To study the characteristics of the 5-prismatic–spherical–spherical(PSS)/universal–prismatic–universal(UPU)parallel mechanism with elastically active branched chains,the dynamics modeling and solutions of the para...To study the characteristics of the 5-prismatic–spherical–spherical(PSS)/universal–prismatic–universal(UPU)parallel mechanism with elastically active branched chains,the dynamics modeling and solutions of the parallel mechanism were investigated.First,the active branched chains and screw sliders were considered as spatial beam elements and plane beam element models,respectively,and the dynamic equations of each element model were derived using the Lagrange method.Second,the equations of the 5-PSS/UPU parallel mechanism were obtained according to the kinematic coupling relationship between the active branched chains and moving platform.Finally,based on the parallel mechanism dynamic equations,the natural frequency distribution of the 5-PSS/UPU parallel mechanism in the working space and elastic displacement of the moving platform were obtained.The results show that the natural frequency of the 5-PSS/UPU parallel mechanism under a given motion situation is greater than its operating frequency.The maximum position error is -0.096 mm in direction Y,and the maximum orientation error is -0.29°around the X-axis.The study provides important information for analyzing the dynamic performance,dynamic optimization design,and dynamic control of the 5-PSS/UPU parallel mechanism with elastically active branched chains.展开更多
Soft abrasive flow(SAF) finishing can process the irregular geometric surfaces, but with the matter of low processing efficiency. To address the issue, an improved SAF finishing method based on turbulent kinetic ene...Soft abrasive flow(SAF) finishing can process the irregular geometric surfaces, but with the matter of low processing efficiency. To address the issue, an improved SAF finishing method based on turbulent kinetic energy enhancing is proposed. A constrained flow passage with serration cross-section is constructed to increase the turbulence intensity. Taking the constrained flow passage as the objective, a two-phase fluid dynamic model is set up by using particle trajectory model and standard k-ε turbulence model, and the flow field characteristics of the flow passage are acquired. The numerical results show that the serration flow passage can enhance the turbulence intensity, uniform the particles distribution, and increase the particle concentration near the bottom wall. The observation results by particle image velocimetry(PIV) show that the internal vortex structures are formed in flow passage, and the abrasive flow takes on turbulence concentrating phenomenon in near-wall region. The finishing experiments prove that the proposed method can obtain better surface uniformity, and the processing efficiency can be improved more 35%. This research provides an abrasive flow modeling method to reveal the particle motion regulars, and canoffer references to the technical optimization of fluid-based precision processing.展开更多
In order to improve the low output accuracy caused by the elastic deformations of the branch chains,a finite element-based dynamic accuracy analysis method for parallel mechanisms is proposed in this paper.First,takin...In order to improve the low output accuracy caused by the elastic deformations of the branch chains,a finite element-based dynamic accuracy analysis method for parallel mechanisms is proposed in this paper.First,taking a 5-prismatic-spherical-spherical(PSS)/universal-prismatic-universal(UPU)parallel mechanism as an example,the error model is established by a closed vector chain method,while its influence on the dynamic accuracy of the parallel mechanism is analyzed through numerical simulation.According to the structural and error characteristics of the parallel mechanism,a vector calibration algorithm is proposed to reduce the position and pose errors along the whole motion trajectory.Then,considering the elastic deformation of the rod,the rigid-flexible coupling dynamic equations of each component are established by combining the finite element method with the Lagrange method.The elastodynamic model of the whole machine is obtained based on the constraint condition of each moving part,and the correctness of the model is verified by simulation.Moreover,the effect of component flexibility on the dimensionless root mean square error of the displacement,velocity and acceleration of the moving platform is investigated by using a Newmark method,and the mapping relationship of these dimensionless root mean square errors to dynamic accuracy is further studied.The research work provides a theoretical basis for the design of the parameter size of the prototype.展开更多
Ultra-precision machine tool is the most important physical tool to machining the workpiece with the frequency domain error requirement, in the design process of which the dynamic accuracy design(DAD) is indispensable...Ultra-precision machine tool is the most important physical tool to machining the workpiece with the frequency domain error requirement, in the design process of which the dynamic accuracy design(DAD) is indispensable and the related research is rarely available. In light of above reasons, a DAD method of ultra-precision machine tool is proposed in this paper, which is based on the frequency domain error allocation.The basic procedure and enabling knowledge of the DAD method is introduced. The application case of DAD method in the ultra-precision flycutting machine tool for KDP crystal machining is described to show the procedure detailedly. In this case, the KDP workpiece surface has the requirements in four different spatial frequency bands, and the emphasis for this study is put on the middle-frequency band with the PSD specifications. The results of the application case basically show the feasibility of the proposed DAD method. The DAD method of ultra-precision machine tool can effectively minimize the technical risk and improve the machining reliability of the designed machine tool. This paper will play an important role in the design and manufacture of new ultra-precision machine tool.展开更多
In order to increase the availability of the part-time idle bus rapid transit lane(BRT-lane),a time division multiplexing(TDM) method to share BRT-lane with the vehicles besides BRT buses is proposed based on vehicle-...In order to increase the availability of the part-time idle bus rapid transit lane(BRT-lane),a time division multiplexing(TDM) method to share BRT-lane with the vehicles besides BRT buses is proposed based on vehicle-road collaboration. The TDM control strategy is established under the circumstance of vehicle-infrastructure integration(VII). The algorithm is given to forecast the segmented BRT travel time. According to the real time traffic information,a comprehensive model is given to estimate the vehicles' lane-changing time from/to the BRTlane to/from its neighbor lane and determine the timing sequence for vehicles collaboration. Finally,the experiment demonstrates that the predicted value of the travel time and lane-changing time is much close to the true value. The control strategy of the vehicles collaboration could promise the non-BRT vehicles to share BRT-lane without disturbing BRT's priority.展开更多
Several typical flexible pneumatic actuators (FPA) and different mechanical models describing their behaviors have been proposed, however, it is difficult to balance compliance and load capacity in conventional desi...Several typical flexible pneumatic actuators (FPA) and different mechanical models describing their behaviors have been proposed, however, it is difficult to balance compliance and load capacity in conventional designs, and these models still have limitations in predicting behavior of FPAs. A new flexible pneumatic bending joint (FPBJ) with special anisotropic rigidity structure is proposed. The FPBJ is developed as an improvement with regard to existing types of FPA, and its principal characteristic is derived from the special anisotropic rigidity structure. With this structure, the load capacity in the direction perpendicular to bending plane is strengthened. The structure of the new FPBJ is explained and a mathematical model is derived based on Euler-Bernoulli beam model and Hook’s law. To obtain optimum design and usage, some key structure parameters and input-output characteristics are simulated. The simulation results reveal that the relationship between the structure parameters and FPBJ’s bending angle is nonlinear. At last, according to the simulation results, the FPBJ is manufactured with optional parameters and tested. The experimental results show that the joint’s statics characteristics are reflected by the mathematical model accurately when the FPBJ is deflated. The maximum relative error between simulation and experimental results is less than 6%. However, the model still has limitations. When the joint is inflated, the maximum relative error reaches 20%. This paper proposes a new flexible pneumatic bending joint which has sufficient load capacity and compliance, and the mathematical model provides theoretical guidance for the FPBJ’s structure design.展开更多
Concave clouds will cause miscalculation by the power prediction model based on cloud ieatures for distributed photovoltaic (PV) plant. The algorithm for decomposing concave cloud into convex images is proposed. Ado...Concave clouds will cause miscalculation by the power prediction model based on cloud ieatures for distributed photovoltaic (PV) plant. The algorithm for decomposing concave cloud into convex images is proposed. Adopting minimum polygonal approximation (MPP) to demonstrate the contour of concave cloud, cloud features are described and the subdivision lines of convex decomposition for the concave clouds are determined by the centroid point scattering model and centroid angle func- tion, which realizes the convex decomposition of concave cloud. The result of MATLAB simulation indicates that the proposed algorithm can accurately detect cloud contour comers and recognize the concave points. The proposed decomposition algorithm has advantages of less time complexity and decomposition part numbers compared to traditional algorithms. So the established model can make the convex decomposition of complex concave clouds completely and quickly, which is available for the existing prediction algorithm for the ultra-short-term power output of distributed PV system based on the cloud features.展开更多
Grains in the slurry can be brought into cutting zone by steel wire with a certain speed to achieve the purpose of removing the workpiece material in the free abrasive wire sawing machining. Because its own of multi- ...Grains in the slurry can be brought into cutting zone by steel wire with a certain speed to achieve the purpose of removing the workpiece material in the free abrasive wire sawing machining. Because its own of multi- strands characteristics, we use it to replace the steel wire to do slicing experiment. In this paper, multi-strands wire is made by seven metal wires and has many grooves on its surface. Compared with steel wire, it can carry more grains into cutting zone which is conducive to improving the slicing efficiency. We do some comparative slic- ing experimcnts by applying multi-strands wire (~b0.25 mm) and steel wire (~b0.25 mm) to cut optical glass (K9). The results show that slicing efficiency and the surface roughness of the workpiece sliced by using multi-strands wire are better than that by using steel wire. but the kerf width of the former is wider than that of the latter in the same experimental conditions.展开更多
Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-ob...Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators.展开更多
Ultra-precision machining technologies are the essential methods, to obtain the highest form accuracy and surface quality. As more research findings are published, such technologies now involve complicated systems eng...Ultra-precision machining technologies are the essential methods, to obtain the highest form accuracy and surface quality. As more research findings are published, such technologies now involve complicated systems engineering and been widely used in the production of components in various aerospace, national defense, optics, mechanics, electronics, and other high-tech applications. The conception, applications and history of ultra-precision machining are introduced in this article, and the develop- ments of ultra-precision machining technologies, espe- cially ultra-precision grinding, ultra-precision cutting and polishing are also reviewed. The current state and problems of this field in China are analyzed. Finally, the development trends of this field and the coping strategies employed in China to keep up with the trends are discussed.展开更多
To realize the robotic harvesting of Hangzhou White Chrysanthemums,the quick recognition and 3D vision localization system for target Chrysanthemums was investigated in this study.The system was comprised of three mai...To realize the robotic harvesting of Hangzhou White Chrysanthemums,the quick recognition and 3D vision localization system for target Chrysanthemums was investigated in this study.The system was comprised of three main stages.Firstly,an end-effector and a simple freedom manipulator with three degrees were designed to meet the quality requirements of harvesting Hangzhou White Chrysanthemums.Secondly,a segmentation based on HSV color space was performed.A fast Fuzzy C-means(FCM)algorithm based on S component was proposed to extract the target image from irrelevant background.Thirdly,binocular stereo vision was used to acquire the target spatial information.According to the shape of Hangzhou White Chrysanthemums,the centroids of stamens were selected as feature points to match in the right and left images.The experimental results showed that the proposed method was able to recognize Hangzhou White Chrysanthemums with the accuracy of 85%.When the distance between target and baseline was 150-450 mm,the errors between the calculated and measured distance were less than 14 mm,which could meet the requirements of the localization accuracy of the harvesting robot.展开更多
In maxillofacial surgery, there is a significant need for the design and fabrication of porous scaffolds with customizable bionic structures and mechanical properties suitable for bone tissue engineering. In this pape...In maxillofacial surgery, there is a significant need for the design and fabrication of porous scaffolds with customizable bionic structures and mechanical properties suitable for bone tissue engineering. In this paper, we characterize the porous Ti6Al4V implant, which is one of the most promising and attractive biomedical applications due to the similarity of its modulus to human bones. We describe the mechanical properties of this implant, which we suggest is capable of providing important biological functions for bone tissue regeneration. We characterize a novel bionic design and fabrication process for porous implants. A design concept of “reducing dimensions and designing layer by layer” was used to construct layered slice and rod-connected mesh structure (LSRCMS) implants. Porous LSRCMS implants with different parameters and porosities were fabricated by selective laser melting (SLM). Printed samples were evaluated by microstructure characterization, specific mechanical properties were analyzed by mechanical tests, and finite element analysis was used to digitally calculate the stress characteristics of the LSRCMS under loading forces. Our results show that the samples fabricated by SLM had good structure printing quality with reasonable pore sizes. The porosity, pore size, and strut thickness of manufactured samples ranged from (60.95± 0.27)% to (81.23±0.32)%,(480±28) to (685±31)μm, and (263±28) to (265±28)μm, respectively. The compression results show that the Young’s modulus and the yield strength ranged from (2.23±0.03) to (6.36±0.06) GPa and (21.36±0.42) to (122.85±3.85) MPa, respectively. We also show that the Young’s modulus and yield strength of the LSRCMS samples can be predicted by the Gibson-Ashby model. Further, we prove the structural stability of our novel design by finite element analysis. Our results illustrate that our novel SLM-fabricated porous Ti6Al4V scaffolds based on an LSRCMS are a promising material for bone implants, and are potentially applicable to the field of bone defect repair.展开更多
Objective: To investigate the stress distribution to the mandible, with and without impacted third molars(IM3 s) at various orientations, resulting from a 2000-Newton impact force either from the anterior midline o...Objective: To investigate the stress distribution to the mandible, with and without impacted third molars(IM3 s) at various orientations, resulting from a 2000-Newton impact force either from the anterior midline or from the body of the mandible. Materials and methods: A 3 D mandibular virtual model from a healthy dentate patient was created and the mechanical properties of the mandible were categorized to 9 levels based on the Hounsfield unit measured from computed tomography(CT) images. Von Mises stress distributions to the mandibular angle and condylar areas from static impact forces(Load I-front blow and Load II left blow) were evaluated using finite element analysis(FEA). Six groups with IM3 were included: full horizontal bony, full vertical bony, full 450 mesioangular bony, partial horizontal bony, partial vertical, and partial 450 mesioangular bony impaction, and a baseline group with no third molars. Results: Von Mises stresses in the condyle and angle areas were higher for partially than for fully impacted third molars under both loading conditions, with partial horizontal IM3 showing the highest fracture risk. Stresses were higher on the contralateral than on the ipsilateral side. Under Load II, the angle area had the highest stress for various orientations of IM3 s. The condylar region had the highest stress when IM3 s were absent. Conclusions: High-impact forces are more likely to cause condylar rather than angular fracture when IM3 s are missing. The risk of mandibular fracture is higher for partially than fully impacted third molars, with the angulation of impaction having little effect on facture risk.展开更多
Recently, we developed a nonbuckling interconnect design that provides an effective approach to simultaneously achieving high elastic stretchability, easiness for encapsulation, and high electric performance for stret...Recently, we developed a nonbuckling interconnect design that provides an effective approach to simultaneously achieving high elastic stretchability, easiness for encapsulation, and high electric performance for stretchable electronics. This paper aims to systematically study its mechanical and electric behaviors, including comparisons of the nonbuckling and buckling interconnect designs on stretchability, effects of the thickness on electric performance, and modeling and experimental investigations on the finite deformation mechanics. It is found that the results on stretchability depend on the layouts. Long straight segments and small arc radii for nonbuckling interconnects yield an enhancement of stretchability, which is much better than that of buckling designs. On the other hand, shorter straight segments or thicker interconnects are better to lower the resistances of interconnects.Therefore, optimization of the designs needs to balance the requirements of both the mechanical and electric performances. The finite deformation of interconnects during stretching is analyzed. The established analytic model is well validated by both the finite element modeling and experimental investigations. This work is key for providing the design guidelines for nonbucklingbased stretchable electronics.展开更多
Microwave induced plasma torches find wide applications in material and chemical analysis.Investigation of a coaxial electrode microwave induced plasma(CE–MIP)torch is conducted in this study,making it available for ...Microwave induced plasma torches find wide applications in material and chemical analysis.Investigation of a coaxial electrode microwave induced plasma(CE–MIP)torch is conducted in this study,making it available for glass surface modification and polishing.A dedicated nozzle is designed to inject secondary gases into the main plasma jet.This study details the adaptation of a characterisation process for CE–MIP technology.Microwave spectrum analysis is used to create a polar plot of the microwave energy being emitted from the coaxial electrode,where the microwave energy couples with the gas to generate the plasma jet.Optical emission spectroscopy analysis is also employed to create spatial maps of the photonic intensity distribution within the plasma jet when different additional gases are injected into it.The CE–MIP torch is experimentally tested for surface energy modification on glass where it creates a super-hydrophilic surface.展开更多
An experimental setup for cold extrusion process with electric-hydraulic chattering was developed and its working principle was introduced. The finite element (FE) model for a kind of cup part (material: 20Cr) wa...An experimental setup for cold extrusion process with electric-hydraulic chattering was developed and its working principle was introduced. The finite element (FE) model for a kind of cup part (material: 20Cr) was built by using the software Deform-3D. FE simulation experiments with and without electric-hydraulic chattering were carried out to analyze the velocity fields and the metal grid flow lines. The extrusion ex- periments of the cup part were also performed under different conditions. The difference of metal flow lines with and without electric-hydraulic chattering was discussed via a scanning electron microscope (SEM) and the Keyence super-depth three-dimensional microscopic system. The results showed that with the electric-hydraulic chattering, the velocity of material flow increases, whereas deformation resistance decreases. Electric hydraulic chattering results in easy metal flow, small bending degree of metal flow lines, slender and dense metal grains, and thereby an improved quality of the deformed parts.展开更多
Excessive forces may cause root resorption and insufficient forces would introduce no effect in orthodontics. The objective of this study was to investigate the optimal orthodontic forces on a maxillary canine, using ...Excessive forces may cause root resorption and insufficient forces would introduce no effect in orthodontics. The objective of this study was to investigate the optimal orthodontic forces on a maxillary canine, using hydrostatic stress and logarithmic strain of the periodontal ligament(PDL) as indicators. Finite element models of a maxillary canine and surrounding tissues were developed. Distal translation/tipping forces, labial translation/tipping forces, and extrusion forces ranging from 0 to 300 g(100 g=0.98 N) were applied to the canine, as well as the force moment around the canine long axis ranging from 0 to 300 g·mm. The stress/strain of the PDL was quantified by nonlinear finite element analysis, and an absolute stress range between 0.47 k Pa(capillary pressure) and 12.8 k Pa(80% of human systolic blood pressure) was considered to be optimal, whereas an absolute strain exceeding 0.24%(80% of peak strain during canine maximal moving velocity) was considered optimal strain. The stress/strain distributions within the PDL were acquired for various canine movements, and the optimal orthodontic forces were calculated. As a result the optimal tipping forces(40–44 g for distal-direction and 28–32 g for labial-direction) were smaller than the translation forces(130–137 g for distal-direction and 110–124 g for labial-direction). In addition, the optimal forces for labialdirection motion(110–124 g for translation and 28–32 g for tipping) were smaller than those for distal-direction motion(130–137 g for translation and 40–44 g for tipping). Compared with previous results, the force interval was smaller than before and was therefore more conducive to the guidance of clinical treatment. The finite element analysis results provide new insights into orthodontic biomechanics and could help to optimize orthodontic treatment plans.展开更多
In order to realize the visual positioning for Hangzhou white chrysanthemums harvesting robot in natural environment,a color image segmentation method for Hangzhou white chrysanthemum based on least squares support ve...In order to realize the visual positioning for Hangzhou white chrysanthemums harvesting robot in natural environment,a color image segmentation method for Hangzhou white chrysanthemum based on least squares support vector machine(LS-SVM)was proposed.Firstly,bilateral filter was used to filter the RGB channels image respectively to eliminate noise.Then the pixel-level color feature and texture feature of the image,which was used as input of LS-SVM model(classifier)and SVM model(classifier),were extracted via RGB value of image and gray level co-occurrence matrix.Finally,the color image was segmented with the trained LS-SVM model(classifier)and SVM model(classifier)separately.The experimental results showed that the trained LS-SVM model and SVM model could effectively segment the images of the Hangzhou white chrysanthemums from complicated background taken under three illumination conditions such as front-lighting,back-lighting and overshadow,with the accuracy of above 90%.When segmenting an image,the SVM algorithm required 1.3 s,while the LS-SVM algorithm proposed in this paper just needed 0.7 s,which was better than the SVM algorithm obviously.The picking experiment was carried out and the results showed that the implementation of the proposed segmentation algorithm on the picking robot could achieve 81%picking success rate.展开更多
By combining the investigation of the biomechanics and behavior of elephant trunk in the performance of a wide range of dexterous manipulations,a novel approach in the design and kinematics modeling of a fruit harvest...By combining the investigation of the biomechanics and behavior of elephant trunk in the performance of a wide range of dexterous manipulations,a novel approach in the design and kinematics modeling of a fruit harvesting continuum manipulator was proposed.By comparing the structure of two different species of elephant trunk,a new continuum structure which matched the key features of elephant trunk was designed.Based on analysis of the underlying elephant trunk’s grasping mode,a novel kinematics model was proposed.Contrast to traditional robot kinematics which focused on end effector’s position and posture,the proposed continuum manipulator kinematics focus on the center of manipulator’s position and posture,which is more effective when trunk robot realizing grasp and establishes the foundation for its application.Finally,three typical grasping experiments were implemented.The experiment results showed that the manipulator could conduct wrap/pinch manipulations effectively for both small objects and bigger ones.展开更多
With the decrease of agricultural labors and the increase in production costs,harvesting robots have become a research hotspot in recent years.To guide harvesting robots to pick mature citrus more precisely under vari...With the decrease of agricultural labors and the increase in production costs,harvesting robots have become a research hotspot in recent years.To guide harvesting robots to pick mature citrus more precisely under variable illumination conditions,an image segmentation algorithm based on superpixel was proposed.Efficient simple linear iterative clustering(SLIC)algorithm which takes similarity of adjacent pixels into account was adopted to segment the images captured under variable illumination conditions into superpixels.The color and texture features of these superpixels were extracted and fused into feature vectors as descriptors to train backpropagation neural networks(BPNN)classifier in the next step.The adjacency information of superpixels was considered by calculating the global-local binary pattern(LBP)in R component images when extracting texture features.To accelerate the classification process,the mean of Cr-Cb image was utilized to find superpixels of interest which were regarded as candidates of citrus superpixels.These candidates were then classified by a pre-trained BPNN model with superpixel-level accuracy of 98.77%and pixel-level accuracy of 94.96%,while the average time to segment one image was 0.4778 s.Therefore,the results indicated that a superpixel-based segmentation algorithm toward citrus images had decent light robustness as well as high accuracy that could guide harvesting robot to pick mature citrus efficiently.展开更多
基金Supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. LR18E050003)National Natural Science Foundation of China (Grant Nos. 51975523,51905481)+1 种基金Postdoctoral Preferred Funding Project of Zhejiang Province (Grant No. zj2019019)Open Foundation of the Key Laboratory of E&M,Ministry of Education&Zhejiang Province (Grant No. EM2019120102)
文摘To study the characteristics of the 5-prismatic–spherical–spherical(PSS)/universal–prismatic–universal(UPU)parallel mechanism with elastically active branched chains,the dynamics modeling and solutions of the parallel mechanism were investigated.First,the active branched chains and screw sliders were considered as spatial beam elements and plane beam element models,respectively,and the dynamic equations of each element model were derived using the Lagrange method.Second,the equations of the 5-PSS/UPU parallel mechanism were obtained according to the kinematic coupling relationship between the active branched chains and moving platform.Finally,based on the parallel mechanism dynamic equations,the natural frequency distribution of the 5-PSS/UPU parallel mechanism in the working space and elastic displacement of the moving platform were obtained.The results show that the natural frequency of the 5-PSS/UPU parallel mechanism under a given motion situation is greater than its operating frequency.The maximum position error is -0.096 mm in direction Y,and the maximum orientation error is -0.29°around the X-axis.The study provides important information for analyzing the dynamic performance,dynamic optimization design,and dynamic control of the 5-PSS/UPU parallel mechanism with elastically active branched chains.
基金Supported by National Natural Science Foundation of China(Grant Nos.51375446,51575494)Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LR16E050001,LZ14E050001)
文摘Soft abrasive flow(SAF) finishing can process the irregular geometric surfaces, but with the matter of low processing efficiency. To address the issue, an improved SAF finishing method based on turbulent kinetic energy enhancing is proposed. A constrained flow passage with serration cross-section is constructed to increase the turbulence intensity. Taking the constrained flow passage as the objective, a two-phase fluid dynamic model is set up by using particle trajectory model and standard k-ε turbulence model, and the flow field characteristics of the flow passage are acquired. The numerical results show that the serration flow passage can enhance the turbulence intensity, uniform the particles distribution, and increase the particle concentration near the bottom wall. The observation results by particle image velocimetry(PIV) show that the internal vortex structures are formed in flow passage, and the abrasive flow takes on turbulence concentrating phenomenon in near-wall region. The finishing experiments prove that the proposed method can obtain better surface uniformity, and the processing efficiency can be improved more 35%. This research provides an abrasive flow modeling method to reveal the particle motion regulars, and canoffer references to the technical optimization of fluid-based precision processing.
基金Supported by the National Natural Science Foundation of China(Grant Nos.U21A20122,51975523 and 51905481)the Natural Science Foundation of Zhejiang Province(Grant No.LY22E050012)the Students in Zhejiang Province Science and technology Innovation Plan(Grant No.2020R403054).
文摘In order to improve the low output accuracy caused by the elastic deformations of the branch chains,a finite element-based dynamic accuracy analysis method for parallel mechanisms is proposed in this paper.First,taking a 5-prismatic-spherical-spherical(PSS)/universal-prismatic-universal(UPU)parallel mechanism as an example,the error model is established by a closed vector chain method,while its influence on the dynamic accuracy of the parallel mechanism is analyzed through numerical simulation.According to the structural and error characteristics of the parallel mechanism,a vector calibration algorithm is proposed to reduce the position and pose errors along the whole motion trajectory.Then,considering the elastic deformation of the rod,the rigid-flexible coupling dynamic equations of each component are established by combining the finite element method with the Lagrange method.The elastodynamic model of the whole machine is obtained based on the constraint condition of each moving part,and the correctness of the model is verified by simulation.Moreover,the effect of component flexibility on the dimensionless root mean square error of the displacement,velocity and acceleration of the moving platform is investigated by using a Newmark method,and the mapping relationship of these dimensionless root mean square errors to dynamic accuracy is further studied.The research work provides a theoretical basis for the design of the parameter size of the prototype.
基金Supported by Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ16E050012)National Natural Science Foundation of China(Grant Nos.51705462 and 51275115)International Science and Technology Cooperation Program of China(Grant No.2015DFA70630)
文摘Ultra-precision machine tool is the most important physical tool to machining the workpiece with the frequency domain error requirement, in the design process of which the dynamic accuracy design(DAD) is indispensable and the related research is rarely available. In light of above reasons, a DAD method of ultra-precision machine tool is proposed in this paper, which is based on the frequency domain error allocation.The basic procedure and enabling knowledge of the DAD method is introduced. The application case of DAD method in the ultra-precision flycutting machine tool for KDP crystal machining is described to show the procedure detailedly. In this case, the KDP workpiece surface has the requirements in four different spatial frequency bands, and the emphasis for this study is put on the middle-frequency band with the PSD specifications. The results of the application case basically show the feasibility of the proposed DAD method. The DAD method of ultra-precision machine tool can effectively minimize the technical risk and improve the machining reliability of the designed machine tool. This paper will play an important role in the design and manufacture of new ultra-precision machine tool.
基金supported by National Natural Science Foundation of China(No.61174176)Zhejiang Planning Project of Science and Technology(No.2013C33086)
文摘In order to increase the availability of the part-time idle bus rapid transit lane(BRT-lane),a time division multiplexing(TDM) method to share BRT-lane with the vehicles besides BRT buses is proposed based on vehicle-road collaboration. The TDM control strategy is established under the circumstance of vehicle-infrastructure integration(VII). The algorithm is given to forecast the segmented BRT travel time. According to the real time traffic information,a comprehensive model is given to estimate the vehicles' lane-changing time from/to the BRTlane to/from its neighbor lane and determine the timing sequence for vehicles collaboration. Finally,the experiment demonstrates that the predicted value of the travel time and lane-changing time is much close to the true value. The control strategy of the vehicles collaboration could promise the non-BRT vehicles to share BRT-lane without disturbing BRT's priority.
基金Supported by National Natural Science Foundation of China (Grant No.51075363)Zhejiang Provincial Natural Science Outstanding Youth Team Foundation of China (Grant No.R1090674)+1 种基金Zhejiang Provincial Natural Science Foundation of China (Grant No.LY12E05022)Open Fund of Key Laboratory of E&M (Zhejiang University of Technology),Ministry of Education & Zhejiang Province of China (Grant No.2009EP026)
文摘Several typical flexible pneumatic actuators (FPA) and different mechanical models describing their behaviors have been proposed, however, it is difficult to balance compliance and load capacity in conventional designs, and these models still have limitations in predicting behavior of FPAs. A new flexible pneumatic bending joint (FPBJ) with special anisotropic rigidity structure is proposed. The FPBJ is developed as an improvement with regard to existing types of FPA, and its principal characteristic is derived from the special anisotropic rigidity structure. With this structure, the load capacity in the direction perpendicular to bending plane is strengthened. The structure of the new FPBJ is explained and a mathematical model is derived based on Euler-Bernoulli beam model and Hook’s law. To obtain optimum design and usage, some key structure parameters and input-output characteristics are simulated. The simulation results reveal that the relationship between the structure parameters and FPBJ’s bending angle is nonlinear. At last, according to the simulation results, the FPBJ is manufactured with optional parameters and tested. The experimental results show that the joint’s statics characteristics are reflected by the mathematical model accurately when the FPBJ is deflated. The maximum relative error between simulation and experimental results is less than 6%. However, the model still has limitations. When the joint is inflated, the maximum relative error reaches 20%. This paper proposes a new flexible pneumatic bending joint which has sufficient load capacity and compliance, and the mathematical model provides theoretical guidance for the FPBJ’s structure design.
基金Supported by the National High Technology Research and Development Programme of China(No.2013AA050405)Doctoral Fund of Ministry of Education(No.20123317110004)+1 种基金Foundation of Zhejiang Province Key Science and Technology Innovation Team(No.2011R50011)the Natural Science Foundation of Zhejiang Province(No.LY15E070004)
文摘Concave clouds will cause miscalculation by the power prediction model based on cloud ieatures for distributed photovoltaic (PV) plant. The algorithm for decomposing concave cloud into convex images is proposed. Adopting minimum polygonal approximation (MPP) to demonstrate the contour of concave cloud, cloud features are described and the subdivision lines of convex decomposition for the concave clouds are determined by the centroid point scattering model and centroid angle func- tion, which realizes the convex decomposition of concave cloud. The result of MATLAB simulation indicates that the proposed algorithm can accurately detect cloud contour comers and recognize the concave points. The proposed decomposition algorithm has advantages of less time complexity and decomposition part numbers compared to traditional algorithms. So the established model can make the convex decomposition of complex concave clouds completely and quickly, which is available for the existing prediction algorithm for the ultra-short-term power output of distributed PV system based on the cloud features.
基金National Natural Science Foundation of China(No.51075367)Natural Science Foundation of Zhejiang Province(No.Y1090931)
文摘Grains in the slurry can be brought into cutting zone by steel wire with a certain speed to achieve the purpose of removing the workpiece material in the free abrasive wire sawing machining. Because its own of multi- strands characteristics, we use it to replace the steel wire to do slicing experiment. In this paper, multi-strands wire is made by seven metal wires and has many grooves on its surface. Compared with steel wire, it can carry more grains into cutting zone which is conducive to improving the slicing efficiency. We do some comparative slic- ing experimcnts by applying multi-strands wire (~b0.25 mm) and steel wire (~b0.25 mm) to cut optical glass (K9). The results show that slicing efficiency and the surface roughness of the workpiece sliced by using multi-strands wire are better than that by using steel wire. but the kerf width of the former is wider than that of the latter in the same experimental conditions.
基金Supported by the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scientists(Grant No.LR18E050003)the National Natural Science Foundation of China(Grant Nos.51975523,51905481)+2 种基金Natural Science Foundation of Zhejiang Province(Grant No.LY22E050012)the Students in Zhejiang Province Science and Technology Innovation Plan(Xinmiao Talents Program)(Grant No.2020R403054)the China Postdoctoral Science Foundation(Grant No.2020M671784)。
文摘Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators.
文摘Ultra-precision machining technologies are the essential methods, to obtain the highest form accuracy and surface quality. As more research findings are published, such technologies now involve complicated systems engineering and been widely used in the production of components in various aerospace, national defense, optics, mechanics, electronics, and other high-tech applications. The conception, applications and history of ultra-precision machining are introduced in this article, and the develop- ments of ultra-precision machining technologies, espe- cially ultra-precision grinding, ultra-precision cutting and polishing are also reviewed. The current state and problems of this field in China are analyzed. Finally, the development trends of this field and the coping strategies employed in China to keep up with the trends are discussed.
基金This work was financially supported by the project of National Science and Technology Supporting Plan(2015BAF01B02)the Open Foundation of Intelligent Robots and Systems at the University of Beijing Institute of Technology,High-tech Innovation Center(2016IRS03).
文摘To realize the robotic harvesting of Hangzhou White Chrysanthemums,the quick recognition and 3D vision localization system for target Chrysanthemums was investigated in this study.The system was comprised of three main stages.Firstly,an end-effector and a simple freedom manipulator with three degrees were designed to meet the quality requirements of harvesting Hangzhou White Chrysanthemums.Secondly,a segmentation based on HSV color space was performed.A fast Fuzzy C-means(FCM)algorithm based on S component was proposed to extract the target image from irrelevant background.Thirdly,binocular stereo vision was used to acquire the target spatial information.According to the shape of Hangzhou White Chrysanthemums,the centroids of stamens were selected as feature points to match in the right and left images.The experimental results showed that the proposed method was able to recognize Hangzhou White Chrysanthemums with the accuracy of 85%.When the distance between target and baseline was 150-450 mm,the errors between the calculated and measured distance were less than 14 mm,which could meet the requirements of the localization accuracy of the harvesting robot.
基金Project supported by the National Natural Science Foundation of China(No.51775506)the Zhejiang Provincial Natural Science Foundation of China(No.LY18E050022)+2 种基金the Public Welfare Technology Application Research Project of Zhejiang Province(Nos.LGG19E050022 and 2017C33115)the Zhejiang Provincial Science&Technology Project for Medicine&Health(No.2018KY878)the Open Foundation of Zhejiang Provincial Top Key Discipline of Mechanical Engineering of Hangzhou Dianzi University,China
文摘In maxillofacial surgery, there is a significant need for the design and fabrication of porous scaffolds with customizable bionic structures and mechanical properties suitable for bone tissue engineering. In this paper, we characterize the porous Ti6Al4V implant, which is one of the most promising and attractive biomedical applications due to the similarity of its modulus to human bones. We describe the mechanical properties of this implant, which we suggest is capable of providing important biological functions for bone tissue regeneration. We characterize a novel bionic design and fabrication process for porous implants. A design concept of “reducing dimensions and designing layer by layer” was used to construct layered slice and rod-connected mesh structure (LSRCMS) implants. Porous LSRCMS implants with different parameters and porosities were fabricated by selective laser melting (SLM). Printed samples were evaluated by microstructure characterization, specific mechanical properties were analyzed by mechanical tests, and finite element analysis was used to digitally calculate the stress characteristics of the LSRCMS under loading forces. Our results show that the samples fabricated by SLM had good structure printing quality with reasonable pore sizes. The porosity, pore size, and strut thickness of manufactured samples ranged from (60.95± 0.27)% to (81.23±0.32)%,(480±28) to (685±31)μm, and (263±28) to (265±28)μm, respectively. The compression results show that the Young’s modulus and the yield strength ranged from (2.23±0.03) to (6.36±0.06) GPa and (21.36±0.42) to (122.85±3.85) MPa, respectively. We also show that the Young’s modulus and yield strength of the LSRCMS samples can be predicted by the Gibson-Ashby model. Further, we prove the structural stability of our novel design by finite element analysis. Our results illustrate that our novel SLM-fabricated porous Ti6Al4V scaffolds based on an LSRCMS are a promising material for bone implants, and are potentially applicable to the field of bone defect repair.
基金Project supported by the National Natural Science Foundation of China(Nos.51375453 and 51775506)the Natural Science Foundation of Zhejiang Province(No.LY18E050022),China
文摘Objective: To investigate the stress distribution to the mandible, with and without impacted third molars(IM3 s) at various orientations, resulting from a 2000-Newton impact force either from the anterior midline or from the body of the mandible. Materials and methods: A 3 D mandibular virtual model from a healthy dentate patient was created and the mechanical properties of the mandible were categorized to 9 levels based on the Hounsfield unit measured from computed tomography(CT) images. Von Mises stress distributions to the mandibular angle and condylar areas from static impact forces(Load I-front blow and Load II left blow) were evaluated using finite element analysis(FEA). Six groups with IM3 were included: full horizontal bony, full vertical bony, full 450 mesioangular bony, partial horizontal bony, partial vertical, and partial 450 mesioangular bony impaction, and a baseline group with no third molars. Results: Von Mises stresses in the condyle and angle areas were higher for partially than for fully impacted third molars under both loading conditions, with partial horizontal IM3 showing the highest fracture risk. Stresses were higher on the contralateral than on the ipsilateral side. Under Load II, the angle area had the highest stress for various orientations of IM3 s. The condylar region had the highest stress when IM3 s were absent. Conclusions: High-impact forces are more likely to cause condylar rather than angular fracture when IM3 s are missing. The risk of mandibular fracture is higher for partially than fully impacted third molars, with the angulation of impaction having little effect on facture risk.
基金supported by the National Natural Science Foundation of China(Grant Nos.11572323,11772331,11302038,51365013,and 11732004)the Chinese Academy of Sciences via the "Hundred Talent Program"+8 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB22040501)the State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology(Grant No.GZ1603)the State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology(Grant No.DMETKF2017008)the Young Elite Scientists Sponsorship Program by CAST(Grant No.2015QNRC001)the Opening Fund of State Key Laboratory of Nonlinear Mechanicsthe Personnel Training Plan of Tianjin City in China for the Key Young and Middle-Aged Innovation Talentsthe National Key Research and Development Plan(Grant Nos.2016YFB0201600,2016YFB0201601,2017YFB0202800,and 2017YFB0202802)the Program for Changjiang Scholars,Innovative Research Team in University(PCSIRT)the 111 Project(Grant No.B14013)
文摘Recently, we developed a nonbuckling interconnect design that provides an effective approach to simultaneously achieving high elastic stretchability, easiness for encapsulation, and high electric performance for stretchable electronics. This paper aims to systematically study its mechanical and electric behaviors, including comparisons of the nonbuckling and buckling interconnect designs on stretchability, effects of the thickness on electric performance, and modeling and experimental investigations on the finite deformation mechanics. It is found that the results on stretchability depend on the layouts. Long straight segments and small arc radii for nonbuckling interconnects yield an enhancement of stretchability, which is much better than that of buckling designs. On the other hand, shorter straight segments or thicker interconnects are better to lower the resistances of interconnects.Therefore, optimization of the designs needs to balance the requirements of both the mechanical and electric performances. The finite deformation of interconnects during stretching is analyzed. The established analytic model is well validated by both the finite element modeling and experimental investigations. This work is key for providing the design guidelines for nonbucklingbased stretchable electronics.
基金funded by the Centre for Innovative Manufacturing in Ultra Precision of the Engineering and Physical Sciences Research Council,UK(Grant No.EP/I033491/1)the Centre for Doctoral Training in Ultra Precision Engineering of the Engineering and Physical Sciences Research Council,UK(Grant No.EP/K503241/1)+2 种基金the Science Foundation Ireland(SFI)(Grant No.15/RP/B3208)Irish Research Council(Grant No.CLNE/2018/1530)the National Natural Science Foundation of China(Grant No.51705462).
文摘Microwave induced plasma torches find wide applications in material and chemical analysis.Investigation of a coaxial electrode microwave induced plasma(CE–MIP)torch is conducted in this study,making it available for glass surface modification and polishing.A dedicated nozzle is designed to inject secondary gases into the main plasma jet.This study details the adaptation of a characterisation process for CE–MIP technology.Microwave spectrum analysis is used to create a polar plot of the microwave energy being emitted from the coaxial electrode,where the microwave energy couples with the gas to generate the plasma jet.Optical emission spectroscopy analysis is also employed to create spatial maps of the photonic intensity distribution within the plasma jet when different additional gases are injected into it.The CE–MIP torch is experimentally tested for surface energy modification on glass where it creates a super-hydrophilic surface.
文摘An experimental setup for cold extrusion process with electric-hydraulic chattering was developed and its working principle was introduced. The finite element (FE) model for a kind of cup part (material: 20Cr) was built by using the software Deform-3D. FE simulation experiments with and without electric-hydraulic chattering were carried out to analyze the velocity fields and the metal grid flow lines. The extrusion ex- periments of the cup part were also performed under different conditions. The difference of metal flow lines with and without electric-hydraulic chattering was discussed via a scanning electron microscope (SEM) and the Keyence super-depth three-dimensional microscopic system. The results showed that with the electric-hydraulic chattering, the velocity of material flow increases, whereas deformation resistance decreases. Electric hydraulic chattering results in easy metal flow, small bending degree of metal flow lines, slender and dense metal grains, and thereby an improved quality of the deformed parts.
基金Project supported by the National Natural Science Foundation of China(Nos.51375453 and 51775506)the Natural Science Foundation of Zhejiang Province(No.LY18E050022),China
文摘Excessive forces may cause root resorption and insufficient forces would introduce no effect in orthodontics. The objective of this study was to investigate the optimal orthodontic forces on a maxillary canine, using hydrostatic stress and logarithmic strain of the periodontal ligament(PDL) as indicators. Finite element models of a maxillary canine and surrounding tissues were developed. Distal translation/tipping forces, labial translation/tipping forces, and extrusion forces ranging from 0 to 300 g(100 g=0.98 N) were applied to the canine, as well as the force moment around the canine long axis ranging from 0 to 300 g·mm. The stress/strain of the PDL was quantified by nonlinear finite element analysis, and an absolute stress range between 0.47 k Pa(capillary pressure) and 12.8 k Pa(80% of human systolic blood pressure) was considered to be optimal, whereas an absolute strain exceeding 0.24%(80% of peak strain during canine maximal moving velocity) was considered optimal strain. The stress/strain distributions within the PDL were acquired for various canine movements, and the optimal orthodontic forces were calculated. As a result the optimal tipping forces(40–44 g for distal-direction and 28–32 g for labial-direction) were smaller than the translation forces(130–137 g for distal-direction and 110–124 g for labial-direction). In addition, the optimal forces for labialdirection motion(110–124 g for translation and 28–32 g for tipping) were smaller than those for distal-direction motion(130–137 g for translation and 40–44 g for tipping). Compared with previous results, the force interval was smaller than before and was therefore more conducive to the guidance of clinical treatment. The finite element analysis results provide new insights into orthodontic biomechanics and could help to optimize orthodontic treatment plans.
基金This work was financially supported by the project of National Science and Technology Supporting Plan(2015BAF01B02)the Open Foundation of Intelligent Robots and Systems at the University of Beijing Institute of Technology,High-tech Innovation Center(2016IRS03).
文摘In order to realize the visual positioning for Hangzhou white chrysanthemums harvesting robot in natural environment,a color image segmentation method for Hangzhou white chrysanthemum based on least squares support vector machine(LS-SVM)was proposed.Firstly,bilateral filter was used to filter the RGB channels image respectively to eliminate noise.Then the pixel-level color feature and texture feature of the image,which was used as input of LS-SVM model(classifier)and SVM model(classifier),were extracted via RGB value of image and gray level co-occurrence matrix.Finally,the color image was segmented with the trained LS-SVM model(classifier)and SVM model(classifier)separately.The experimental results showed that the trained LS-SVM model and SVM model could effectively segment the images of the Hangzhou white chrysanthemums from complicated background taken under three illumination conditions such as front-lighting,back-lighting and overshadow,with the accuracy of above 90%.When segmenting an image,the SVM algorithm required 1.3 s,while the LS-SVM algorithm proposed in this paper just needed 0.7 s,which was better than the SVM algorithm obviously.The picking experiment was carried out and the results showed that the implementation of the proposed segmentation algorithm on the picking robot could achieve 81%picking success rate.
基金supported by National Natural Science Foundation of China(Grant No.51075363)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY12E05022).
文摘By combining the investigation of the biomechanics and behavior of elephant trunk in the performance of a wide range of dexterous manipulations,a novel approach in the design and kinematics modeling of a fruit harvesting continuum manipulator was proposed.By comparing the structure of two different species of elephant trunk,a new continuum structure which matched the key features of elephant trunk was designed.Based on analysis of the underlying elephant trunk’s grasping mode,a novel kinematics model was proposed.Contrast to traditional robot kinematics which focused on end effector’s position and posture,the proposed continuum manipulator kinematics focus on the center of manipulator’s position and posture,which is more effective when trunk robot realizing grasp and establishes the foundation for its application.Finally,three typical grasping experiments were implemented.The experiment results showed that the manipulator could conduct wrap/pinch manipulations effectively for both small objects and bigger ones.
基金This work was financially supported by Huzhou Har-bot Intelligent Technology Co.,Ltd.
文摘With the decrease of agricultural labors and the increase in production costs,harvesting robots have become a research hotspot in recent years.To guide harvesting robots to pick mature citrus more precisely under variable illumination conditions,an image segmentation algorithm based on superpixel was proposed.Efficient simple linear iterative clustering(SLIC)algorithm which takes similarity of adjacent pixels into account was adopted to segment the images captured under variable illumination conditions into superpixels.The color and texture features of these superpixels were extracted and fused into feature vectors as descriptors to train backpropagation neural networks(BPNN)classifier in the next step.The adjacency information of superpixels was considered by calculating the global-local binary pattern(LBP)in R component images when extracting texture features.To accelerate the classification process,the mean of Cr-Cb image was utilized to find superpixels of interest which were regarded as candidates of citrus superpixels.These candidates were then classified by a pre-trained BPNN model with superpixel-level accuracy of 98.77%and pixel-level accuracy of 94.96%,while the average time to segment one image was 0.4778 s.Therefore,the results indicated that a superpixel-based segmentation algorithm toward citrus images had decent light robustness as well as high accuracy that could guide harvesting robot to pick mature citrus efficiently.