期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Heterostructured nickel-cobalt metal alloy and metal oxide nanoparticles as a polysulfide mediator for stable lithium-sulfur full batteries with lean electrolyte
1
作者 Hyeona Park Suyeong Lee +6 位作者 Hyerim Kim Hyunyoung Park Hun Kim Jongsoon Kim Marco Agostini Yang-Kook Sun Jang-Yeon Hwang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期163-177,共15页
Batteries that utilize low-cost elemental sulfur and light metallic lithium as electrodes have great potential in achieving high energy density.However,building a lithium-sulfur(Li-S)full battery by controlling the el... Batteries that utilize low-cost elemental sulfur and light metallic lithium as electrodes have great potential in achieving high energy density.However,building a lithium-sulfur(Li-S)full battery by controlling the electrolyte volume generally produces low practical energy because of the limited electrochemical Li-S redox.Herein,the high energy/high performance of a Li-S full battery with practical sulfur loading and minimum electrolyte volume is reported.A unique hybrid architecture configured with Ni-Co metal alloy(NiCo)and metal oxide(NiCoO_(2))nanoparticles heterogeneously anchored in carbon nanotube-embedded selfstanding carbon matrix is fabricated as a host for sulfur.This work demonstrates the considerable improvement that the hybrid structure's high conductivity and satisfactory porosity promote the transport of electrons and lithium ions in Li-S batteries.Through experimental and theoretical validations,the function of NiCo and NiCoO_(2) nanoparticles as an efficient polysulfide mediator is established.These particles afford polysulfide anchoring and catalytic sites for Li-S redox reaction,thus improving the redox conversion reversibility.Even at high sulfur loading,the nanostructured Ni-Co metal alloy and metal oxide enable to have stable cycling performance under lean electrolyte conditions both in half-cell and full-cell batteries using a graphite anode. 展开更多
关键词 full cell high energy lean electrolyte Li-S batteries polysulfide mediator
下载PDF
Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO_(3) thin film
2
作者 Wooseon Choi Bumsu Park +10 位作者 Jaejin Hwang Gyeongtak Han Sang-Hyeok Yang Hyeon Jun Lee Sung Su Lee Ji Young Jo Albina Y.Borisevich Hu Young Jeong Sang Ho Oh Jaekwang Lee Young-Min Kim 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期57-66,共10页
The functionalities and diverse metastable phases of multiferroic BiFeO_(3)(BFO)thin films depend on the misfit strain.Although mixed phase-induced strain relaxation in multiphase BFO thin films is well known,it is un... The functionalities and diverse metastable phases of multiferroic BiFeO_(3)(BFO)thin films depend on the misfit strain.Although mixed phase-induced strain relaxation in multiphase BFO thin films is well known,it is unclear whether a singlecrystalline BFO thin film can accommodate misfit strain without the involvement of its polymorphs.Thus,understanding the strain relaxation behavior is key to elucidating the lattice strain–property relationship.In this study,a correlative strain analysis based on dark-field inline electron holography(DIH)and quantitative scanning transmission electron microscopy(STEM)was performed to reveal the structural mechanism for strain accommodation of a single-crystalline BFO thin film.The nanoscale DIH strain analysis results indicated a random combination of multiple strain states that acted as a primary strain relief,forming irregularly strained nanodomains.The STEM-based bond length measurement of the corresponding strained nanodomains revealed a unique strain accommodation behavior achieved by a statistical combination of multiple modes of distorted structures on the unit-cell scale.The globally integrated strain for each nanodomain was estimated to be close to1.5%,irrespective of the nanoscale strain states,which was consistent with the fully strained BFO film on the SrTiO_(3) substrate.Density functional theory calculations suggested that strain accommodation by the combination of metastable phases was energetically favored compared to single-phase-mediated relaxation.This discovery allows a comprehensive understanding of strain accommodation behavior in ferroelectric oxide films,such as BFO,with various low-symmetry polymorphs. 展开更多
关键词 BiFeO_(3) scanning transmission electronmicroscopy electron holography multiferroic material strain mapping
下载PDF
Nitrile Electrolyte Strategy for 4.9 V-Class Lithium-Metal Batteries Operating in Flame 被引量:2
3
作者 Hyunseok Moon Sung-Ju Cho +1 位作者 Dae-Eun Yu Sang-Young Lee 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期229-237,共9页
Challenges facing high-voltage/high-capacity cathodes,in addition to the longstanding problems pertinent to lithium(Li)-metal anodes,should be addressed to develop high-energy-density Li-metal batteries.This issue mos... Challenges facing high-voltage/high-capacity cathodes,in addition to the longstanding problems pertinent to lithium(Li)-metal anodes,should be addressed to develop high-energy-density Li-metal batteries.This issue mostly stems from interfacial instability between electrodes and electrolytes.Conventional carbonate-or ether-based liquid electrolytes suffer from not only volatility and flammability but also limited electrochemical stability window.Here,we report a nitrile electrolyte strategy based on concentrated nitrile electrolytes(CNEs)with co-additives.The CNE consists of high-concentration lithium bis(fluorosulfonyl)imide(LiFSI)in a solvent mixture of succinonitrile(SN)/acetonitrile(AN).The SN/AN solvent mixture is designed to ensure high oxidation stability along with thermal stability,which are prerequisites for high-voltage Li-metal cells.The CNE exhibits interfacial stability with Li metals due to the coordinated solvation structure.Lithium nitrate(LiNO_(3))and indium fluoride(InF_(3))are incorporated in the CNE as synergistic co-additives to further stabilize solid-electrolyte interphase(SEI)on Li metals.The resulting electrolyte(CNE+LiNO_(3)/InF_(3))enables stable cycling performance in Li||LiNi_(0.8)Co_(0.1)Mn_(0.1)and 4.9 V-class Li||LiNi_(0.5)Mn_(1.5)O_(4)cells.Notably,the Li||LiNi_(0.5)Mn_(1.5)O_(4)cell maintains its electrochemical activity at high temperature(100℃)and even in flame without fire or explosion. 展开更多
关键词 4.9 V-class cathodes electrolyte-electrode interfaces lithium-metal batteries nitrile electrolytes safety
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部