期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Two-Dimensional Modeling of the NAPL Dissolution in Porous Media: Heterogeneities Effects on the Large Scale Permeabilities and Mass Exchange Coefficient
1
作者 Bernard Mabiala Timothée Nsongo +2 位作者 Dominique Nkounkou Tomodiatounga Christian Tathy Dominique Nganga 《Computational Water, Energy, and Environmental Engineering》 2017年第1期56-78,共23页
In this paper, we are interested by the dissolution of NAPL (Non-Aqueous Phase Liquid) contaminants in heterogeneous soils or aquifers. The volume averaging technique is applied to 2D systems with Darcy-scale heteroge... In this paper, we are interested by the dissolution of NAPL (Non-Aqueous Phase Liquid) contaminants in heterogeneous soils or aquifers. The volume averaging technique is applied to 2D systems with Darcy-scale heterogeneities. A large-scale model is derived from a Darcy-scale dissolution model in the case of small and large Damkholer numbers, i.e., for smooth or sharp dissolution fronts. The resulting models in both cases have the mathematical structure of a non-equilibrium dissolution model. It is shown how to calculate the resulting mass exchange and relative permeability terms from the Darcy-scale heterogeneities and other fluid properties. One of the important finding is that the obtained values have a very different behavior compared to the Darcy-scale usual correlations. The large scale correlations are also very different between the two limit cases. The resulting large-scale models are compared favorably to Darcy-scale direct simulations. 展开更多
关键词 Modeling NAPL DISSOLUTION Porous Media Large SCALE Average MASS EXCHANGE COEFFICIENT Large SCALE Permeabilities
下载PDF
Modeling of the Saltwater Intrusion Using the Level Set Method. Application to Henry’s Problem
2
作者 Joachna Meya Loua-Bouayi Christian Tathy Adolphe Kimbonguila Manounou 《Computational Water, Energy, and Environmental Engineering》 2022年第1期11-33,共23页
The salt intrusion phenomenon is caused by </span><u><span style="font-family:Verdana;">overexploitation</span></u><span style="font-family:Verdana;"> of aquifer... The salt intrusion phenomenon is caused by </span><u><span style="font-family:Verdana;">overexploitation</span></u><span style="font-family:Verdana;"> of aquifers in coastal areas. This physical phenomenon has been the subject of numerous </span><span style="font-family:Verdana;">studies and numerous methods have been proposed, with the aim of protecting the quality of the water in these aquifers. This work proposes a two-dimensional</span><span style="font-family:Verdana;"> saline intrusion model using the sharp interface approach and the level set method. It consists of a parabolic equation modeling the underground flow and a hyperbolic Equation (the level set equation) which makes it possible to track the evolution of the interface. High</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">order numerical schemes such as the space scheme </span><u><span style="font-family:Verdana;">WENO5</span></u><span style="font-family:Verdana;"> and the third</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">order time scheme </span><u><span style="font-family:Verdana;">TVD</span></u><span style="font-family:Verdana;">-</span><u><span style="font-family:Verdana;">RK</span></u><span style="font-family:Verdana;"> were used for the numerical resolution of the hyperbolic equation. To limit the tightening of the contour curves of the level set function, the </span><u><span style="font-family:Verdana;">redistanciation</span></u><span style="font-family:Verdana;"> or </span><u><span style="font-family:Verdana;">reinitialization</span></u><span style="font-family:Verdana;"> algorithm proposed by </span><u><span style="font-family:Verdana;">Sussma </span><i><span style="font-family:Verdana;">et al.</span></i></u><span style="font-family:Verdana;"> (1994) was used. To ensure the effectiveness and reliability of the proposed method, two tests relating to the standard Henry problem and the modified Henry problem were performed. Recall that Henry’s problem uses the variable density modeling approach in a confined and homogeneous aquifer. By comparing the results obtained by the level set method with </span><u><span style="font-family:Verdana;">reinitialization</span></u><span style="font-family:Verdana;"> (</span><u><span style="font-family:Verdana;">LSMR</span></u><span style="font-family:Verdana;">) and those obtained by Henry (1964), and by Simpson and Clement (2004), we see in the two test cases that the level set method reproduces well the toe, the tip and the </span><u><span style="font-family:Verdana;">behaviour</span></u><span style="font-family:Verdana;"> of the interface. These results correspond to the results obtained by </span><u><span style="font-family:Verdana;">Abarca</span></u><span style="font-family:Verdana;"> for Henry’s problem with constant dispersion coefficients. The results obtained with </span><u><span style="font-family:Verdana;">LSMR</span></u><span style="font-family:Verdana;">, reproduced the interface with a slight spacing compared to those obtained by Henry. According to </span><u><span style="font-family:Verdana;">Abarca</span></u><span style="font-family:Verdana;"> (2006), this spacing is due to the absence of the longitudinal and </span><u><span style="font-family:Verdana;">transversal</span></u><span style="font-family:Verdana;"> dispersion coefficients in the model. 展开更多
关键词 Confined Aquifer Seawater Intrusion Level Set Method Sharp Interface Henry Problem
下载PDF
Optimization by Thermodynamics in Time Finished of a Cold Store with Mechanical Compression of the Vapors
3
作者 L. Okotaka Ebale B. Mabiala D. Nkounkou Tomodiatounga 《Journal of Electronics Cooling and Thermal Control》 2016年第4期139-152,共14页
This study made it possible to determine by the application of thermodynamics in finished time, the points of instruction necessary to the development of a regulation system for the rationalization of the power consum... This study made it possible to determine by the application of thermodynamics in finished time, the points of instruction necessary to the development of a regulation system for the rationalization of the power consumption in a cold store. These points were obtained by determining the optimal variations of temperature as well to the condenser and the evaporator corresponding to the minimum capacity absorptive by the compressor for a maximum COP. 展开更多
关键词 Thermodynamics in Finished Time Rationalization of Energy Maximum Refrigerating Power Optimal Variations of Temperature
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部