Both analyzing a large amount of space weather observed data and alleviating personal experience bias are significant challenges in generating artificial space weather forecast products.With the use of natural languag...Both analyzing a large amount of space weather observed data and alleviating personal experience bias are significant challenges in generating artificial space weather forecast products.With the use of natural language generation methods based on the sequence-to-sequence model,space weather forecast texts can be automatically generated.To conduct our generation tasks at a fine-grained level,a taxonomy of space weather phenomena based on descriptions is presented.Then,our MDH(Multi-Domain Hybrid)model is proposed for generating space weather summaries in two stages.This model is composed of three sequence-to-sequence-based deep neural network sub-models(one Bidirectional Auto-Regressive Transformers pre-trained model and two Transformer models).Then,to evaluate how well MDH performs,quality evaluation metrics based on two prevalent automatic metrics and our innovative human metric are presented.The comprehensive scores of the three summaries generating tasks on testing datasets are 70.87,93.50,and 92.69,respectively.The results suggest that MDH can generate space weather summaries with high accuracy and coherence,as well as suitable length,which can assist forecasters in generating high-quality space weather forecast products,despite the data being starved.展开更多
China has successfully launched six lunar probes so far.From Chang'E-1 to Chang'E-4,they completed the circling,landing and roving exploration,of which Chang'E-4 was the first landing on the far side of th...China has successfully launched six lunar probes so far.From Chang'E-1 to Chang'E-4,they completed the circling,landing and roving exploration,of which Chang'E-4 was the first landing on the far side of the Moon in human history.Chang'E-5 was launched in December 2020,bringing back 1731 g of lunar soil samples.Through the detailed analysis of the samples,the scientists understand the history of late lunar volcanism,specifically extending lunar volcanism by about 800 million to 1 billion years,and proposed possible mechanisms.In addition,there are many new understandings of space weathering such as meteorite impacts and solar wind radiation on the Moon.China's first Mars exploration mission Tianwen-1 was successfully launched in July 2021.Through the study of scientific data,a number of important scientific achievements have been made in the topography,water environment and shallow surface structure of Mars.This paper introduces the main scientific achievements of Chang'E-4,Chang'E-5 and Tianwen-1 in the past two years,excluding technical and engineering contents.Due to the large number of articles involved,this paper only introduces part of the results.展开更多
With the development of the hyperspectral remote sensing technique,extensive chemical weathering profiles have been identified on Mars.These weathering sequences,formed through precipitation-driven leaching processes,...With the development of the hyperspectral remote sensing technique,extensive chemical weathering profiles have been identified on Mars.These weathering sequences,formed through precipitation-driven leaching processes,can reflect the paleoenvironments and paleoclimates during pedogenic processes.The specific composition and stratigraphic profiles mirror the mineralogical and chemical trends observed in weathered basalts on Hainan Island in south China.In this study,we investigated the laboratory reflectance spectra of a 53-m-long drilling core of a thick basaltic weathering profile collected from Hainan Island.We established a quantitative spectral model by combining the genetic algorithm and partial least squares regression(GA-PLSR)to predict the chemical properties(SiO2,Al2O3,Fe2O3)and index of laterization(IOL).The entire sample set was divided into a calibration set of 25 samples and a validation set of 12 samples.Specifically,the GA was used to select the spectral subsets for each composition,which were then input into the PLSR model to derive the chemical concentration.The coefficient of determination(R2)values on the validation set for SiO2,Al2O3,Fe2O3,and the IOL were greater than 0.9.In addition,the effects of various spectral preprocessing techniques on the model accuracy were evaluated.We found that the spectral derivative treatment boosted the prediction accuracy of the GA-PLSR model.The improvement achieved with the second derivative was more pronounced than when using the first derivative.The quantitative model developed in this work has the potential to estimate the contents of similar weathering basalt products,and thus infer the degree of alteration and provide insights into paleoclimatic conditions.Moreover,the informative bands selected by the GA can serve as a guideline for designing spectral channels for the next generation of spectrometers.展开更多
Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speed...Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms.展开更多
Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is propo...Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is proposed as a new technique to study the magnetosphere using panoramic soft X-ray imaging.To better prepare for the data analysis of upcoming magnetospheric soft X-ray imaging missions,this paper compares the magnetospheric SWCX emission obtained by two methods in an XMM-Newton observation,during which the solar wind changed dramatically.The two methods differ in the data used to fit the diffuse X-ray background(DXB)parameters in spectral analysis.The method adding data from the ROSAT All-Sky Survey(RASS)is called the RASS method.The method using the quiet observation data is called the Quiet method,where quiet observations usually refer to observations made by the same satellite with the same target but under weaker solar wind conditions.Results show that the spectral compositions of magnetospheric SWCX emission obtained by the two methods are very similar,and the changes in intensity over time are highly consistent,although the intensity obtained by the RASS method is about 2.68±0.56 keV cm^(-2)s^(-1)sr^(-1)higher than that obtained by the Quiet method.Since the DXB intensity obtained by the RASS method is about 2.84±0.74 keV cm^(-2)s^(-1)sr^(-1)lower than that obtained by the Quiet method,and the linear correlation coefficient between the difference of SWCX and DXB obtained by the two methods in diffe rent energy band is close to-1,the diffe rences in magnetospheric SWCX can be fully attributed to the diffe rences in the fitted DXB.The difference between the two methods is most significant when the energy is less than 0.7 keV,which is also the main energy band of SWCX emission.In addition,the difference between the two methods is not related to the SWCX intensity and,to some extent,to solar wind conditions,because SWCX intensity typically va ries with the solar wind.In summary,both methods are robust and reliable,and should be considered based on the best available options.展开更多
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.展开更多
We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O...We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.展开更多
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)is a joint mission of the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS).Primary goals are investigating the dynamic response of the Eart...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)is a joint mission of the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS).Primary goals are investigating the dynamic response of the Earth's magnetosphere to the solar wind(SW)impact via simultaneous in situ magnetosheath plasma and magnetic field measurements,X-Ray images of the magnetosheath and magnetic cusps,and UV images of global auroral distributions.Magnetopause deformations associated with magnetosheath high speed jets(HSJs)under a quasi-parallel interplanetary magnetic field condition are studied using a threedimensional(3-D)global hybrid simulation.Soft X-ray intensity calculated based on both physical quantities of solar wind proton and oxygen ions is compared.We obtain key findings concerning deformations at the magnetopause:(1)Magnetopause deformations are highly coherent with the magnetosheath HSJs generated at the quasi-parallel region of the bow shock,(2)X-ray intensities estimated using solar wind h+and self-consistentO7+ions are consistent with each other,(3)Visual spacecraft are employed to check the discrimination ability for capturing magnetopause deformations on Lunar and polar orbits,respectively.The SMILE spacecraft on the polar orbit could be expected to provide opportunities for capturing the global geometry of the magnetopause in the equatorial plane.A striking point is that SMILE has the potential to capture small-scale magnetopause deformations and magnetosheath transients,such as HSJs,at medium altitudes on its orbit.Simulation results also demonstrate that a lunar based imager(e.g.,Lunar Environment heliospheric X-ray Imager,LEXI)is expected to observe a localized brightening of the magnetosheath during HSJ events in the meridian plane.These preliminary results might contribute to the pre-studies for the SMILE and LEXI missions by providing qualitative and quantitative soft X-ray estimates of dayside kinetic processes.展开更多
The global ionosphere maps(GIM)provided by the International GNSS Service(IGS)are extensively utilized for ionospheric morphology monitoring,scientific research,and practical application.Assessing the credibility of G...The global ionosphere maps(GIM)provided by the International GNSS Service(IGS)are extensively utilized for ionospheric morphology monitoring,scientific research,and practical application.Assessing the credibility of GIM products in data-sparse regions is of paramount importance.In this study,measurements from the Crustal Movement Observation Network of China(CMONOC)are leveraged to evaluate the suitability of IGS-GIM products over China region in 2013-2014.The indices of mean error(ME),root mean square error(RMSE),and normalized RMSE(NRMSE)are then utilized to quantify the accuracy of IGS-GIM products.Results revealed distinct local time and latitudinal dependencies in IGS-GIM errors,with substantially high errors at nighttime(NRMSE:39%)and above 40°latitude(NRMSE:49%).Seasonal differences also emerged,with larger equinoctial deviations(NRMSE:33.5%)compared with summer(20%).A preliminary analysis implied that the irregular assimilation of sparse IGS observations,compounded by China’s distinct geomagnetic topology,may manifest as error variations.These results suggest that modeling based solely on IGS-GIM observations engenders inadequate representations across China and that a thorough examination would proffer the necessary foundation for advancing regional total electron content(TEC)constructions.展开更多
Volume visualization can not only illustrate overall distribution but also inner structure and it is an important approach for space environment research.Space environment simulation can produce several correlated var...Volume visualization can not only illustrate overall distribution but also inner structure and it is an important approach for space environment research.Space environment simulation can produce several correlated variables at the same time.However,existing compressed volume rendering methods only consider reducing the redundant information in a single volume of a specific variable,not dealing with the redundant information among these variables.For space environment volume data with multi-correlated variables,based on the HVQ-1d method we propose a further improved HVQ method by compositing variable-specific levels to reduce the redundant information among these variables.The volume data associated with each variable is divided into disjoint blocks of size 43 initially.The blocks are represented as two levels,a mean level and a detail level.The variable-specific mean levels and detail levels are combined respectively to form a larger global mean level and a larger global detail level.To both global levels,a splitting based on a principal component analysis is applied to compute initial codebooks.Then,LBG algorithm is conducted for codebook refinement and quantization.We further take advantage of progressive rendering based on GPU for real-time interactive visualization.Our method has been tested along with HVQ and HVQ-1d on high-energy proton flux volume data,including>5,>10,>30 and>50 MeV integrated proton flux.The results of our experiments prove that the method proposed in this paper pays the least cost of quality at compression,achieves a higher decompression and rendering speed compared with HVQ and provides satisficed fidelity while ensuring interactive rendering speed.展开更多
The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese...The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.展开更多
The SMILE(Solar wind Magnetosphere Ionosphere Link Explorer)mission is a joint space science mission between the Chinese Academy of Sciences(CAS)and the European Space Agency(ESA),aiming to understand the interaction ...The SMILE(Solar wind Magnetosphere Ionosphere Link Explorer)mission is a joint space science mission between the Chinese Academy of Sciences(CAS)and the European Space Agency(ESA),aiming to understand the interaction of the solar wind with the Earth’s magnetosphere in a global manner.As of May 2024,the SMILE mission is in phase-D with an expected launch date of September 2025.This report summarizes developments in the mission during the past two years.展开更多
This paper deduced the temporal evolution of the magnetic field through a series of high-resolution vector magnetograms and calculated the fine distribution map of current density during an X9.3-class flare eruptions ...This paper deduced the temporal evolution of the magnetic field through a series of high-resolution vector magnetograms and calculated the fine distribution map of current density during an X9.3-class flare eruptions using Ampère's law.The results show that a pair of conjugate current ribbons exist on both sides of the magnetic neutral line in this active region,and these conjugate current ribbons persist before,during,and after the flare.It was observed that the X9.3-class flare brightened in the form of a bright core and evolved into a double-ribbon flare over time.Importantly,the position of the double-ribbon flare matches the position of the current ribbons with high accuracy,and their morphologies are very similar.By investigating the complexity of current density and flare morphology,we discovered a potential connection between the eruption of major flares and the characteristics of current density.展开更多
The 2015/16 El Niño event ranks among the top three of the last 100 years in terms of intensity,but most dynamical models had a relatively low prediction skill for this event before the summer months.Therefore,th...The 2015/16 El Niño event ranks among the top three of the last 100 years in terms of intensity,but most dynamical models had a relatively low prediction skill for this event before the summer months.Therefore,the attribution of this particular event can help us to understand the cause of super El Niño–Southern Oscillation events and how to forecast them skillfully.The present study applies attribute methods based on a deep learning model to study the key factors related to the formation of this event.A deep learning model is trained using historical simulations from 21 CMIP6 models to predict the Niño-3.4 index.The integrated gradient method is then used to identify the key signals in the North Pacific that determine the evolution of the Niño-3.4 index.These crucial signals are then masked in the initial conditions to verify their roles in the prediction.In addition to confirming the key signals inducing the super El Niño event revealed in previous attribution studies,we identify the combined contribution of the tropical North Atlantic and the South Pacific oceans to the evolution and intensity of this event,emphasizing the crucial role of the interactions among them and the North Pacific.This approach is also applied to other El Niño events,revealing several new precursor signals.This study suggests that the deep learning method is useful in attributing the key factors inducing extreme tropical climate events.展开更多
Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently opera...Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently operational in orbit.The data obtained from Fengyun satellites is employed in a multitude of applications,including weather forecasting,meteorological disaster prevention and reduction,climate change,global environmental monitoring,and space weather.These data products and services are made available to the global community,resulting in tangible social and economic benefits.In 2023,two Fengyun meteorological satellites were successfully launched.This report presents an overview of the two recently launched Fengyun satellites and currently in orbit Fengyun satellites,including an evaluation of their remote sensing instruments since 2022.Additionally,it addresses the subject of Fengyun satellite data archiving,data services,application services,international cooperation,and supporting activities.Furthermore,the development prospects have been outlined.展开更多
Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection ...Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection observed in the flux rope embedded in kink-like flapping current sheets near the dusk-side flank of the magnetotail.Unlike more common magnetotail reconnections,which are symmetric,these asymmetric small-scale(λ_(i)~650 km)reconnections were found in the highly twisted current sheet when the direction normal to the sheet changes from the Z direction into the Y direction.The unique feature of this unusual reconnection is that the reconnection jets are along the Z direction-different from outflow in the X direction,which is the more usual situation.This vertical reconnection jet is parallel or antiparallel to the up-and-down motion of the tail’s current sheet.The normalized reconnection rate R is estimated to be~0.1.Our results indicate that such asymmetric reconnections can significantly enlarge current sheet flapping,with large oscillation amplitudes.This letter presents direct evidence of guide field reconnection in a highly twisted current sheet,characterized by enlarged current sheet flapping as a consequence of the reconnection outflow.展开更多
We conducted 2-D particle-in-cell simulations to investigate the impact of boundary conditions on the evolution of magnetic reconnection. The results demonstrate that the boundary conditions are crucial to this evolut...We conducted 2-D particle-in-cell simulations to investigate the impact of boundary conditions on the evolution of magnetic reconnection. The results demonstrate that the boundary conditions are crucial to this evolution. Specifically, in the cases of traditional periodic boundary(PB) and fully-opened boundary(OB) conditions, the evolutions are quite similar before the system achieves the fastest reconnection rate. However, differences emerge between the two cases afterward. In the PB case, the reconnection electric field experiences a rapid decline and even becomes negative, indicating a reversal of the reconnection process. In contrast, the system maintains a fast reconnection stage in the OB case. Suprathermal electrons are generated near the separatrix and in the exhaust region of both simulation cases. In the electron density depletion layer and the dipolarization front region, a larger proportion of suprathermal electrons are produced in the OB case. Medium-energy electrons are mainly located in the vicinity of the X-line and downstream of the reconnection site in both cases. However, in the OB case, they can also be generated in the electron holes along the separatrix. Before the reverse reconnection stage, no high-energy electrons are present in the PB case. In contrast, about 20% of the electrons in the thin and elongated electron current layer are high-energy in the OB case.展开更多
This study employs a linear inversion algorithm to retrieve volume emission rates(VERs)of molecular O_(2) nightglow at 1.27μm,utilizing Limb-Viewed spectra obtained from the SCanning Imaging Absorption spectroMeter f...This study employs a linear inversion algorithm to retrieve volume emission rates(VERs)of molecular O_(2) nightglow at 1.27μm,utilizing Limb-Viewed spectra obtained from the SCanning Imaging Absorption spectroMeter for Atmospheric for CHartographY(SCIAMACHY)payload on board the Envisat satellite.The retrieved results are compared with VERs data from the SABER payload on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics(TIMED)satellite,exhibiting consistency.This will help to facilitate accurate revelation of spatial distribution and periodic variation in O_(2) nightglow.VERs are extracted monthly within the altitude range of 75-110 km from 2002 to 2012,yielding a climatology of spatial and temporal distributions.The meridional structure exhibits two maxima,at the equator and at 45°N.Between August and October,the VERs exhibit a meridional bimodal structure,with the weaker one above the equator and the stronger one above 45°N.In April,the VERs reach their annual maximum.Additionally,harmonic analysis reveals significant temporal variations on different scales.The emission shows characteristics of annual and semi-annual variation,and a non-linear long-term trend associated with solar cycle activity.展开更多
The polar magnetic fields of the Sun play an important role in governing solar activity and powering fast solar wind.However,because our view of the Sun is limited in the ecliptic plane,the polar regions remain largel...The polar magnetic fields of the Sun play an important role in governing solar activity and powering fast solar wind.However,because our view of the Sun is limited in the ecliptic plane,the polar regions remain largely uncharted.Using the high spatial resolution and polarimetric precision vector magnetograms observed by Hinode from 2012 to 2021,we investigate the long-term variation of the magnetic fields in polar caps at different latitudes.The Hinode magnetic measurements show that the polarity reversal processes in the north and south polar caps are non-simultaneous.The variation of the averaged radial magnetic flux density reveals that,in each polar cap,the polarity reversal is completed successively from the 70°latitude to the pole,reflecting a poleward magnetic flux migration therein.These results clarify the polar magnetic polarity reversal process at different latitudes.展开更多
The absorption features of olivine in visible and near-infrared(VNIR)reflectance spectra are the key spectral parameters in its mineralogical studies.Generally,these spectral parameters can be obtained by exploiting t...The absorption features of olivine in visible and near-infrared(VNIR)reflectance spectra are the key spectral parameters in its mineralogical studies.Generally,these spectral parameters can be obtained by exploiting the Modified Gaussian Model(MGM)with a proper continuum removal.However,different continua may change the deconvolution results of these parameters.This paper investigates the diagnostic spectral features of olivine with diverse chemical compositions.Four different continuum removal methods with MGM for getting the deconvolution results are presented and the regression equations for predicting the Mg-number(Fo#)are introduced.The results show that different continua superimposed on the mineral absorption features will make the absorption center shift,as well as the obvious alterations in shape,width and strength of the absorption band.Additionally,it is also found that the logarithm of a second-order polynomial continuum can match the overall shape of the spectrum in logarithmic space,and the improved regression equations applied to estimate the chemical composition of olivine-dominated spectra also have a better performance.As an application example,the improved approach is applied to pulse laser irradiated olivine grains to simulate and study the space weathering effects on olivine diagnostic spectral features.The experiments confirm that space weathering can make the absorption band center shift toward longer wavelength.Therefore,the Fo#estimated from remote sensing spectra may be less than its actual chemical composition.These results may provide valuable information for revealing the difference between the spectra of olivine grains and olivine-dominated asteroids.展开更多
基金Supported by the Key Research Program of the Chinese Academy of Sciences(ZDRE-KT-2021-3)。
文摘Both analyzing a large amount of space weather observed data and alleviating personal experience bias are significant challenges in generating artificial space weather forecast products.With the use of natural language generation methods based on the sequence-to-sequence model,space weather forecast texts can be automatically generated.To conduct our generation tasks at a fine-grained level,a taxonomy of space weather phenomena based on descriptions is presented.Then,our MDH(Multi-Domain Hybrid)model is proposed for generating space weather summaries in two stages.This model is composed of three sequence-to-sequence-based deep neural network sub-models(one Bidirectional Auto-Regressive Transformers pre-trained model and two Transformer models).Then,to evaluate how well MDH performs,quality evaluation metrics based on two prevalent automatic metrics and our innovative human metric are presented.The comprehensive scores of the three summaries generating tasks on testing datasets are 70.87,93.50,and 92.69,respectively.The results suggest that MDH can generate space weather summaries with high accuracy and coherence,as well as suitable length,which can assist forecasters in generating high-quality space weather forecast products,despite the data being starved.
文摘China has successfully launched six lunar probes so far.From Chang'E-1 to Chang'E-4,they completed the circling,landing and roving exploration,of which Chang'E-4 was the first landing on the far side of the Moon in human history.Chang'E-5 was launched in December 2020,bringing back 1731 g of lunar soil samples.Through the detailed analysis of the samples,the scientists understand the history of late lunar volcanism,specifically extending lunar volcanism by about 800 million to 1 billion years,and proposed possible mechanisms.In addition,there are many new understandings of space weathering such as meteorite impacts and solar wind radiation on the Moon.China's first Mars exploration mission Tianwen-1 was successfully launched in July 2021.Through the study of scientific data,a number of important scientific achievements have been made in the topography,water environment and shallow surface structure of Mars.This paper introduces the main scientific achievements of Chang'E-4,Chang'E-5 and Tianwen-1 in the past two years,excluding technical and engineering contents.Due to the large number of articles involved,this paper only introduces part of the results.
基金National Key Research and Development Project(Grant No.2019YFE0123300)National Natural Science Foundation of China(Grant Nos.42072337,42241111,and 42241129)+1 种基金Pandeng Program of National Space Science Center,Chinese Academy of Sciences.Xing Wu also acknowledges support from the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(Grant No.2022QNRC001)China Postdoctoral Science Foundation(Grant No.2021M700149).
文摘With the development of the hyperspectral remote sensing technique,extensive chemical weathering profiles have been identified on Mars.These weathering sequences,formed through precipitation-driven leaching processes,can reflect the paleoenvironments and paleoclimates during pedogenic processes.The specific composition and stratigraphic profiles mirror the mineralogical and chemical trends observed in weathered basalts on Hainan Island in south China.In this study,we investigated the laboratory reflectance spectra of a 53-m-long drilling core of a thick basaltic weathering profile collected from Hainan Island.We established a quantitative spectral model by combining the genetic algorithm and partial least squares regression(GA-PLSR)to predict the chemical properties(SiO2,Al2O3,Fe2O3)and index of laterization(IOL).The entire sample set was divided into a calibration set of 25 samples and a validation set of 12 samples.Specifically,the GA was used to select the spectral subsets for each composition,which were then input into the PLSR model to derive the chemical concentration.The coefficient of determination(R2)values on the validation set for SiO2,Al2O3,Fe2O3,and the IOL were greater than 0.9.In addition,the effects of various spectral preprocessing techniques on the model accuracy were evaluated.We found that the spectral derivative treatment boosted the prediction accuracy of the GA-PLSR model.The improvement achieved with the second derivative was more pronounced than when using the first derivative.The quantitative model developed in this work has the potential to estimate the contents of similar weathering basalt products,and thus infer the degree of alteration and provide insights into paleoclimatic conditions.Moreover,the informative bands selected by the GA can serve as a guideline for designing spectral channels for the next generation of spectrometers.
基金Supported by the Key Research Program of the Chinese Academy of Sciences(ZDRE-KT-2021-3)。
文摘Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms.
基金supported by NNSFC grants 42322408,42188101 and 42074202the Strategic Pioneer Program on Space Science,CAS Grant nos.XDA15350201+3 种基金in part by the Research Fund from the Chinese Academy of Sciencesthe Specialized Research Fund for State Key Laboratories of China.supported by the Young Elite Scientists Sponsorship Program(CAST-Y202045)supported by Royal Society grant DHFR1211068。
文摘Solar wind charge exchange(SWCX)is the process of solar wind high-valence ions exchanging charges with neutral components and generating soft X-rays.Recently,detecting the SWCX emission from the magnetosphere is proposed as a new technique to study the magnetosphere using panoramic soft X-ray imaging.To better prepare for the data analysis of upcoming magnetospheric soft X-ray imaging missions,this paper compares the magnetospheric SWCX emission obtained by two methods in an XMM-Newton observation,during which the solar wind changed dramatically.The two methods differ in the data used to fit the diffuse X-ray background(DXB)parameters in spectral analysis.The method adding data from the ROSAT All-Sky Survey(RASS)is called the RASS method.The method using the quiet observation data is called the Quiet method,where quiet observations usually refer to observations made by the same satellite with the same target but under weaker solar wind conditions.Results show that the spectral compositions of magnetospheric SWCX emission obtained by the two methods are very similar,and the changes in intensity over time are highly consistent,although the intensity obtained by the RASS method is about 2.68±0.56 keV cm^(-2)s^(-1)sr^(-1)higher than that obtained by the Quiet method.Since the DXB intensity obtained by the RASS method is about 2.84±0.74 keV cm^(-2)s^(-1)sr^(-1)lower than that obtained by the Quiet method,and the linear correlation coefficient between the difference of SWCX and DXB obtained by the two methods in diffe rent energy band is close to-1,the diffe rences in magnetospheric SWCX can be fully attributed to the diffe rences in the fitted DXB.The difference between the two methods is most significant when the energy is less than 0.7 keV,which is also the main energy band of SWCX emission.In addition,the difference between the two methods is not related to the SWCX intensity and,to some extent,to solar wind conditions,because SWCX intensity typically va ries with the solar wind.In summary,both methods are robust and reliable,and should be considered based on the best available options.
基金supported by the Stable-Support Scientific Project of the China Research Institute of Radio-wave Propagation(Grant No.A13XXXXWXX)the National Natural Science Foundation of China(Grant Nos.42174210,4207202,and 42188101)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant No.XDA15014800)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.
基金the National Natural Science Foundation of China(Grant Nos.41831073,42174196,and 42374205)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(CAS+4 种基金Grant No.YSBR-018)the Informatization Plan of CAS(Grant No.CAS-WX2021PY-0101)the Youth Cross Team Scientific Research project of the Chinese Academy of Sciences(Grant No.JCTD-2021-10)the Open Research Project of Large Research Infrastructures of CAS titled“Study on the Interaction Between Low-/Mid-Latitude Atmosphere and Ionosphere Based on the Chinese Meridian Project.”This work was also supported in part by the Specialized Research Fund and the Open Research Program of the State Key Laboratory of Space Weather.
文摘We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.
基金supported by the National Key R&D program of China No.2021YFA0718600NNFSC grants 42150105,42188101,and 42274210the Specialized Research Fund for State Key Laboratories of China。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)is a joint mission of the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS).Primary goals are investigating the dynamic response of the Earth's magnetosphere to the solar wind(SW)impact via simultaneous in situ magnetosheath plasma and magnetic field measurements,X-Ray images of the magnetosheath and magnetic cusps,and UV images of global auroral distributions.Magnetopause deformations associated with magnetosheath high speed jets(HSJs)under a quasi-parallel interplanetary magnetic field condition are studied using a threedimensional(3-D)global hybrid simulation.Soft X-ray intensity calculated based on both physical quantities of solar wind proton and oxygen ions is compared.We obtain key findings concerning deformations at the magnetopause:(1)Magnetopause deformations are highly coherent with the magnetosheath HSJs generated at the quasi-parallel region of the bow shock,(2)X-ray intensities estimated using solar wind h+and self-consistentO7+ions are consistent with each other,(3)Visual spacecraft are employed to check the discrimination ability for capturing magnetopause deformations on Lunar and polar orbits,respectively.The SMILE spacecraft on the polar orbit could be expected to provide opportunities for capturing the global geometry of the magnetopause in the equatorial plane.A striking point is that SMILE has the potential to capture small-scale magnetopause deformations and magnetosheath transients,such as HSJs,at medium altitudes on its orbit.Simulation results also demonstrate that a lunar based imager(e.g.,Lunar Environment heliospheric X-ray Imager,LEXI)is expected to observe a localized brightening of the magnetosheath during HSJ events in the meridian plane.These preliminary results might contribute to the pre-studies for the SMILE and LEXI missions by providing qualitative and quantitative soft X-ray estimates of dayside kinetic processes.
基金the National Key R&D Program of China(Grant No.2022YFF0503702)the National Natural Science Foundation of China(Grant Nos.42074186,41831071,42004136,and 42274195)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20211036)the Specialized Research Fund for State Key Laboratories,and the University of Science and Technology of China Research Funds of the Double First-Class Initiative(Grant No.YD2080002013).
文摘The global ionosphere maps(GIM)provided by the International GNSS Service(IGS)are extensively utilized for ionospheric morphology monitoring,scientific research,and practical application.Assessing the credibility of GIM products in data-sparse regions is of paramount importance.In this study,measurements from the Crustal Movement Observation Network of China(CMONOC)are leveraged to evaluate the suitability of IGS-GIM products over China region in 2013-2014.The indices of mean error(ME),root mean square error(RMSE),and normalized RMSE(NRMSE)are then utilized to quantify the accuracy of IGS-GIM products.Results revealed distinct local time and latitudinal dependencies in IGS-GIM errors,with substantially high errors at nighttime(NRMSE:39%)and above 40°latitude(NRMSE:49%).Seasonal differences also emerged,with larger equinoctial deviations(NRMSE:33.5%)compared with summer(20%).A preliminary analysis implied that the irregular assimilation of sparse IGS observations,compounded by China’s distinct geomagnetic topology,may manifest as error variations.These results suggest that modeling based solely on IGS-GIM observations engenders inadequate representations across China and that a thorough examination would proffer the necessary foundation for advancing regional total electron content(TEC)constructions.
基金the Key Research Program of the Chinese Academy of Sciences(ZDRE-KT-2021-3)。
文摘Volume visualization can not only illustrate overall distribution but also inner structure and it is an important approach for space environment research.Space environment simulation can produce several correlated variables at the same time.However,existing compressed volume rendering methods only consider reducing the redundant information in a single volume of a specific variable,not dealing with the redundant information among these variables.For space environment volume data with multi-correlated variables,based on the HVQ-1d method we propose a further improved HVQ method by compositing variable-specific levels to reduce the redundant information among these variables.The volume data associated with each variable is divided into disjoint blocks of size 43 initially.The blocks are represented as two levels,a mean level and a detail level.The variable-specific mean levels and detail levels are combined respectively to form a larger global mean level and a larger global detail level.To both global levels,a splitting based on a principal component analysis is applied to compute initial codebooks.Then,LBG algorithm is conducted for codebook refinement and quantization.We further take advantage of progressive rendering based on GPU for real-time interactive visualization.Our method has been tested along with HVQ and HVQ-1d on high-energy proton flux volume data,including>5,>10,>30 and>50 MeV integrated proton flux.The results of our experiments prove that the method proposed in this paper pays the least cost of quality at compression,achieves a higher decompression and rendering speed compared with HVQ and provides satisficed fidelity while ensuring interactive rendering speed.
基金funding and support from the United Kingdom Space Agency(UKSA)the European Space Agency(ESA)+5 种基金funded and supported through the ESA PRODEX schemefunded through PRODEX PEA 4000123238the Research Council of Norway grant 223252funded by Spanish MCIN/AEI/10.13039/501100011033 grant PID2019-107061GB-C61funding and support from the Chinese Academy of Sciences(CAS)funding and support from the National Aeronautics and Space Administration(NASA)。
文摘The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.
基金Founded by the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(XDA15350000)。
文摘The SMILE(Solar wind Magnetosphere Ionosphere Link Explorer)mission is a joint space science mission between the Chinese Academy of Sciences(CAS)and the European Space Agency(ESA),aiming to understand the interaction of the solar wind with the Earth’s magnetosphere in a global manner.As of May 2024,the SMILE mission is in phase-D with an expected launch date of September 2025.This report summarizes developments in the mission during the past two years.
基金supported by the Natural Natural Science Foundation of China(NSFC,grant No.12303062)Sichuan Science and Technology Program(2023NSFSC1351)+1 种基金Joint Funds of the National Natural Science Foundation of China(NSFC,grant No.U1931116)the Project Supported by the Specialized Research Fund for State Key Laboratories。
文摘This paper deduced the temporal evolution of the magnetic field through a series of high-resolution vector magnetograms and calculated the fine distribution map of current density during an X9.3-class flare eruptions using Ampère's law.The results show that a pair of conjugate current ribbons exist on both sides of the magnetic neutral line in this active region,and these conjugate current ribbons persist before,during,and after the flare.It was observed that the X9.3-class flare brightened in the form of a bright core and evolved into a double-ribbon flare over time.Importantly,the position of the double-ribbon flare matches the position of the current ribbons with high accuracy,and their morphologies are very similar.By investigating the complexity of current density and flare morphology,we discovered a potential connection between the eruption of major flares and the characteristics of current density.
基金supported by the National Key R&D Program of China(2019YFA0606703)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y202025).
文摘The 2015/16 El Niño event ranks among the top three of the last 100 years in terms of intensity,but most dynamical models had a relatively low prediction skill for this event before the summer months.Therefore,the attribution of this particular event can help us to understand the cause of super El Niño–Southern Oscillation events and how to forecast them skillfully.The present study applies attribute methods based on a deep learning model to study the key factors related to the formation of this event.A deep learning model is trained using historical simulations from 21 CMIP6 models to predict the Niño-3.4 index.The integrated gradient method is then used to identify the key signals in the North Pacific that determine the evolution of the Niño-3.4 index.These crucial signals are then masked in the initial conditions to verify their roles in the prediction.In addition to confirming the key signals inducing the super El Niño event revealed in previous attribution studies,we identify the combined contribution of the tropical North Atlantic and the South Pacific oceans to the evolution and intensity of this event,emphasizing the crucial role of the interactions among them and the North Pacific.This approach is also applied to other El Niño events,revealing several new precursor signals.This study suggests that the deep learning method is useful in attributing the key factors inducing extreme tropical climate events.
基金Supported by National Natural Science Foundation of China(42274217)。
文摘Fengyun meteorological satellites have undergone a series of significant developments over the past 50 years.Two generations,four types,and 21 Fengyun satellites have been developed and launched,with 9 currently operational in orbit.The data obtained from Fengyun satellites is employed in a multitude of applications,including weather forecasting,meteorological disaster prevention and reduction,climate change,global environmental monitoring,and space weather.These data products and services are made available to the global community,resulting in tangible social and economic benefits.In 2023,two Fengyun meteorological satellites were successfully launched.This report presents an overview of the two recently launched Fengyun satellites and currently in orbit Fengyun satellites,including an evaluation of their remote sensing instruments since 2022.Additionally,it addresses the subject of Fengyun satellite data archiving,data services,application services,international cooperation,and supporting activities.Furthermore,the development prospects have been outlined.
基金supported by NSFC grants(42188101,42174209,42174207)the Specialized Research Fund for State Key Laboratories of Chinathe Strategic Pioneer Program on Space Science II,Chinese Academy of Sciences,grants XDA15350201,XDA15052500.
文摘Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection observed in the flux rope embedded in kink-like flapping current sheets near the dusk-side flank of the magnetotail.Unlike more common magnetotail reconnections,which are symmetric,these asymmetric small-scale(λ_(i)~650 km)reconnections were found in the highly twisted current sheet when the direction normal to the sheet changes from the Z direction into the Y direction.The unique feature of this unusual reconnection is that the reconnection jets are along the Z direction-different from outflow in the X direction,which is the more usual situation.This vertical reconnection jet is parallel or antiparallel to the up-and-down motion of the tail’s current sheet.The normalized reconnection rate R is estimated to be~0.1.Our results indicate that such asymmetric reconnections can significantly enlarge current sheet flapping,with large oscillation amplitudes.This letter presents direct evidence of guide field reconnection in a highly twisted current sheet,characterized by enlarged current sheet flapping as a consequence of the reconnection outflow.
基金the support from the Key Research Program of the Chinese Academy of Sciences(No.ZDBSSSW-TLC00105)the National Key R&D Program of China(No.2022YFF0503200)+1 种基金National Natural Science Foundation of China(Nos.41974173 and 42274224)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2019066)。
文摘We conducted 2-D particle-in-cell simulations to investigate the impact of boundary conditions on the evolution of magnetic reconnection. The results demonstrate that the boundary conditions are crucial to this evolution. Specifically, in the cases of traditional periodic boundary(PB) and fully-opened boundary(OB) conditions, the evolutions are quite similar before the system achieves the fastest reconnection rate. However, differences emerge between the two cases afterward. In the PB case, the reconnection electric field experiences a rapid decline and even becomes negative, indicating a reversal of the reconnection process. In contrast, the system maintains a fast reconnection stage in the OB case. Suprathermal electrons are generated near the separatrix and in the exhaust region of both simulation cases. In the electron density depletion layer and the dipolarization front region, a larger proportion of suprathermal electrons are produced in the OB case. Medium-energy electrons are mainly located in the vicinity of the X-line and downstream of the reconnection site in both cases. However, in the OB case, they can also be generated in the electron holes along the separatrix. Before the reverse reconnection stage, no high-energy electrons are present in the PB case. In contrast, about 20% of the electrons in the thin and elongated electron current layer are high-energy in the OB case.
基金supported by the National Key R&D program of China(2021YFE0110200)the Project of Stable Support for Youth Team in Basic Research Field,CAS(YSBR-018)+3 种基金the National Natural Science Foundation of China(41831073,42174196 and 42174212)the Chinese Meridian Projectthe Specialized Research Fund for State Key Laboratoriesthe International Partnership Program of Chinese Academy of Sciences.Grant No.183311KYSB20200003.
文摘This study employs a linear inversion algorithm to retrieve volume emission rates(VERs)of molecular O_(2) nightglow at 1.27μm,utilizing Limb-Viewed spectra obtained from the SCanning Imaging Absorption spectroMeter for Atmospheric for CHartographY(SCIAMACHY)payload on board the Envisat satellite.The retrieved results are compared with VERs data from the SABER payload on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics(TIMED)satellite,exhibiting consistency.This will help to facilitate accurate revelation of spatial distribution and periodic variation in O_(2) nightglow.VERs are extracted monthly within the altitude range of 75-110 km from 2002 to 2012,yielding a climatology of spatial and temporal distributions.The meridional structure exhibits two maxima,at the equator and at 45°N.Between August and October,the VERs exhibit a meridional bimodal structure,with the weaker one above the equator and the stronger one above 45°N.In April,the VERs reach their annual maximum.Additionally,harmonic analysis reveals significant temporal variations on different scales.The emission shows characteristics of annual and semi-annual variation,and a non-linear long-term trend associated with solar cycle activity.
基金supported by the National Key R&D Programs of China(2019YFA0405000,2022YFF0503800,2022YFF0503000)the Strategic Priority Research Programs of the Chinese Academy of Sciences(XDB0560000,XDB41000000)+1 种基金the National Natural Science Foundations of China(NSFC,Grant Nos.12173005,12273060,12350004,12273061,12222306,and 12073001)the Youth Innovation Promotion Association CAS,and Yunnan Academician Workstation of Wang Jingxiu(No.202005AF150025)。
文摘The polar magnetic fields of the Sun play an important role in governing solar activity and powering fast solar wind.However,because our view of the Sun is limited in the ecliptic plane,the polar regions remain largely uncharted.Using the high spatial resolution and polarimetric precision vector magnetograms observed by Hinode from 2012 to 2021,we investigate the long-term variation of the magnetic fields in polar caps at different latitudes.The Hinode magnetic measurements show that the polarity reversal processes in the north and south polar caps are non-simultaneous.The variation of the averaged radial magnetic flux density reveals that,in each polar cap,the polarity reversal is completed successively from the 70°latitude to the pole,reflecting a poleward magnetic flux migration therein.These results clarify the polar magnetic polarity reversal process at different latitudes.
基金the Foundation of the State Key Laboratory of Lunar and Planetary Sciences,Macao University of Science and Technology,Macao,Chinafunded by The Science and Technology Development Fund,Macao SAR(No.0018/2018/A)+3 种基金Beijing Municipal Science and Technology Commission(No.Z181100002918003)Natural Science Foundation of China(Nos.U1631124,11773023 and 11941001)grants from The Science and Technology Development Fund,Macao SAR(No.0007/2019/A)the support of Brown University,MIT and USGS。
文摘The absorption features of olivine in visible and near-infrared(VNIR)reflectance spectra are the key spectral parameters in its mineralogical studies.Generally,these spectral parameters can be obtained by exploiting the Modified Gaussian Model(MGM)with a proper continuum removal.However,different continua may change the deconvolution results of these parameters.This paper investigates the diagnostic spectral features of olivine with diverse chemical compositions.Four different continuum removal methods with MGM for getting the deconvolution results are presented and the regression equations for predicting the Mg-number(Fo#)are introduced.The results show that different continua superimposed on the mineral absorption features will make the absorption center shift,as well as the obvious alterations in shape,width and strength of the absorption band.Additionally,it is also found that the logarithm of a second-order polynomial continuum can match the overall shape of the spectrum in logarithmic space,and the improved regression equations applied to estimate the chemical composition of olivine-dominated spectra also have a better performance.As an application example,the improved approach is applied to pulse laser irradiated olivine grains to simulate and study the space weathering effects on olivine diagnostic spectral features.The experiments confirm that space weathering can make the absorption band center shift toward longer wavelength.Therefore,the Fo#estimated from remote sensing spectra may be less than its actual chemical composition.These results may provide valuable information for revealing the difference between the spectra of olivine grains and olivine-dominated asteroids.