Laboratory safety is a critical area of broad societal concern,particularly in the detection of abnormal actions.To enhance the efficiency and accuracy of detecting such actions,this paper introduces a novel method ca...Laboratory safety is a critical area of broad societal concern,particularly in the detection of abnormal actions.To enhance the efficiency and accuracy of detecting such actions,this paper introduces a novel method called TubeRAPT(Tubelet Transformer based onAdapter and Prefix TrainingModule).Thismethod primarily comprises three key components:the TubeR network,an adaptive clustering attention mechanism,and a prefix training module.These components work in synergy to address the challenge of knowledge preservation in models pretrained on large datasets while maintaining training efficiency.The TubeR network serves as the backbone for spatio-temporal feature extraction,while the adaptive clustering attention mechanism refines the focus on relevant information.The prefix training module facilitates efficient fine-tuning and knowledge transfer.Experimental results demonstrate the effectiveness of TubeRAPT,achieving a 68.44%mean Average Precision(mAP)on the CLA(Crazy LabActivity)small-scale dataset,marking a significant improvement of 1.53%over the previous TubeR method.This research not only showcases the potential applications of TubeRAPT in the field of abnormal action detection but also offers innovative ideas and technical support for the future development of laboratory safety monitoring technologies.The proposed method has implications for improving safety management systems in various laboratory environments,potentially reducing accidents and enhancing overall workplace safety.展开更多
Calcium production and the stellar evolution of first-generation stars remain fascinating mysteries in astrophysics.As one possible nucleosynthesis scenario,break-out from the hot carbon–nitrogen–oxygen(HCNO)cycle w...Calcium production and the stellar evolution of first-generation stars remain fascinating mysteries in astrophysics.As one possible nucleosynthesis scenario,break-out from the hot carbon–nitrogen–oxygen(HCNO)cycle was thought to be the source of the calcium observed in these oldest stars.However,according to the stellar modeling,a nearly tenfold increase in the thermonuclear rate ratio of the break-out ^(19)F(p,γ)^(20) Ne reaction with respect to the competing ^(19)F(p,α)^(16) O back-processing reaction is required to reproduce the observed calcium abundance.We performed a direct measurement of this break-out reaction at the China Jinping underground laboratory.The measurement was performed down to the low-energy limit of E_(c.m.)=186 keV in the center-of-mass frame.The key resonance was observed at 225.2 keV for the first time.At a temperature of approximately 0.1 GK,this new resonance enhanced the thermonuclear ^(19)F(p,γ)^(20) Ne rate by up to a factor of≈7.4,compared with the previously recommended NACRE rate.This is of particular interest to the study of the evolution of the first stars and implies a stronger breakdown in their“warm”CNO cycle through the ^(19)F(p,γ)^(20) Ne reaction than previously envisioned.This break-out resulted in the production of the calcium observed in the oldest stars,enhancing our understanding of the evolution of the first stars.展开更多
The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topol...The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topology,we constructed a pair of 3D magnetic nulls in the PKU Plasma Test(PPT)device and observed acceleration of electrons near magnetic nulls.This study measured the plasma floating potential and ion density profiles around the 3D magnetic null.The potential wells near nulls may be related to the energy variations of electrons,so we measured the electron distribution functions(EDFs)at different spatial positions.The axial variation of EDF shows that the electrons deviate from the Maxwell distribution near magnetic nulls.With scanning probes that can directionally measure and theoretically analyze based on curve fitting,the variations of EDFs are linked to the changes of plasma potential under 3D magnetic null topology.The kinetic energy of electrons accelerated by the electric field is 6 eV(v_(e)~7v_(Alfvén-e))and the scale of the region where accelerating electrons exist is in the order of serval electron skin depths.展开更多
Recently, a new promising type of marine shale gas reservoir, carbonate-rich shale, has been discovered.But the mechanical properties of this type of shale were still unrevealed and the corresponding reservoir stimula...Recently, a new promising type of marine shale gas reservoir, carbonate-rich shale, has been discovered.But the mechanical properties of this type of shale were still unrevealed and the corresponding reservoir stimulation design was lack of guidance. Using the deep downhole cores of an exploratory carbonate-rich shale gas well, the physical and mechanical parameters and failure mechanism of the whole reservoir section were acquired and evaluated systematically, by performing XRD, tri-axial compression, Brazilian splitting, and fracture toughness tests. A new model was established to evaluate the reservoir brittleness based on fracture morphology and stress-strain curve. Recommended strategy for reservoir stimulation was discussed. Results showed that(1) Carbonate-rich shale possessed high compressive strength and high Young's modulus, which were improved by 10.74% and 3.37% compared to that of siliceous shale. It featured high tensile strength and fracture toughness, with insignificant anisotropy.(2) With the content of carbonate minerals increasing, the shear failure morphology transformed from sparse and wide brittle fractures to diffusely distributed and subtle plastic cracks.(3) The brittleness index order was: siliceous shale, clay-rich shale, carbonate-rich shale, and limestone.(4) The special properties of carbonate-rich shale were rooted in the inherent feature of carbonate minerals(high strength, high elastic modulus,and cleavage structure), resulting in greater challenge in reservoirs stimulation. The above findings would promote the understanding of carbonate-rich shale reservoirs and provide reference for the optimum design of reservoir stimulation.展开更多
To date,the primary industrial carbon capture approach is still absorption using aqueous solutions of alkanolamines.Here,to pursue a substitute for the amine-based approach to improve the CO_(2) capture efficiency and...To date,the primary industrial carbon capture approach is still absorption using aqueous solutions of alkanolamines.Here,to pursue a substitute for the amine-based approach to improve the CO_(2) capture efficiency and decrease the energy cost further,we report a new carbon capture approach using a 2-methylimidazole(mIm)aqueous solution.The properties and sorption behaviors of this approach have been experimentally investigated.The results show that the mIm solution has higher CO_(2) absorption capacity under relatively higher equilibrium pressure(>130 kPa)and lower desorption heat than the methyldiethanolamine solution.91.6%sorption capacity of mIm solution can be recovered at 353.15 K and 80 kPa.The selectivity for CO_(2)/N_(2) and CO_(2)/CH_(4) can reach an exceptional 7609 and 4324,respectively.Furthermore,the pilot-scale tests were also performed,and the results demonstrate that more than 98%of CO_(2) in the feed gas could be removed and cyclic absorption capacity can reach 1 mol·L^(-1).This work indicates that mIm is an excellent alternative to alkanolamines for carbon capture in the industry.展开更多
This paper,evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward(PDFF)controller-based direct torque controller(DTC)for a PMSM drive against the performance of existing PI speed controller-...This paper,evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward(PDFF)controller-based direct torque controller(DTC)for a PMSM drive against the performance of existing PI speed controller-based DTC and hysteresis current controller(HCC).The proposed PDFF-based speed regulator effectively reduces oscillation and overshoot associated with rotor angular speed,electromagnetic torque,and stator current.Two case studies,one using forward-to-reverse motoring operation and the other involving reverse-to-forward braking operation,has been validated to show the effectiveness of the proposed control strategy.The proposed controller's superior performance is demonstrated through experimental verification utilizing an FPGA controller for a 1.5 kW PMSM drive laboratory prototype.展开更多
The Nucleic Acid Laboratory,a division of the Clinical Laboratory Department,is responsible for performing real-time PCR(qPCR)assays to rapidly detect infectious diseases,genetic disorders,and more[1].As the gold stan...The Nucleic Acid Laboratory,a division of the Clinical Laboratory Department,is responsible for performing real-time PCR(qPCR)assays to rapidly detect infectious diseases,genetic disorders,and more[1].As the gold standard,qPCR has played an indispensable role in diagnosing pandemic infections,such as the coronavirus disease 2019(COVID-19)[2].展开更多
From a practical point of view,grain structure heterogeneities are key parameters that control the rock response and still remains a challenge to incorporate in a quantitative manner.One of the less discussed topics i...From a practical point of view,grain structure heterogeneities are key parameters that control the rock response and still remains a challenge to incorporate in a quantitative manner.One of the less discussed topics in the context of the grain-based model(GBM)in the particle flow code(PFC)is the contact heterogeneities and the appropriate contact model to mimic the grain boundary behavior.Generally,the smooth joint(SJ)model and linear parallel bond(LPB)model are used to simulate the grain boundary behavior.However,the literature does not document the suitability of different models for specific problems.Another challenge in implementing GBM in PFC is that only a single bonding parameter is used at the grain boundaries.The aim of this study is to investigate the responses of a laboratory-scale specimen with SJ and LPB models,considering grain boundary heterogeneous and homogeneous contact parameters.Uniaxial and biaxial compression tests are performed to calibrate the response of Creighton granite.The stressestrain curves,volumetric dilation,inter-crack(crack in the grain boundary),and intra-crack(crack within the grain)development,and failure patterns associated with different contact models are examined.It was found that both the SJ and LPB models can reproduce the pre-peak behavior observed for a granitic rock type.However,the LPB model is unable to reproduce the post-peak behavior.Due to the large interlocking effect originating from the balls in contact and the ball size in the LPB model,local dilation is induced at the grain boundaries.This overestimates the volumetric dilation and residual shear strength.The LPB model tends to result in discontinuous inter-cracks and stress localization in the rock specimen,resulting in fine fragments at the rock surface during failure.展开更多
Supercritical CO_(2)(SC-CO_(2)) fracturing, being a waterless fracturing technology, has garnered increasing attention in the shale oil reservoir exploitation industry. Recently, a novel pre-SC-CO_(2) hybrid fracturin...Supercritical CO_(2)(SC-CO_(2)) fracturing, being a waterless fracturing technology, has garnered increasing attention in the shale oil reservoir exploitation industry. Recently, a novel pre-SC-CO_(2) hybrid fracturing method has been proposed, which combines the advantages of SC-CO_(2) fracturing and hydraulic fracturing. However, the specific impacts of different pre-SC-CO_(2) injection conditions on the physical parameters, mechanical properties, and crack propagation behavior of shale reservoirs remain unclear. In this study, we utilize a newly developed “pre-SC-CO_(2) injection → water-based fracturing” integrated experimental device. Through experimentation under in-situ conditions, the impact of pre-SC-CO_(2) injection displacement and volume on the shale mineral composition, mechanical parameters, and fracture propagation behavior are investigated. The findings of the study demonstrate that the pre-injection SC-CO_(2) leads to a reduction in clay and carbonate mineral content, while increasing the quartz content. The correlation between quartz content and SC-CO_(2) injection volume is positive, while a negative correlation is observed with injection displacement. The elastic modulus and compressive strength exhibit a declining trend, while Poisson's ratio shows an increasing trend. The weakening of shale mechanics caused by pre-injection of SC-CO_(2) is positively correlated with the injection displacement and volume.Additionally, pre-injection of SC-CO_(2) enhances the plastic deformation behavior of shale, and its breakdown pressure is 16.6% lower than that of hydraulic fracturing. The breakdown pressure demonstrates a non-linear downward trend with the gradual increase of pre-SC-CO_(2) injection parameters.Unlike hydraulic fracturing, which typically generates primary fractures along the direction of the maximum principal stress, pre-SC-CO_(2) hybrid fracturing leads to a more complex fracture network. With increasing pre-SC-CO_(2) injection displacement, intersecting double Y-shaped complex fractures are formed along the vertical axis. On the other hand, increasing the injection rate generates secondary fractures along the direction of non-principal stress. The insights gained from this study are valuable for guiding the design of pre SC-CO_(2) hybrid fracturing in shale oil reservoirs.展开更多
Background: Diagnosis of autoimmune diseases (AID) is challenging, due to overlapping features with other non-immune disorders. Anti-nuclear antibodies (ANA) are sensitive screening tests but anti-deoxyribonucleic aci...Background: Diagnosis of autoimmune diseases (AID) is challenging, due to overlapping features with other non-immune disorders. Anti-nuclear antibodies (ANA) are sensitive screening tests but anti-deoxyribonucleic acid-antibody (anti-DNA), and anti-extractable nuclear antigens (anti-ENA) are specific for AIDs. We aimed to look at ANA patterns in our patients and correlated them with anti-ENA for proper interpretation and better patient management cost-effectively. Methods: A retrospective study was conducted over 1 year from January to December 2022 who were tested for ANA at biology medical laboratory of Pasteur Institute of Dakar. Anti-ENA and anti-DNA results were also analyzed for ANA-positive patients. Statistical analysis was performed using STATA 14.0, p Results: 216 patients were analyzed. Women predominated at 79.2% and mean age was 48 years [CI 95%, 46 - 50], with extremes of 10 and 89. Most represented age group was [41 - 60] with 38%. ANA was positive in 27 (12.5%) of patients, 59.2% of whom were strongly positive (titer of 1/1000, 1/3200 or 1/6400). The most common pattern was nuclear speckled, which was found in 77.8% of samples. Anti-ENA and anti-DNA positivity in ANA-positive patients was found respectively in 63% (17/27) and 1.4% (3/27) of the samples analyzed. Most commonly identified anti-ENA was anti-Sm 29.6%, anti-SSA 29.6%, anti-Ro-52 25.9%, anti-RNP 18.5% and anti-SSB 14.8% which was associated with speckled pattern. Association results indicated a significant relationship between both tests and between ANA titer in the anti-ENA- and ANA-positive patients (p 0.001). Conclusions: ANA, Anti-ENA and anti-DNA antibodies are essential for AIDS diagnosis. However, the testing repertoire should follow an algorithm comprising of clinical features, followed by ANA results with nuclear, mitotic, and cytoplasmic patterns, anti-ENA, and anti-DNA for a more meaningful, and cost-effective diagnostic approach.展开更多
Background: Coronavirus disease 2019 (COVID-19) is a recent global health crisis. One of the major issues of COVID-19 is its unpredictable manifestations and serious outcomes. Many hematological parameters are thought...Background: Coronavirus disease 2019 (COVID-19) is a recent global health crisis. One of the major issues of COVID-19 is its unpredictable manifestations and serious outcomes. Many hematological parameters are thought to change dramatically during the course of the disease. These include white blood cells, red blood cells, and platelets. This study aimed at evaluating certain laboratory results;peripheral blood lymphopenia, relative neutrophilia, high neutrophil-lymphocyte ratio, and elevated C-reactive protein as potential laboratory markers of COVID-19 in Eastern Sudanese patients. Methods: We, retrospectively, aimed at the evaluation of peripheral blood leucocytes count, neutrophil-lymphocyte ratio NLR and C-reactive protein (CRP) levels in confirmed COVID-19 eastern Sudanese patients during the course of the disease. Results: The mean total leucocytes count, % neutrophils count, absolute neutrophils count and C-reactive protein (CRP) were significantly higher (P. value = 0.000) in COVID-19 patients than in the control group while the mean % lymphocytes count and % mixed cells count were found to be significantly lower in COVID-19 patients than in the control group (P. value 0.000). Conclusion: Peripheral blood leucocyte alterations (simultaneous presence of lymphopenia, relative neutrophilia and high neutrophil lymphocyte ratio (NLR) along with elevated CRP levels may be valuable biomarkers associated with COVID-19 in Port Sudan city, Red Sea state, Sudan. These markers might be important in prediction, inspection of disease progression and prognosis.展开更多
In Africa, each year, there are estimated to be more than 91 million cases of salmonellosis and 137,000 cases of death. The problem of antibiotic resistance in Salmonella strains is a threat to public health. The obje...In Africa, each year, there are estimated to be more than 91 million cases of salmonellosis and 137,000 cases of death. The problem of antibiotic resistance in Salmonella strains is a threat to public health. The objective of this study is to evaluate the antibiotic resistance profile of Salmonella strains isolated in biological products analyzed at the National Laboratory of Clinical Biology and Public Health (NLCBPH) in Bangui. This is, therefore, a cross-sectional study with a descriptive aim, running from January to December 2022. It focused on the strains of Salmonella isolated and identified in stools, urines, and blood samples. For each strain of Salmonella isolated, an antibiogram was carried out following the recommendations of the French Society of Microbiology (CASFM, 2022). A total of 93 strains of Salmonella have been recorded. The age group 0 - 9 years was 29% and that of >50 years was 11%. The median age of patients was 30 years with a minimum of 1 and a maximum of 78 years. The female gender was more represented at 52.69% than the male gender at 47.31%, i.e. a sex ratio of 0.89 (M/F). Salmonella strains were much more isolated in stools at 62% followed by urines at 29% and blood at 6%. Salmonella arizonae strains were more represented with 52%. Salmonella strains have a resistance rate to Tetracycline of 62.37% followed by Penicillins of 50%. The rate of multi-antibiotic resistance of the Salmonella strains isolated represented 48.38%. Salmonella spp. strains were multi-resistant at 58.69% followed by Salmonella arizonae strains at 47.91%. There is a significant association between the different families of antibiotics and Salmonella strains (p < 0.05). According to the results obtained, Penicillins, Phenicoles, and Cyclins had a high rate of resistance on Salmonella strains. No strain-producing Broad Spectrum Beta-lactamase has been isolated. Salmonella strains represent a zoonotic health danger, constitute a public health problem and remain a current subject. This germ is resistant to the antibiotics used. It is, therefore, essential to emphasize monitoring the resistance of these germs in the Central African Republic (CAR) to improve the health of the population.展开更多
BACKGROUND Previous studies in the pre-biological era showed an association of wrist inflammation in juvenile idiopathic arthritis(JIA)with progressive disease course,polyarticular involvement and failure of methotrex...BACKGROUND Previous studies in the pre-biological era showed an association of wrist inflammation in juvenile idiopathic arthritis(JIA)with progressive disease course,polyarticular involvement and failure of methotrexate treatment.AIM To describe features of JIA,associated with wrist arthritis.METHODS Data from about 753 JIA patients were included in this retrospective cohort study.The clinical and laboratory features of patients with and without wrist involvement were analyzed.RESULTS Wrist involvement was found in oligoarthritis(5.8%),RF(−)/RF(+)polyarthritis(44.9%/15.0%),enthesitis-related arthritis(17.7%),and systemic(58.6%)JIA categories.Unilateral wrist involvement was typical for oligoarthritis patients,bilateral involvement was either equal to that of unilateral involvement or was more frequent in other categories.Wrist arthritis was found to be associated with female sex,a low incidence of uveitis,and more indications of systemic inflammation,including elevated levels of C-reactive protein,erythrocyte sedimentation rate,and platelets,as well as involvement of the cervical spine,temporomandibular,shoulder,elbow,metacarpophalangeal,proximal interphalangeal,distal interphalangeal,hip,ankle,and tarsus arthritis.The number of patients with hip osteoarthritis and hip replacement was also higher.Wrist arthritis was associated with a lower probability of achieving remission[hazard ratio(HR)=1.3(95%CI:1.0-1.7),P=0.055],and a higher probability of being treated with biologics[HR=1.7(95%CI:1.3-2.10,P=0.00009)].CONCLUSION Wrist arthritis in JIA patients is a marker of a severe disease course,characterized by more intensive inflammation,unfavorable outcomes,and.requiring more intensive treatment with early administration of biologics.Close monitoring of wrist inflammation with ultrasound and MR assessment with early biological treatment might improve the outcomes.展开更多
With the rapid development of nuclear power in China, the disposal of high-level radioactive waste(HLW) has become an important issue for nuclear safety and environmental protection. Deep geological disposal is inte...With the rapid development of nuclear power in China, the disposal of high-level radioactive waste(HLW) has become an important issue for nuclear safety and environmental protection. Deep geological disposal is internationally accepted as a feasible and safe way to dispose of HLW, and underground research laboratories(URLs) play an important and multi-faceted role in the development of HLW repositories. This paper introduces the overall planning and the latest progress for China's URL. On the basis of the proposed strategy to build an area-specific URL in combination with a comprehensive evaluation of the site selection results obtained during the last 33 years, the Xinchang site in the Beishan area,located in Gansu Province of northwestern China, has been selected as the final site for China's first URL built in granite. In the process of characterizing the Xinchang URL site, a series of investigations,including borehole drilling,geological mapping, geophysical surveying,hydraulic testing and in situ stress measurements, has been conducted. The investigation results indicate that the geological,hydrogeological, engineering geological and geochemical conditions of the Xinchang site are very suitable for URL construction. Meanwhile, to validate and develop construction technologies for the Beishan URL, the Beishan exploration tunnel(BET), which is a 50-m-deep facility in the Jiujing sub-area, has been constructed and several in situ tests, such as drill-and-blast tests, characterization of the excavation damaged zone(EDZ), and long-term deformation monitoring of surrounding rocks, have been performed in the BET. The methodologies and technologies established in the BET will serve for URL construction.According to the achievements of the characterization of the URL site, a preliminary design of the URL with a maximum depth of 560 m is proposed and necessary in situ tests in the URL are planned.展开更多
Underground research laboratory(URL)plays an important role in safe disposal of high-level radioactive waste(HLW).At present,the Xinchang site,located in Gansu Province of China,has been selected as the final site for...Underground research laboratory(URL)plays an important role in safe disposal of high-level radioactive waste(HLW).At present,the Xinchang site,located in Gansu Province of China,has been selected as the final site for China’s first URL,named Beishan URL.For this,a preliminary design of the Beishan URL has been proposed,including one spiral ramp,three shafts and two experimental levels.With advantages of fast advancing and limited disturbance to surrounding rock mass,the tunnel boring machine(TBM)method could be one of the excavation methods considered for the URL ramp.This paper introduces the feasibility study on using TBM to excavation of the Beishan URL ramp.The technical challenges for using TBM in Beishan URL are identified on the base of geological condition and specific layout of the spiral ramp.Then,the technical feasibility study on the specific issues,i.e.extremely hard rock mass,high abrasiveness,TBM operation,muck transportation,water drainage and material transportation,is investigated.This study demonstrates that TBM technology is a feasible method for the Beishan URL excavation.The results can also provide a reference for the design and construction of HLW disposal engineering in similar geological conditions.2020 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).展开更多
This paper tries to build a multi-functional downhole nuclear magnetic resonance (NMR) fluid analysis laboratory that can evaluate fluid information in real time at reservoir conditions at a depth of several thousan...This paper tries to build a multi-functional downhole nuclear magnetic resonance (NMR) fluid analysis laboratory that can evaluate fluid information in real time at reservoir conditions at a depth of several thousand meters. The aim is to monitor the pollution of the formation fluids and quantitatively evaluate NMR characteristics of the fluids. It focuses on the design of the structure and parameters of a sensor with zero stray fields. Two separate coils are designed to measure NMR characteristics of flowing or static fluids. A method is proposed to use the Bloch equation, to guide the optimization of the NMR sensor. Finally, the measured results confirm that the design is reasonable. There is a homogeneous static field (perpendicular to the axial direction) in the center of the sensor, and there are no stray external fields. The novel design of pre-polarization magnet improves the signal to noise ratio, while shortening the sensor length.展开更多
Seismic surges and landslides are both major secondary mountain hazards during an earthquake. This paper investigates earthquake-and landslide-induced composite surges through largescale shaking table water tank model...Seismic surges and landslides are both major secondary mountain hazards during an earthquake. This paper investigates earthquake-and landslide-induced composite surges through largescale shaking table water tank model experiments. A series of tests were conducted for various initial water depths, peak ground accelerations, slide impact velocities, and slide volumes. Based on the results of the tests, the effects of these parameters on the maximum wave heights of the earthquake-and landslide-induced composite surges were analyzed. An amplification coefficient of seismic surges was defined, and the prediction equation for the amplification coefficient was developed through nondimensional multiple linear regression analysis. Then, an empirical equation for the maximum wave heights of the composite surges was developed based on the amplification coefficient and Demirel's method. This equation provides a calculation method for earthquake-and landslide-induced composite surge waves.展开更多
This paper describes the development and challenge of HIV/AIDS testing laboratory network and quality assurance system in China. At present,the HIV/AIDS testing laboratories includes three classes,the National AIDS Re...This paper describes the development and challenge of HIV/AIDS testing laboratory network and quality assurance system in China. At present,the HIV/AIDS testing laboratories includes three classes,the National AIDS Reference Laboratory,HIV/AIDS confirmatory laboratories and HIV/AIDS screening laboratories. All of them are accredited by the health authorities,and each class of laboratories take charge of their function strictly according to the "National Management of HIV/AIDS Detection (2006)". A complete quality assurance and quality control system for HIV/AIDS testing has been developed,which includes technical training,strict laboratory monitoring and approval,examination or proficiency testing on HIV/AIDS detection,and quality evaluation and supervision of HIV/AIDS diagnostic kits. Besides conduct the routine anti-HIV antibody test,more and more laboratories began to conduct other tests,such as CD4+ T lymphocyte cell counting,HIV viral load,HIV DNA PCR,genotyping,drug resistance,and HIV-1 recent infection test. The primary challenges faced by the HIV/AIDS testing laboratory network are in the areas of laboratory management and quality control. For example,the provincial PT program is inefficient,the internal quality control is conducted perfunctorily,personnel training can not met the needs of the workplace,which need to be improved.展开更多
In underground rock engineering,water-bearing faults may be subjected to dynamic loading,resulting in the coupling of hydraulic and dynamic hazards.Understanding the interaction mechanism between the stress waves indu...In underground rock engineering,water-bearing faults may be subjected to dynamic loading,resulting in the coupling of hydraulic and dynamic hazards.Understanding the interaction mechanism between the stress waves induced by dynamic loadings and liquid-filled rock joints is therefore crucial.In this study,an auxiliary device for simulating the liquid-filled layer was developed to analyze the dynamic response characteristics of liquid-filled rock joints in laboratory.Granite and polymethyl methacrylate(PMMA)specimens were chosen for testing,and high-amplitude shock waves induced by a split Hopkinson pressure bar(SHPB)were used to produce dynamic loadings.Impact loading tests were conducted on liquid-filled rock joints with different joint inclinations.The energy propagation coefficient and peak liquid pressure were proposed to investigate the energy propagation and attenuation of waves propagating across the joints,as well as the dynamic response characteristics of the liquid in the liquid-filled rock joints.For the inclination angle range considered herein,the experimental results showed that the energy propagation coefficient gently diminished with increasing joint inclination,and smaller coefficient values were obtained for granite specimens compared with PMMA specimens.The peak liquid pressure exhibited a gradually decreasing trend with increasing joint inclination,and the peak pressure for granite specimens was slightly higher than that for PMMA specimens.Overall,this paper may provide a considerably better method for studying liquid-filled rock joints at the laboratory scale,and serves as a guide for interpreting the underlying mechanisms for interactions between stress waves and liquid-filled rock joints.展开更多
Intrinsic radiation of materials is one of the major backgrounds for many rare-event search experiments.Thus,the production of pure materials in an underground laboratory is a promising approach for eliminating cosmog...Intrinsic radiation of materials is one of the major backgrounds for many rare-event search experiments.Thus,the production of pure materials in an underground laboratory is a promising approach for eliminating cosmogenic radionuclides.In this paper,we demonstrate a procedure to evaluate the yields of cosmogenic radionuclides in copper and germanium in the second phase of the China Jinping Underground Laboratory.Our results show that for copper and germanium materials,the largest cosmogenic background comes from 3 H and57,58,60Co,and 3 H and 68Ge,respectively,which all have yields on the order of 10-7 kg-1 day-1.The corresponding radioactivities after 90 days pf exposure underground are estimated to be lower than 10-6μBq kg-1.展开更多
基金supported by the Philosophy and Social Sciences Planning Project of Guangdong Province of China(GD23XGL099)the Guangdong General Universities Young Innovative Talents Project(2023KQNCX247)the Research Project of Shanwei Institute of Technology(SWKT22-019).
文摘Laboratory safety is a critical area of broad societal concern,particularly in the detection of abnormal actions.To enhance the efficiency and accuracy of detecting such actions,this paper introduces a novel method called TubeRAPT(Tubelet Transformer based onAdapter and Prefix TrainingModule).Thismethod primarily comprises three key components:the TubeR network,an adaptive clustering attention mechanism,and a prefix training module.These components work in synergy to address the challenge of knowledge preservation in models pretrained on large datasets while maintaining training efficiency.The TubeR network serves as the backbone for spatio-temporal feature extraction,while the adaptive clustering attention mechanism refines the focus on relevant information.The prefix training module facilitates efficient fine-tuning and knowledge transfer.Experimental results demonstrate the effectiveness of TubeRAPT,achieving a 68.44%mean Average Precision(mAP)on the CLA(Crazy LabActivity)small-scale dataset,marking a significant improvement of 1.53%over the previous TubeR method.This research not only showcases the potential applications of TubeRAPT in the field of abnormal action detection but also offers innovative ideas and technical support for the future development of laboratory safety monitoring technologies.The proposed method has implications for improving safety management systems in various laboratory environments,potentially reducing accidents and enhancing overall workplace safety.
基金supported by the National Natural Science Foundation of China(Nos.12075027,1232509,11961141004,and 12175152)the National Science Foundation(Nos.Phys-2011890 and Phy-1430152)。
文摘Calcium production and the stellar evolution of first-generation stars remain fascinating mysteries in astrophysics.As one possible nucleosynthesis scenario,break-out from the hot carbon–nitrogen–oxygen(HCNO)cycle was thought to be the source of the calcium observed in these oldest stars.However,according to the stellar modeling,a nearly tenfold increase in the thermonuclear rate ratio of the break-out ^(19)F(p,γ)^(20) Ne reaction with respect to the competing ^(19)F(p,α)^(16) O back-processing reaction is required to reproduce the observed calcium abundance.We performed a direct measurement of this break-out reaction at the China Jinping underground laboratory.The measurement was performed down to the low-energy limit of E_(c.m.)=186 keV in the center-of-mass frame.The key resonance was observed at 225.2 keV for the first time.At a temperature of approximately 0.1 GK,this new resonance enhanced the thermonuclear ^(19)F(p,γ)^(20) Ne rate by up to a factor of≈7.4,compared with the previously recommended NACRE rate.This is of particular interest to the study of the evolution of the first stars and implies a stronger breakdown in their“warm”CNO cycle through the ^(19)F(p,γ)^(20) Ne reaction than previously envisioned.This break-out resulted in the production of the calcium observed in the oldest stars,enhancing our understanding of the evolution of the first stars.
基金supported by National Natural Science Foundation of China(No.11975038)the National Key Research and Development Program of China(No.2022YFA1604600)。
文摘The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topology,we constructed a pair of 3D magnetic nulls in the PKU Plasma Test(PPT)device and observed acceleration of electrons near magnetic nulls.This study measured the plasma floating potential and ion density profiles around the 3D magnetic null.The potential wells near nulls may be related to the energy variations of electrons,so we measured the electron distribution functions(EDFs)at different spatial positions.The axial variation of EDF shows that the electrons deviate from the Maxwell distribution near magnetic nulls.With scanning probes that can directionally measure and theoretically analyze based on curve fitting,the variations of EDFs are linked to the changes of plasma potential under 3D magnetic null topology.The kinetic energy of electrons accelerated by the electric field is 6 eV(v_(e)~7v_(Alfvén-e))and the scale of the region where accelerating electrons exist is in the order of serval electron skin depths.
基金sponsored by the “National Natural Science Foundation of China” (No. U22B6003), (No. 52104010), and (No. 52104046)。
文摘Recently, a new promising type of marine shale gas reservoir, carbonate-rich shale, has been discovered.But the mechanical properties of this type of shale were still unrevealed and the corresponding reservoir stimulation design was lack of guidance. Using the deep downhole cores of an exploratory carbonate-rich shale gas well, the physical and mechanical parameters and failure mechanism of the whole reservoir section were acquired and evaluated systematically, by performing XRD, tri-axial compression, Brazilian splitting, and fracture toughness tests. A new model was established to evaluate the reservoir brittleness based on fracture morphology and stress-strain curve. Recommended strategy for reservoir stimulation was discussed. Results showed that(1) Carbonate-rich shale possessed high compressive strength and high Young's modulus, which were improved by 10.74% and 3.37% compared to that of siliceous shale. It featured high tensile strength and fracture toughness, with insignificant anisotropy.(2) With the content of carbonate minerals increasing, the shear failure morphology transformed from sparse and wide brittle fractures to diffusely distributed and subtle plastic cracks.(3) The brittleness index order was: siliceous shale, clay-rich shale, carbonate-rich shale, and limestone.(4) The special properties of carbonate-rich shale were rooted in the inherent feature of carbonate minerals(high strength, high elastic modulus,and cleavage structure), resulting in greater challenge in reservoirs stimulation. The above findings would promote the understanding of carbonate-rich shale reservoirs and provide reference for the optimum design of reservoir stimulation.
基金The financial supports received from National Natural Science Foundation of China (U20B6005, 22178378, and 22127812)
文摘To date,the primary industrial carbon capture approach is still absorption using aqueous solutions of alkanolamines.Here,to pursue a substitute for the amine-based approach to improve the CO_(2) capture efficiency and decrease the energy cost further,we report a new carbon capture approach using a 2-methylimidazole(mIm)aqueous solution.The properties and sorption behaviors of this approach have been experimentally investigated.The results show that the mIm solution has higher CO_(2) absorption capacity under relatively higher equilibrium pressure(>130 kPa)and lower desorption heat than the methyldiethanolamine solution.91.6%sorption capacity of mIm solution can be recovered at 353.15 K and 80 kPa.The selectivity for CO_(2)/N_(2) and CO_(2)/CH_(4) can reach an exceptional 7609 and 4324,respectively.Furthermore,the pilot-scale tests were also performed,and the results demonstrate that more than 98%of CO_(2) in the feed gas could be removed and cyclic absorption capacity can reach 1 mol·L^(-1).This work indicates that mIm is an excellent alternative to alkanolamines for carbon capture in the industry.
基金supported by Prince Sultan University,Riyadh,Saudi Arabia,under research grant SEED-2022-CE-95。
文摘This paper,evaluate the effectiveness of a proposed speed loop pseudo derivative feedforward(PDFF)controller-based direct torque controller(DTC)for a PMSM drive against the performance of existing PI speed controller-based DTC and hysteresis current controller(HCC).The proposed PDFF-based speed regulator effectively reduces oscillation and overshoot associated with rotor angular speed,electromagnetic torque,and stator current.Two case studies,one using forward-to-reverse motoring operation and the other involving reverse-to-forward braking operation,has been validated to show the effectiveness of the proposed control strategy.The proposed controller's superior performance is demonstrated through experimental verification utilizing an FPGA controller for a 1.5 kW PMSM drive laboratory prototype.
基金supported by the Basic research and achievement transformation project of Jiulongpo District Science and Technology Bureau[No.2022-02-013-Y].
文摘The Nucleic Acid Laboratory,a division of the Clinical Laboratory Department,is responsible for performing real-time PCR(qPCR)assays to rapidly detect infectious diseases,genetic disorders,and more[1].As the gold standard,qPCR has played an indispensable role in diagnosing pandemic infections,such as the coronavirus disease 2019(COVID-19)[2].
基金Supports from the University Transportation Center for Underground Transportation Infrastructure(UTC-UTI)at the Colorado School of Mines for funding this research under Grant No.69A3551747118 from the US Department of Transportation(DOT)the Fundamental Research Funds for the Central Universities under Grant No.A0920502052401-210 are gratefully acknowledged.
文摘From a practical point of view,grain structure heterogeneities are key parameters that control the rock response and still remains a challenge to incorporate in a quantitative manner.One of the less discussed topics in the context of the grain-based model(GBM)in the particle flow code(PFC)is the contact heterogeneities and the appropriate contact model to mimic the grain boundary behavior.Generally,the smooth joint(SJ)model and linear parallel bond(LPB)model are used to simulate the grain boundary behavior.However,the literature does not document the suitability of different models for specific problems.Another challenge in implementing GBM in PFC is that only a single bonding parameter is used at the grain boundaries.The aim of this study is to investigate the responses of a laboratory-scale specimen with SJ and LPB models,considering grain boundary heterogeneous and homogeneous contact parameters.Uniaxial and biaxial compression tests are performed to calibrate the response of Creighton granite.The stressestrain curves,volumetric dilation,inter-crack(crack in the grain boundary),and intra-crack(crack within the grain)development,and failure patterns associated with different contact models are examined.It was found that both the SJ and LPB models can reproduce the pre-peak behavior observed for a granitic rock type.However,the LPB model is unable to reproduce the post-peak behavior.Due to the large interlocking effect originating from the balls in contact and the ball size in the LPB model,local dilation is induced at the grain boundaries.This overestimates the volumetric dilation and residual shear strength.The LPB model tends to result in discontinuous inter-cracks and stress localization in the rock specimen,resulting in fine fragments at the rock surface during failure.
基金funded by Science Foundation of China University of Petroleum, Beijing (No. 2462021YXZZ009)The Strategic Cooperation Technology Projects of CNPC and CUPB (No. ZLZX 2020-01)Innovation Capability Support of Shaanxi (Program No. 2023-CX-TD-31) Technical Innovation Team for Low Carbon Environmental Protection and Enhanced Oil Recovery in Unconventional Reservoirs。
文摘Supercritical CO_(2)(SC-CO_(2)) fracturing, being a waterless fracturing technology, has garnered increasing attention in the shale oil reservoir exploitation industry. Recently, a novel pre-SC-CO_(2) hybrid fracturing method has been proposed, which combines the advantages of SC-CO_(2) fracturing and hydraulic fracturing. However, the specific impacts of different pre-SC-CO_(2) injection conditions on the physical parameters, mechanical properties, and crack propagation behavior of shale reservoirs remain unclear. In this study, we utilize a newly developed “pre-SC-CO_(2) injection → water-based fracturing” integrated experimental device. Through experimentation under in-situ conditions, the impact of pre-SC-CO_(2) injection displacement and volume on the shale mineral composition, mechanical parameters, and fracture propagation behavior are investigated. The findings of the study demonstrate that the pre-injection SC-CO_(2) leads to a reduction in clay and carbonate mineral content, while increasing the quartz content. The correlation between quartz content and SC-CO_(2) injection volume is positive, while a negative correlation is observed with injection displacement. The elastic modulus and compressive strength exhibit a declining trend, while Poisson's ratio shows an increasing trend. The weakening of shale mechanics caused by pre-injection of SC-CO_(2) is positively correlated with the injection displacement and volume.Additionally, pre-injection of SC-CO_(2) enhances the plastic deformation behavior of shale, and its breakdown pressure is 16.6% lower than that of hydraulic fracturing. The breakdown pressure demonstrates a non-linear downward trend with the gradual increase of pre-SC-CO_(2) injection parameters.Unlike hydraulic fracturing, which typically generates primary fractures along the direction of the maximum principal stress, pre-SC-CO_(2) hybrid fracturing leads to a more complex fracture network. With increasing pre-SC-CO_(2) injection displacement, intersecting double Y-shaped complex fractures are formed along the vertical axis. On the other hand, increasing the injection rate generates secondary fractures along the direction of non-principal stress. The insights gained from this study are valuable for guiding the design of pre SC-CO_(2) hybrid fracturing in shale oil reservoirs.
文摘Background: Diagnosis of autoimmune diseases (AID) is challenging, due to overlapping features with other non-immune disorders. Anti-nuclear antibodies (ANA) are sensitive screening tests but anti-deoxyribonucleic acid-antibody (anti-DNA), and anti-extractable nuclear antigens (anti-ENA) are specific for AIDs. We aimed to look at ANA patterns in our patients and correlated them with anti-ENA for proper interpretation and better patient management cost-effectively. Methods: A retrospective study was conducted over 1 year from January to December 2022 who were tested for ANA at biology medical laboratory of Pasteur Institute of Dakar. Anti-ENA and anti-DNA results were also analyzed for ANA-positive patients. Statistical analysis was performed using STATA 14.0, p Results: 216 patients were analyzed. Women predominated at 79.2% and mean age was 48 years [CI 95%, 46 - 50], with extremes of 10 and 89. Most represented age group was [41 - 60] with 38%. ANA was positive in 27 (12.5%) of patients, 59.2% of whom were strongly positive (titer of 1/1000, 1/3200 or 1/6400). The most common pattern was nuclear speckled, which was found in 77.8% of samples. Anti-ENA and anti-DNA positivity in ANA-positive patients was found respectively in 63% (17/27) and 1.4% (3/27) of the samples analyzed. Most commonly identified anti-ENA was anti-Sm 29.6%, anti-SSA 29.6%, anti-Ro-52 25.9%, anti-RNP 18.5% and anti-SSB 14.8% which was associated with speckled pattern. Association results indicated a significant relationship between both tests and between ANA titer in the anti-ENA- and ANA-positive patients (p 0.001). Conclusions: ANA, Anti-ENA and anti-DNA antibodies are essential for AIDS diagnosis. However, the testing repertoire should follow an algorithm comprising of clinical features, followed by ANA results with nuclear, mitotic, and cytoplasmic patterns, anti-ENA, and anti-DNA for a more meaningful, and cost-effective diagnostic approach.
文摘Background: Coronavirus disease 2019 (COVID-19) is a recent global health crisis. One of the major issues of COVID-19 is its unpredictable manifestations and serious outcomes. Many hematological parameters are thought to change dramatically during the course of the disease. These include white blood cells, red blood cells, and platelets. This study aimed at evaluating certain laboratory results;peripheral blood lymphopenia, relative neutrophilia, high neutrophil-lymphocyte ratio, and elevated C-reactive protein as potential laboratory markers of COVID-19 in Eastern Sudanese patients. Methods: We, retrospectively, aimed at the evaluation of peripheral blood leucocytes count, neutrophil-lymphocyte ratio NLR and C-reactive protein (CRP) levels in confirmed COVID-19 eastern Sudanese patients during the course of the disease. Results: The mean total leucocytes count, % neutrophils count, absolute neutrophils count and C-reactive protein (CRP) were significantly higher (P. value = 0.000) in COVID-19 patients than in the control group while the mean % lymphocytes count and % mixed cells count were found to be significantly lower in COVID-19 patients than in the control group (P. value 0.000). Conclusion: Peripheral blood leucocyte alterations (simultaneous presence of lymphopenia, relative neutrophilia and high neutrophil lymphocyte ratio (NLR) along with elevated CRP levels may be valuable biomarkers associated with COVID-19 in Port Sudan city, Red Sea state, Sudan. These markers might be important in prediction, inspection of disease progression and prognosis.
文摘In Africa, each year, there are estimated to be more than 91 million cases of salmonellosis and 137,000 cases of death. The problem of antibiotic resistance in Salmonella strains is a threat to public health. The objective of this study is to evaluate the antibiotic resistance profile of Salmonella strains isolated in biological products analyzed at the National Laboratory of Clinical Biology and Public Health (NLCBPH) in Bangui. This is, therefore, a cross-sectional study with a descriptive aim, running from January to December 2022. It focused on the strains of Salmonella isolated and identified in stools, urines, and blood samples. For each strain of Salmonella isolated, an antibiogram was carried out following the recommendations of the French Society of Microbiology (CASFM, 2022). A total of 93 strains of Salmonella have been recorded. The age group 0 - 9 years was 29% and that of >50 years was 11%. The median age of patients was 30 years with a minimum of 1 and a maximum of 78 years. The female gender was more represented at 52.69% than the male gender at 47.31%, i.e. a sex ratio of 0.89 (M/F). Salmonella strains were much more isolated in stools at 62% followed by urines at 29% and blood at 6%. Salmonella arizonae strains were more represented with 52%. Salmonella strains have a resistance rate to Tetracycline of 62.37% followed by Penicillins of 50%. The rate of multi-antibiotic resistance of the Salmonella strains isolated represented 48.38%. Salmonella spp. strains were multi-resistant at 58.69% followed by Salmonella arizonae strains at 47.91%. There is a significant association between the different families of antibiotics and Salmonella strains (p < 0.05). According to the results obtained, Penicillins, Phenicoles, and Cyclins had a high rate of resistance on Salmonella strains. No strain-producing Broad Spectrum Beta-lactamase has been isolated. Salmonella strains represent a zoonotic health danger, constitute a public health problem and remain a current subject. This germ is resistant to the antibiotics used. It is, therefore, essential to emphasize monitoring the resistance of these germs in the Central African Republic (CAR) to improve the health of the population.
基金Supported by Ministry of Science and Higher Education of the Russian Federation,No.075-15-2022-301.
文摘BACKGROUND Previous studies in the pre-biological era showed an association of wrist inflammation in juvenile idiopathic arthritis(JIA)with progressive disease course,polyarticular involvement and failure of methotrexate treatment.AIM To describe features of JIA,associated with wrist arthritis.METHODS Data from about 753 JIA patients were included in this retrospective cohort study.The clinical and laboratory features of patients with and without wrist involvement were analyzed.RESULTS Wrist involvement was found in oligoarthritis(5.8%),RF(−)/RF(+)polyarthritis(44.9%/15.0%),enthesitis-related arthritis(17.7%),and systemic(58.6%)JIA categories.Unilateral wrist involvement was typical for oligoarthritis patients,bilateral involvement was either equal to that of unilateral involvement or was more frequent in other categories.Wrist arthritis was found to be associated with female sex,a low incidence of uveitis,and more indications of systemic inflammation,including elevated levels of C-reactive protein,erythrocyte sedimentation rate,and platelets,as well as involvement of the cervical spine,temporomandibular,shoulder,elbow,metacarpophalangeal,proximal interphalangeal,distal interphalangeal,hip,ankle,and tarsus arthritis.The number of patients with hip osteoarthritis and hip replacement was also higher.Wrist arthritis was associated with a lower probability of achieving remission[hazard ratio(HR)=1.3(95%CI:1.0-1.7),P=0.055],and a higher probability of being treated with biologics[HR=1.7(95%CI:1.3-2.10,P=0.00009)].CONCLUSION Wrist arthritis in JIA patients is a marker of a severe disease course,characterized by more intensive inflammation,unfavorable outcomes,and.requiring more intensive treatment with early administration of biologics.Close monitoring of wrist inflammation with ultrasound and MR assessment with early biological treatment might improve the outcomes.
基金support from the China Atomic Energy Authority (CAEA) for China's URL Development Program and the Geological Disposal ProgramThe International Atomic Energy Agency is specially thanked for its support for China's geological disposal program through its Technical Cooperation Projects
文摘With the rapid development of nuclear power in China, the disposal of high-level radioactive waste(HLW) has become an important issue for nuclear safety and environmental protection. Deep geological disposal is internationally accepted as a feasible and safe way to dispose of HLW, and underground research laboratories(URLs) play an important and multi-faceted role in the development of HLW repositories. This paper introduces the overall planning and the latest progress for China's URL. On the basis of the proposed strategy to build an area-specific URL in combination with a comprehensive evaluation of the site selection results obtained during the last 33 years, the Xinchang site in the Beishan area,located in Gansu Province of northwestern China, has been selected as the final site for China's first URL built in granite. In the process of characterizing the Xinchang URL site, a series of investigations,including borehole drilling,geological mapping, geophysical surveying,hydraulic testing and in situ stress measurements, has been conducted. The investigation results indicate that the geological,hydrogeological, engineering geological and geochemical conditions of the Xinchang site are very suitable for URL construction. Meanwhile, to validate and develop construction technologies for the Beishan URL, the Beishan exploration tunnel(BET), which is a 50-m-deep facility in the Jiujing sub-area, has been constructed and several in situ tests, such as drill-and-blast tests, characterization of the excavation damaged zone(EDZ), and long-term deformation monitoring of surrounding rocks, have been performed in the BET. The methodologies and technologies established in the BET will serve for URL construction.According to the achievements of the characterization of the URL site, a preliminary design of the URL with a maximum depth of 560 m is proposed and necessary in situ tests in the URL are planned.
基金China Atomic Energy Authority is thanked for its financial support for this project.The authors would like to acknowledge China Railway Engineering Equipment Group Co.,Ltd.,China Railway Construction Heavy Industry Co.,Ltd.,Herrenknecht AG,China Railway 18th Bureau Group Co.,Ltd.,China Railway Tunnel Group Co.,Ltd.,and Liaoning Censcience Industry Co.,Ltd.for their technical support on this research.The valuable comments by two reviewers are appreciated as well.
文摘Underground research laboratory(URL)plays an important role in safe disposal of high-level radioactive waste(HLW).At present,the Xinchang site,located in Gansu Province of China,has been selected as the final site for China’s first URL,named Beishan URL.For this,a preliminary design of the Beishan URL has been proposed,including one spiral ramp,three shafts and two experimental levels.With advantages of fast advancing and limited disturbance to surrounding rock mass,the tunnel boring machine(TBM)method could be one of the excavation methods considered for the URL ramp.This paper introduces the feasibility study on using TBM to excavation of the Beishan URL ramp.The technical challenges for using TBM in Beishan URL are identified on the base of geological condition and specific layout of the spiral ramp.Then,the technical feasibility study on the specific issues,i.e.extremely hard rock mass,high abrasiveness,TBM operation,muck transportation,water drainage and material transportation,is investigated.This study demonstrates that TBM technology is a feasible method for the Beishan URL excavation.The results can also provide a reference for the design and construction of HLW disposal engineering in similar geological conditions.2020 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).
基金Financial support from the National Science Foundation of China (Grant No. 41074102)the China International Science and Technology Cooperation (Grant No.2009DFA61030)
文摘This paper tries to build a multi-functional downhole nuclear magnetic resonance (NMR) fluid analysis laboratory that can evaluate fluid information in real time at reservoir conditions at a depth of several thousand meters. The aim is to monitor the pollution of the formation fluids and quantitatively evaluate NMR characteristics of the fluids. It focuses on the design of the structure and parameters of a sensor with zero stray fields. Two separate coils are designed to measure NMR characteristics of flowing or static fluids. A method is proposed to use the Bloch equation, to guide the optimization of the NMR sensor. Finally, the measured results confirm that the design is reasonable. There is a homogeneous static field (perpendicular to the axial direction) in the center of the sensor, and there are no stray external fields. The novel design of pre-polarization magnet improves the signal to noise ratio, while shortening the sensor length.
基金supported by the National Natural Science Foundation of China (Grant No. 41571004)National Program on Key Research Project of China (Grant No. 2016YFC0802206)
文摘Seismic surges and landslides are both major secondary mountain hazards during an earthquake. This paper investigates earthquake-and landslide-induced composite surges through largescale shaking table water tank model experiments. A series of tests were conducted for various initial water depths, peak ground accelerations, slide impact velocities, and slide volumes. Based on the results of the tests, the effects of these parameters on the maximum wave heights of the earthquake-and landslide-induced composite surges were analyzed. An amplification coefficient of seismic surges was defined, and the prediction equation for the amplification coefficient was developed through nondimensional multiple linear regression analysis. Then, an empirical equation for the maximum wave heights of the composite surges was developed based on the amplification coefficient and Demirel's method. This equation provides a calculation method for earthquake-and landslide-induced composite surge waves.
基金MOH Program on Applied Research in the Prevention and Treatment of AIDS (WA 2003-17)
文摘This paper describes the development and challenge of HIV/AIDS testing laboratory network and quality assurance system in China. At present,the HIV/AIDS testing laboratories includes three classes,the National AIDS Reference Laboratory,HIV/AIDS confirmatory laboratories and HIV/AIDS screening laboratories. All of them are accredited by the health authorities,and each class of laboratories take charge of their function strictly according to the "National Management of HIV/AIDS Detection (2006)". A complete quality assurance and quality control system for HIV/AIDS testing has been developed,which includes technical training,strict laboratory monitoring and approval,examination or proficiency testing on HIV/AIDS detection,and quality evaluation and supervision of HIV/AIDS diagnostic kits. Besides conduct the routine anti-HIV antibody test,more and more laboratories began to conduct other tests,such as CD4+ T lymphocyte cell counting,HIV viral load,HIV DNA PCR,genotyping,drug resistance,and HIV-1 recent infection test. The primary challenges faced by the HIV/AIDS testing laboratory network are in the areas of laboratory management and quality control. For example,the provincial PT program is inefficient,the internal quality control is conducted perfunctorily,personnel training can not met the needs of the workplace,which need to be improved.
基金financially supported by the National Key Research and Development Plan of China(Grant No.2018YFC1504902)the National Natural Science Foundation of China(Grant No.52079068)the State Key Laboratory of Hydroscience and Engineering,China(Grant No.2021-KY-04)。
文摘In underground rock engineering,water-bearing faults may be subjected to dynamic loading,resulting in the coupling of hydraulic and dynamic hazards.Understanding the interaction mechanism between the stress waves induced by dynamic loadings and liquid-filled rock joints is therefore crucial.In this study,an auxiliary device for simulating the liquid-filled layer was developed to analyze the dynamic response characteristics of liquid-filled rock joints in laboratory.Granite and polymethyl methacrylate(PMMA)specimens were chosen for testing,and high-amplitude shock waves induced by a split Hopkinson pressure bar(SHPB)were used to produce dynamic loadings.Impact loading tests were conducted on liquid-filled rock joints with different joint inclinations.The energy propagation coefficient and peak liquid pressure were proposed to investigate the energy propagation and attenuation of waves propagating across the joints,as well as the dynamic response characteristics of the liquid in the liquid-filled rock joints.For the inclination angle range considered herein,the experimental results showed that the energy propagation coefficient gently diminished with increasing joint inclination,and smaller coefficient values were obtained for granite specimens compared with PMMA specimens.The peak liquid pressure exhibited a gradually decreasing trend with increasing joint inclination,and the peak pressure for granite specimens was slightly higher than that for PMMA specimens.Overall,this paper may provide a considerably better method for studying liquid-filled rock joints at the laboratory scale,and serves as a guide for interpreting the underlying mechanisms for interactions between stress waves and liquid-filled rock joints.
基金supported by the National Natural Science Foundation of China(No.U1865205).
文摘Intrinsic radiation of materials is one of the major backgrounds for many rare-event search experiments.Thus,the production of pure materials in an underground laboratory is a promising approach for eliminating cosmogenic radionuclides.In this paper,we demonstrate a procedure to evaluate the yields of cosmogenic radionuclides in copper and germanium in the second phase of the China Jinping Underground Laboratory.Our results show that for copper and germanium materials,the largest cosmogenic background comes from 3 H and57,58,60Co,and 3 H and 68Ge,respectively,which all have yields on the order of 10-7 kg-1 day-1.The corresponding radioactivities after 90 days pf exposure underground are estimated to be lower than 10-6μBq kg-1.