteristics, and the temporal scale of beach recovery.Subsequently, the paper brings together currently available approaches aimed at describing the effect of storm sequences on beach erosion in a general way.The importance of storm chronology and the effects of an extreme storm within a sequence of storms are highlighted.Following that, the more poorly studied aspect of beach recovery in between storms within a sequence is discussed.Three indicators for defining beach recovery, namely the shoreline location, sediment volumes, and the beach state, are identified and compared.Finally, important research needs, including the need for detailed physical modelling, are identified.展开更多
1.Why hydrogen?The concept of the“hydrogen economy”was first coined by Prof.John Bockris during a talk he gave in 1970 at the General Motors Technical Center.Bockris’s talk introduced the vision of a world economy ...1.Why hydrogen?The concept of the“hydrogen economy”was first coined by Prof.John Bockris during a talk he gave in 1970 at the General Motors Technical Center.Bockris’s talk introduced the vision of a world economy in which energy was carried in the form of hydrogen.展开更多
Increasing electrode thickness can substantially enhance the specific energy of lithium-ion batteries;however,ionic transport,electronic conductivity,and ink rheology are current barriers to adoption.Here,a novel appr...Increasing electrode thickness can substantially enhance the specific energy of lithium-ion batteries;however,ionic transport,electronic conductivity,and ink rheology are current barriers to adoption.Here,a novel approach using a mixed xanthan gum and locust bean gum binder to construct ultrathick electrodes is proposed to address above issues.After combining aqueous binder with single-walled carbon nanotubes(SWCNT),active material(LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)) and subsequent vacuum freeze-drying,highly aligned,and low-tortuosity structures with a porosity of ca.50%can be achieved with an average pore size of 10μm,whereby the gum binder-SWCNT-NMC811 forms vertical structures supported by tissue-like binder/SWCNT networks allowing for excellent electronic conducting phase percolation.As a result,ultra-thick electrodes with a mass loading of about 511 mg cm^(−2) and 99.5 wt%active materials have been demonstrated with a remarkable areal capacity of 79.3 mAh cm^(−2),which is the highest value reported so far.This represents a>25×improvement compared with conventional electrodes with an areal capacity of about 3 mAh cm^(−2).This route also can be expanded to other electrode materials,such as LiFePO_(4) and Li_(4)Ti_(5)O_(12),and thus opens the possibility for low-cost and sustainable ultra-thick electrodes with increased specific energy for future lithium-ion batteries.展开更多
In the traditional pipeline magnetic flux leakage(MFL)detection technology,circumferential or axial excitation is mainly used to excite the magnetic field of defects.However,the domestic and foreign pipeline detection...In the traditional pipeline magnetic flux leakage(MFL)detection technology,circumferential or axial excitation is mainly used to excite the magnetic field of defects.However,the domestic and foreign pipeline detection devices currently in operation are mainly axial excitation MFL detection tools,in which circumferential cracks can be clearly identified,but the detection sensitivity of axial cracks is not high,thus forming a detection blind zone.Therefore,a composite excitation multi-extension direction defect MFL detection method is proposed,which can realize the simultaneous detection of axial and circumferential defects.On the basis of the electromagnetic theory Maxwell equation and Biot Savart law,a mathematical model of circumferential and axial magnetization is firstly established.Then finite element simulation software is used to establish a model of a new type of magnetic flux leakage detection device,and a simulation analysis of crack detection in multiple extension directions is carried out.Finally,under the conditions of the relationship model between the change rate of leakage magnetic field and external excitation intensity under unsaturated magnetization and the multi-stage coil magnetization model,the sample vehicle towing experiment is carried out.The paper aims to analyze the feasibility and effectiveness of the new magnetic flux leakage detection device for detecting defects in different extension directions.Based on the final experimental results,the new composite excitation multi extension direction leakage magnetic field detector has a good detection effect for defects in the axial and circumferential extension directions.展开更多
Unlike the adverse eff ect caused by the gelation during crystallization process, gelation of cefpiramide sodium was found to provide ideal product properties, such as a larger and more regular crystal shape. The caus...Unlike the adverse eff ect caused by the gelation during crystallization process, gelation of cefpiramide sodium was found to provide ideal product properties, such as a larger and more regular crystal shape. The causes of the gelation phenomenon and the mechanism of gel-crystal transition during the crystallization of cefpiramide sodium were both investigated in this work. The gel was formed due to the strapping of the solvents by the networks of cefpiramide sodium molecules. The whole gel-crystal transition process was divided into the following three stages:(1) when the temperature decreased, the system reached a metastable-state gelation;(2) the initial microcrystal in the gel grew slowly because of the low supersaturation;and (3) the gel fi nally disappeared, and a larger and more regular crystal was formed. The Hansen solubility parameters were used to analyze the eff ects of the solvents on this gelation;the analysis results can serve as guidance for solvent screening in the actual production process.展开更多
In this paper,a method sustaining system stability after decomposition is proposed.Based on the stability criterion derived from the energy function,a set of intelligent controllers is synthesized which is used to mai...In this paper,a method sustaining system stability after decomposition is proposed.Based on the stability criterion derived from the energy function,a set of intelligent controllers is synthesized which is used to maintain the stability of the system.The sustainable stability problem can be reformulated as a Linear Matrix Inequalities(LMI)problem.The key to guaranteeing the stability of the system as a whole is to find a common symmetrically positive definite matrix for all subsystems.Furthermore,the Evolved Bat Algorithm(EBA)is employed to replace the pole assignment method and the conventional mathematical methods for solving the LMI.The EBA is utilized to find feasible solutions in terms of the energy equation.The experimental results show that the EBA is capable of providing proper solutions,which satisfy the sustainability and stability criteria,after a short period of recursive computing.展开更多
Sector capacity estimation plays an important role in applied research of airspace management.Previous researches manifest that sector capacity should be influenced by its standard flow,or routes in that sector.Howeve...Sector capacity estimation plays an important role in applied research of airspace management.Previous researches manifest that sector capacity should be influenced by its standard flow,or routes in that sector.However,if air traffic controller(ATCO)workload busy levels(level of proactivity of an ATCO)are ignored,the estimated sector capacity may not be accurate.There is a need to compare the estimated sector capacity with and without busy levels consideration,both with differentiated routes consideration.This paper proposes a method for sector capacity estimation based on ATCO workload considering differentiated routes and busy levels.Firstly,the main routes in the sector are identified,and for each route,the ATCO workload per flight is determined.Secondly,the workload for each route at three busy levels is determined.Regression analysis is then applied to determine the relationship between workload and the number of flights(with and without considering busy levels)in 15 min and 1h time slices.Sector capacity is then determined on the basis of a specified workload threshold,for the two cases with and without considering busy levels.Comparing the two scenarios and following validation by ATCO survey,it is found that capacity estimation considering busy levels is a more realistic and accurate approach.The validated capacity values for the Zhengzhou approach(ZHCC AP)airspace sector accounting for the busy levels were determined accurately as 10 and 33 flights for the 15 min and 1h slices,respectively.The corresponding results without considering busy levels were 12 and 41 flights for the 15 min and 1h time slices,respectively.展开更多
基金supported by the Shenzhen Science and Technology Program(JCYJ20230808105111022,JCYJ20220818095806013)Natural Science Foundation of Guangdong(2023A1515012267)+1 种基金the National Natural Science Foundation of China(22178223)the Royal Society/NSFC cost share program(IEC\NSFC\223372).
文摘Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.
基金funding support from the National Key Research and Development Program of China(No.2022YFB3805800)the National Natural Science Foundation of China(52173059)+1 种基金The Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions(21KJA540002)Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB555).
文摘Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development.Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gaseous water has been considered a promising strategy for mitigating the energy crisis.Fibrous materials with unique flexibility,processability,multifunctionality,and practicability have been widely applied for fibrous materials-based hydroelectricity generation(FHG).In this review,the power generation mechanisms,design principles,and electricity enhancement factors of FHG are first introduced.Then,the fabrication strategies and characteristics of varied constructions including 1D fiber,1D yarn,2D fabric,2D membrane,3D fibrous framework,and 3D fibrous gel are demonstrated.Afterward,the advanced functions of FHG during water harvesting,proton dissociation,ion separation,and charge accumulation processes are analyzed in detail.Moreover,the potential applications including power supply,energy storage,electrical sensor,and information expression are also discussed.Finally,some existing challenges are considered and prospects for future development are sincerely proposed.
基金Supported by TWI, UK We gratefully acknowledge the financial support and the provision of specimens .
文摘Current and future structural applications for composite laminates frequently involve design solutions combining composite laminates and metal; the materials must be joined. Two conventional means of joining are available mechanical joining and adhesive bonding. Both methods have critical disadvantages. A novel surface treatment for metals developed at TWI, Surfi-Sculpt, leads to the formation of surface protrusions on metal surfaces. These protrusions are typically 1.0 mm high and 0.6 mm in diameter. The surface modified metal can be bonded with composite laminates to form a Comeld~TM joint. These joints can be described as a combination of mechanical fastening and adhesive bonding. This paper describes our current work using finite element modelling to optimize the protrusions in respect to their geometry and distribution. The simulations require multi-scale modelling techniques to transfer results between the global model of the whole joint and the unit cell models containing a protrusion. Results from the simulations show critical effects on stress distributions arising from changing protrusion geometry. These joints show significant advantages over conventional adhesive joining technologies and their application would allow improved performance for combinations of metal and composite laminates.
文摘This article focuses on the potential impact of big data analysis to improve health, prevent and detect disease at an earlier stage, and personalize interventions. The role that big data analytics may have in interrogating the patient electronic health record toward improved clinical decision support is discussed. Weexamine developments in pharmacogenetics that have increased our appreciation of the reasons why patients respond differently to chemotherapy. We also assess the expansion of online health communications and the way in which this data may be capitalized on in order to detect public health threats and control or contain epidemics. Finally, we describe how a new generation of wearable and implantable body sensors may improve wellbeing, streamline management of chronic diseases, and improve the quality of surgical implants.
文摘AIM To analyse ground reaction forces at higher speeds using another method to be more sensitive in assessing significant gait abnormalities. METHODS A total of 44 subjects, consisting of 24 knee osteoarthritis(OA) patients and 20 healthy controls were analysed. The knee OA patients were recruited from an orthopaedic clinic that were awaiting knee replacement. All subjects had their gait patterns during stance phase at top walking speed assessed on a validated treadmill instrumented with tandem force plates. Temporal measurements and ground reaction forces(GRFs) along with a novel impulse technique were collected for both limbs and a symmetry ratio was applied to all variables to assess inter-limb asymmetry. All continuous variables for each group were compared using a student t-test and χ2 analysis for categorical variables with significance set at α = 0.05. Receiver operator characteristics curves were utilised to determine best discriminating ability.RESULTS The knee OA patients were older(66 ± 7 years vs 53 ± 9 years, P = 0.01) and heavier(body mass index: 31 ± 6 vs 23 ± 7, P < 0.001) but had a similar gender ratio when compared to the control group. Knee OA patients were predictably slower at top walking speed(1.37 ± 0.23 m/s vs 2.00 ± 0.20 m/s, P < 0.0001) with shorter mean step length(79 ± 12 cm vs 99 ± 8 cm, P < 0.0001) and broader gait width(14 ± 5 cm vs 11 ± 3 cm, P = 0.015) than controls without any known lower-limb joint disease. At a matched mean speed(1.37 ± 0.23 vs 1.34 ± 0.07), ground reaction results revealed that pushoff forces and impulse were significantly(P < 0.0001) worse(18% and 12% respectively) for the knee OA patients when compared to the controls. Receiver operating characteristic curves analysis demonstrated total impulse to be the best discriminator of asymmetry, with an area under the curve of 0.902, with a cut-off of-3% and a specificity of 95% and sensitivity of 88%.CONCLUSION Abnormal GRFs in knee osteoarthritis are clearly evident at higher speeds. Analysing GRFs with another method may explain the general decline in knee OA patient's gait.
基金kindly supported by the National Natural Science Foundation of China (No. U1864213)the EPSRC Joint UK-India Clean Energy center (JUICE) (EP/P003605/1)+2 种基金the EPSRC Multi-Scale Modelling project (EP/S003053/1)the Innovate UK for Advanced Battery Lifetime Extension (ABLE) projectthe EPSRC for funding under EP/S000933/1。
文摘Lithium metal anodes are of great interest for advanced high-energy density batteries such as lithiumair, lithium-sulfur and solid-state batteries, due to their low electrode potential and ultra-high theoretical capacity. There are, however, several challenges limiting their practical applications, which include low coulombic efficiency, the uncontrollable growth of dendrites and poor rate capability. Here, a rational design of 3D structured lithium metal anodes comprising of in-situ growth of cobalt-decorated nitrogen-doped carbon nanotubes on continuous carbon nanofibers is demonstrated via electrospinning.The porous and free-standing scaffold can enhance the tolerance to stresses resulting from the intrinsic volume change during Li plating/stripping, delivering a significant boost in both charge/discharge rates and stable cycling performance. A binary Co-Li alloying phase was generated at the initial discharge process, creating more active sites for the Li nucleation and uniform deposition. Characterization and density functional theory calculations show that the conductive and uniformly distributed cobalt-decorated carbon nanotubes with hierarchical structure can effectively reduce the local current density and more easily absorb Li atoms, leading to more uniform Li nucleation during plating. The current work presents an advance on scalable and cost-effective strategies for novel electrode materials with 3D hierarchical microstructures and mechanical flexibility for lithium metal anodes.
文摘To the Editor: We would like to congratulate Tian and colleagues on their recent article: Diagnostic value of contrast-enhanced ultrasonography for intrahepatic cholangiocarcinoma with tumor diameter larger than 5 cm [1]. They argued that, despite not being included in the American Association for the Study of Liver Diseases(AASLD) guidelines for the diagnosis of liver diseases, contrast-enhanced ultrasonography(CEUS) can be of use for diagnosis of large(>5 cm), mass-forming intrahepatic cholangiocarcinoma(ICC).
基金the UK Engineering and Physical Sciences Research Council(EPSRC)[grant number EP/M025012/1]the Imperial College London EPSRC Impact Acceleration Account[grant number EP/R511547/1].
文摘Hybrid photovoltaic-thermal(PV-T)collectors,which are capable of cogenerating useful thermal energy and electricity from the same aperture area,have a significantly higher overall efficiency and ability to displace emissions compared to independent,separate photovoltaic panels,solar thermal collectors or combinations thereof.Spectral splitting has emerged as a promising route towards next-generation high-performance PV-T collectors,and nanotechnology plays an important role in meeting the optical and thermal requirements of advanced spectral splitting PV-T collector designs.This paper presents a comprehensive review of spectral splitting technologies based on nanomaterials for PV-T applications.Emerging nanomaterials(nanofluids,nanofilms and nanowires)suitable for achieving spectral splitting based on reflection,diffraction,refraction and/or absorption approaches in PV-T collectors are presented,along with the associated challenges and opportunities of these design approaches.The requirements from such materials in terms of optical properties,thermal properties,stability and cost are discussed with the aim of guiding future research and innovation,and developing this technology towards practical application.Nanofluids and nanofilms are currently the most common nanomaterials used for spectral splitting,with significant progress made in recent years in the development of these materials.Nevertheless,there still remains a considerable gap between the optical properties of currently-available filters and the desired properties of ideal filters.Aiming to instruct and guide the future development of filter materials,a simple generalized method is further proposed in this paper to identify optimal filters and efficiency limits of spectral splitting PV-T systems for different scenarios.It is found that the optimal filter of a spectral splitting PV-T system is highly sensitive to the value of thermal energy relative to that of electricity,which therefore depends strongly on the application and location.The efficiency limit of spectral splitting PV-T collectors is significantly higher than that of standalone PV panels.The stability of nanomaterial filters remains a critical challenge for their long-term employment and also for high-temperature operation in practical applications.
基金financially supported by the Key Research and Development Plan of the Ministry of Science and Technology,China(2019YFD1100104 and 2019YFC1906501)。
文摘Chlorine is usually applied in the urban water treatment process to deactivate pathogens and prevent waterborne diseases.As a pre-treatment,it remains unclear whether chlorinated water can effectively alleviate membrane fouling during ultrafiltration(UF).In this study,tap water was investigated for its effect on biofilm formation and biofouling in a gravity-driven membrane(GDM)filtration system.For comparison,biofilm/biofouling with untreated surface(lake)water was studied in parallel.It was found that more severe membrane fouling occurred with the filtration of tap water than lake water,and larger quantities of polysaccharide and extracellular DNA(eDNA)were present in the tap-water biofilm than in the lake-water biofilm.The tap-water biofilm had a densely compact morphology.In contrast,a porous,spider-like structure was observed for the lake-water biofilm,which was assumed to be associated with the bacteria in the biofilm.This hypothesis was verified by 16S ribosomal RNA(rRNA)sequencing,which demonstrated that Xanthobacter was the dominant taxon in the tap-water biofilm.Additionally,membrane hydrophobicity/hydrophilicity played a minor role in affecting the membrane fouling properties and microbial community.This study revealed the significant role of chlorine-resistant bacteria in biofouling formation and provides a deeper understanding of membrane fouling,which can potentially aid in searching for effective ways of controlling membrane fouling.
基金supported by an NSERC granta startup fund of University of Albertasupported by Martin Hairer’s Leverhulme Trust leadership award
文摘We obtain the H?lder continuity and joint H?lder continuity in space and time for the random field solution to the parabolic Anderson equation ■ in d-dimensional space, where ■ is a mean zero Gaussian noise with temporal covariance γ0 and spatial covariance given by a spectral density μ(ξ). We assume that ■ and ■ , where αi, i = 1, · · ·, d(or α) can take negative value.
基金supported by the National Natural Science Foundation of China (21825501 and U1932220)the National Key Research and Development Program (2016YFA0202500)+2 种基金the Seed Fund of Shanxi Research Institute for Clean Energy (SXKYJF015)the Scientific and technological Key Project of Shanxi Province (20191102003)the Tsinghua University Initiative Scientific Research Program.
文摘The lithium(Li) metal anode is an integral component in an emerging high-energy-density rechargeable battery.A composite Li anode with a three-dimensional(3 D) host exhibits unique advantages in suppressing Li dendrites and maintaining dimensional stability.However,the fundamental understanding and regulation of solid electrolyte interphase(SEI),which directly dictates the behavior of Li plating/stripping,are rarely researched in composite Li metal anodes.Herein,the interaction between a polar polymer host and solvent molecules was proposed as an emerging but effective strategy to enable a stable SEI and a uniform Li deposition in a working battery.Fluoroethylene carbonate molecules in electrolytes are enriched in the vicinity of a polar polyacrylonitrile(PAN) host due to a strong dipole-dipole interaction,resulting in a LiF-rich SEI on Li metal to improve the uniformity of Li deposition.A composite Li anode with a PAN host delivers 145 cycles compared with 90 cycles when a non-polar host is employed.Moreover,60 cycles are demonstrated in a 1:0 Ah pouch cell without external pressure.This work provides a fresh guidance for designing practical composite Li anodes by unraveling the vital role of the synergy between a 3 D host and solvent molecules for regulating a robust SEI.
基金supported by the EPSRC FloodMEMORY Project(Grant No.EP/K013513/1)the HYDRALAB~+ Integrated Infrastructure Initiative,RESIST(Contract No.654110)Horizon 2020,European Community
文摘This paper reviews and discusses the current research status, trends, and future needs in the field of beach morphodynamics under the influence of storm sequences.The paper reviews how the three main research methods, field investigations, numerical modelling, and physical modelling, have been used to study beach morphodynamics during storm sequences.Available quantitative definitions of storm sequences at different sites are presented and discussed.It is shown that the definition of storm sequences is site-specific and requires knowledge of the storm climate, beach characteristics, and the temporal scale of beach recovery.Subsequently, the paper brings together currently available approaches aimed at describing the effect of storm sequences on beach erosion in a general way.The importance of storm chronology and the effects of an extreme storm within a sequence of storms are highlighted.Following that, the more poorly studied aspect of beach recovery in between storms within a sequence is discussed.Three indicators for defining beach recovery, namely the shoreline location, sediment volumes, and the beach state, are identified and compared.Finally, important research needs, including the need for detailed physical modelling, are identified.
文摘1.Why hydrogen?The concept of the“hydrogen economy”was first coined by Prof.John Bockris during a talk he gave in 1970 at the General Motors Technical Center.Bockris’s talk introduced the vision of a world economy in which energy was carried in the form of hydrogen.
基金supported by the National Key Research and Development Program of China(2016YFB0100300)National Nature Science Foundation of China(no.U1864213)+2 种基金the EPSRC Joint UK-India Clean Energy Centre(JUICE)(EP/P003605/1)the EPSRC Multi-Scale Modelling project(EP/S003053/1)the UK Engineering and Physical Council(EPSRC)for funding under EP/S000933/1.
文摘Increasing electrode thickness can substantially enhance the specific energy of lithium-ion batteries;however,ionic transport,electronic conductivity,and ink rheology are current barriers to adoption.Here,a novel approach using a mixed xanthan gum and locust bean gum binder to construct ultrathick electrodes is proposed to address above issues.After combining aqueous binder with single-walled carbon nanotubes(SWCNT),active material(LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)) and subsequent vacuum freeze-drying,highly aligned,and low-tortuosity structures with a porosity of ca.50%can be achieved with an average pore size of 10μm,whereby the gum binder-SWCNT-NMC811 forms vertical structures supported by tissue-like binder/SWCNT networks allowing for excellent electronic conducting phase percolation.As a result,ultra-thick electrodes with a mass loading of about 511 mg cm^(−2) and 99.5 wt%active materials have been demonstrated with a remarkable areal capacity of 79.3 mAh cm^(−2),which is the highest value reported so far.This represents a>25×improvement compared with conventional electrodes with an areal capacity of about 3 mAh cm^(−2).This route also can be expanded to other electrode materials,such as LiFePO_(4) and Li_(4)Ti_(5)O_(12),and thus opens the possibility for low-cost and sustainable ultra-thick electrodes with increased specific energy for future lithium-ion batteries.
基金National Natural Science Foundation of China(No.51804267)State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing(No.PRP/open-1610)。
文摘In the traditional pipeline magnetic flux leakage(MFL)detection technology,circumferential or axial excitation is mainly used to excite the magnetic field of defects.However,the domestic and foreign pipeline detection devices currently in operation are mainly axial excitation MFL detection tools,in which circumferential cracks can be clearly identified,but the detection sensitivity of axial cracks is not high,thus forming a detection blind zone.Therefore,a composite excitation multi-extension direction defect MFL detection method is proposed,which can realize the simultaneous detection of axial and circumferential defects.On the basis of the electromagnetic theory Maxwell equation and Biot Savart law,a mathematical model of circumferential and axial magnetization is firstly established.Then finite element simulation software is used to establish a model of a new type of magnetic flux leakage detection device,and a simulation analysis of crack detection in multiple extension directions is carried out.Finally,under the conditions of the relationship model between the change rate of leakage magnetic field and external excitation intensity under unsaturated magnetization and the multi-stage coil magnetization model,the sample vehicle towing experiment is carried out.The paper aims to analyze the feasibility and effectiveness of the new magnetic flux leakage detection device for detecting defects in different extension directions.Based on the final experimental results,the new composite excitation multi extension direction leakage magnetic field detector has a good detection effect for defects in the axial and circumferential extension directions.
基金supported by Tianjin Municipal Natural Science Foundation (No. 16JCZDJC32700)Major National Scientifi c Instrument Development Project (No. 21527812)
文摘Unlike the adverse eff ect caused by the gelation during crystallization process, gelation of cefpiramide sodium was found to provide ideal product properties, such as a larger and more regular crystal shape. The causes of the gelation phenomenon and the mechanism of gel-crystal transition during the crystallization of cefpiramide sodium were both investigated in this work. The gel was formed due to the strapping of the solvents by the networks of cefpiramide sodium molecules. The whole gel-crystal transition process was divided into the following three stages:(1) when the temperature decreased, the system reached a metastable-state gelation;(2) the initial microcrystal in the gel grew slowly because of the low supersaturation;and (3) the gel fi nally disappeared, and a larger and more regular crystal was formed. The Hansen solubility parameters were used to analyze the eff ects of the solvents on this gelation;the analysis results can serve as guidance for solvent screening in the actual production process.
文摘In this paper,a method sustaining system stability after decomposition is proposed.Based on the stability criterion derived from the energy function,a set of intelligent controllers is synthesized which is used to maintain the stability of the system.The sustainable stability problem can be reformulated as a Linear Matrix Inequalities(LMI)problem.The key to guaranteeing the stability of the system as a whole is to find a common symmetrically positive definite matrix for all subsystems.Furthermore,the Evolved Bat Algorithm(EBA)is employed to replace the pole assignment method and the conventional mathematical methods for solving the LMI.The EBA is utilized to find feasible solutions in terms of the energy equation.The experimental results show that the EBA is capable of providing proper solutions,which satisfy the sustainability and stability criteria,after a short period of recursive computing.
基金partially supported by the National Natural Science Foundation of China(No.61304190)the Fundamental Research Funds for the Central Universities(No.NJ20140018)
文摘Sector capacity estimation plays an important role in applied research of airspace management.Previous researches manifest that sector capacity should be influenced by its standard flow,or routes in that sector.However,if air traffic controller(ATCO)workload busy levels(level of proactivity of an ATCO)are ignored,the estimated sector capacity may not be accurate.There is a need to compare the estimated sector capacity with and without busy levels consideration,both with differentiated routes consideration.This paper proposes a method for sector capacity estimation based on ATCO workload considering differentiated routes and busy levels.Firstly,the main routes in the sector are identified,and for each route,the ATCO workload per flight is determined.Secondly,the workload for each route at three busy levels is determined.Regression analysis is then applied to determine the relationship between workload and the number of flights(with and without considering busy levels)in 15 min and 1h time slices.Sector capacity is then determined on the basis of a specified workload threshold,for the two cases with and without considering busy levels.Comparing the two scenarios and following validation by ATCO survey,it is found that capacity estimation considering busy levels is a more realistic and accurate approach.The validated capacity values for the Zhengzhou approach(ZHCC AP)airspace sector accounting for the busy levels were determined accurately as 10 and 33 flights for the 15 min and 1h slices,respectively.The corresponding results without considering busy levels were 12 and 41 flights for the 15 min and 1h time slices,respectively.