Two major challenges,high cost and short lifespan,have been hindering the commercialization process of lowtemperature fuel cells.Professor Wei's group has been focusing on decreasing cathode Pt loadings without lo...Two major challenges,high cost and short lifespan,have been hindering the commercialization process of lowtemperature fuel cells.Professor Wei's group has been focusing on decreasing cathode Pt loadings without losses of activity and durability,and their research advances in this area over the past three decades are briefly reviewed herein.Regarding the Pt-based catalysts and the low Pt usage,they have firstly tried to clarify the degradation mechanism of Pt/C catalysts,and then demonstrated that the activity and stability could be improved by three strategies:regulating the nanostructures of the active sites,enhancing the effects of support materials,and optimizing structures of the three-phase boundary.For Pt-free catalysts,especialiy carbon-based ones,several strategies that they proposed to enhance the activity of nitrogen-/heteroatom-doped carbon catalysts are firstly presented.Then,an indepth understanding of the degradation mechanism for carbon-based catalysts is discussed,and followed by the corresponding stability enhancement strategies.Also,the carbon-based electrode at the micrometer-scale,faces the challenges such as low active-site density,thick catalytic layer,and the effect of hydrogen peroxide,which require rational structure design for the integral cathodic electrode.This review finally gives a brief conclusion and outlook about the low cost and long lifespan of cathodic oxygen reduction catalysts.展开更多
Cobalt-free,nickel-rich LiNi_(1-x)Al_(x)O_(2)(x≤0.1)is an attractive cathode material because of high energy density and low cost but suffers from severe structural degradation and poor rate performance.In this study...Cobalt-free,nickel-rich LiNi_(1-x)Al_(x)O_(2)(x≤0.1)is an attractive cathode material because of high energy density and low cost but suffers from severe structural degradation and poor rate performance.In this study,we propose a molten salt-assisted synthesis in combination with a Li-refeeding induced aluminum segregation strategy to prepare Li_(5)AlO_(4)-coated single-crystalline slightly Li-rich Li_(1.04)Ni_(0.92)Al_(0.04)O_(2).The symbiotic formation of Li_(5)AlO_(4)from reaction between molten lithium hydroxide and doped aluminum in the bulk ensures a high lattice matching between the Ni-rich oxide and the homogenous conductive Li_(5)AlO_(4)that permits high Li^(+)conductivity.Benefiting from mitigated undesirable side reactions and phase evolution,the Li_(5)AlO_(4)-coated single-crystalline Li_(1.04)Ni_(0.92)Al_(0.04)O_(2)delivers a high specific capacity of220.2 mA h g^(-1)at 0.1 C and considerable rate capability(182.5 mA h g^(-1)at 10 C).Besides,superior capacity retention of 90.8%is obtained at 1/3 C after 100 cycles in a 498.1 mA h pouch full cell.Furthermore,the particulate morphology of Li_(1.04)Ni_(0.92)Al_(0.04)O_(2)remains intact after cycling at a cutoff voltage of 4.3 V,whereas slightly Li-deficient Li_(0.98)Ni_(0.97)Al_(0.05)O_(2)features intragranular cracks and irreversible lattice distortion.The results highlight the value of molten salt-assisted synthesis and Li-refeeding induced elemental segregation strategy to upgrade Ni-based layered oxide cathode materials for advanced Li-ion batteries.展开更多
Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)s...Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)shuttling problems during the sluggish Na^(+) redox process,leading to"voltage failure"and rapid capacity decay.Herein,a metal cobalt-doping vanadium disulfide(Co-VS_(2))is proposed to simulta-neously accelerate the electrochemical reaction of VS_(2) and enhance the bidirectional redox of soluble NaPSs.It is found that the strong adsorption of NaPSs by V-Co alloy nanoparticles formed in situ during the conversion reaction of Co-VS_(2) can effectively inhibit the dissolution and shuttle of NaPSs,and ther-modynamically reduce the formation energy barrier of the reaction path to effectively drive the complete conversion reaction,while the metal transition of Co elements enhances reconversion kinetics to achieve high reversibility.Moreover,Co-VS_(2) also produce abundant sulfur vacancies and unsaturated sulfur edge defects,significantly improve ionic/electron diffusion kinetics.Therefore,the Co-VS_(2) anode exhibits ultrahigh rate capability(562 mA h g^(-1) at 5 A g^(-1)),high initial coulombic efficiency(~90%)and 12,000 ultralong cycle life with capacity retention of 90%in sodium-ion batteries(SIBs),as well as impressive energy/power density(118 Wh kg^(-1)/31,250 W kg^(-1))and over 10.000 stable cycles in sodium-ion hybrid capacitors(SIHCs).Moreover,the pouch cell-type SIHC displays a high-energy density of 102 Wh kg^(-1) and exceed 600 stable cycles.This work deepens the understanding of the electrochemical reaction mechanism of conversion-type metal sulfide anodes and provides a valuable solution to the shuttlingofNaPSs inSIBsandSIHCs.展开更多
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements ...Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.展开更多
Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air bat...Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air batteries.Although Fe-N-C single atom catalysts(SACs) have been hailed as the most promising candidate due to the optimal binding strength of ORR intermediates on the Fe-N_(4) sites,they suffer from serious mass transport limitations as microporous templates/substrates,i.e.,zeolitic imidazolate frameworks(ZIFs),are usually employed to host the active sites.Motivated by this challenge,we herein develop a hydrogen-bonded organic framework(HOF)-assisted pyrolysis strategy to construct hierarchical micro/mesoporous carbon nanoplates for the deposition of atomically dispersed Fe-N_(4) sites.Such a design is accomplished by employing HOF nanoplates assembled from 2-aminoterephthalic acid(NH_(2)-BDC) and p-phenylenediamine(PDA) as both soft templates and C,N precursors.Benefitting from the structural merits inherited from HOF templates,the optimized catalyst(denoted as Fe-N-C SAC-950) displays outstanding ORR activity with a high half-wave potential of 0.895 V(vs.reversible hydrogen electrode(RHE)) and a small overpotential of 356 mV at 10 mA cm^(-2) for the oxygen evolution reaction(OER).More excitingly,its application potential is further verified by delivering superb rechargeability and cycling stability with a nearly unfading charge-discharge gap of 0.72 V after 160 h.Molecular dynamics(MD) simulations reveal that micro/mesoporous structure is conducive to the rapid mass transfer of O_(2),thus enhancing the ORR performance.In situ Raman results further indicate that the conversion of O_(2) to~*O_(2)-the rate-determining step(RDS) for Fe-N-C SAC-950.This work will provide a versatile strategy to construct single atom catalysts with desirable catalytic properties.展开更多
Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures....Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures.Herein,a flame-retardant,low-cost and thermally stable long chain phosphate ester based(tributyl phosphate,TBP)electrolyte is reported,which can effectively enhance the cycling stability of highly loaded high-nickel LMBs with high safety through co-solvation strategy.The interfacial compatibility between TBP and electrode is effectively improved using a short-chain ether(glycol dimethyl ether,DME),and a specially competitive solvation structure is further constructed using lithium borate difluorooxalate(LiDFOB)to form the stable and inorganic-rich electrode interphases.Benefiting from the presence of the cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)enriched with LiF and Li_(x)PO_(y)F_(z),the electrolyte demonstrates excellent cycling stability assembled using a 50μm lithium foil anode in combination with a high loading NMC811(15.4 mg cm^(-2))cathode,with 88%capacity retention after 120 cycles.Furthermore,the electrolyte exhibits excellent high-temperature characteristics when used in a 1-Ah pouch cell(N/P=0.26),and higher thermal runaway temperature(238℃)in the ARC(accelerating rate calorimeter)demonstrating high safety.This novel electrolyte adopts long-chain phosphate as the main solvent for the first time,and would provide a new idea for the development of extremely high safety and high-temperature electrolytes.展开更多
Rechargeable aqueous zinc-ion batteries(AZIBs)offer high energy density,low cost,and are environmentally friendly,rendering them potential energy storage devices.However,dendrite growth on the zinc anode and numerous ...Rechargeable aqueous zinc-ion batteries(AZIBs)offer high energy density,low cost,and are environmentally friendly,rendering them potential energy storage devices.However,dendrite growth on the zinc anode and numerous side reac-tions during operation challenge their commercialization.Recent advancements have introduced various materials for the functionalization of zinc anodes.These developments effectively mitigate the performance degradation of zinc anode,enhancing both its cycle stability and the overall performance of AZIBs.Herein,the construction of functionalized zinc anodes is discussed,current materials(including organic,inorganic and their composites)for modified zinc anodes are categorized,and the protective mechanism behind functionalized zinc anodes is analyzed.The study concludes by outlining the characteristics of materials suitable for dendritic-free zinc anode construction and the prospects for future development directions of functionalized zinc anodes in AZIBs.展开更多
The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction...The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts.展开更多
Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the ac...Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the active site hosts, its hostility to electron/mass transfer could lead to the incomplete fulfillment of the catalytic activity. Besides, the formation of inactive metallic Fe particles during the conventional catalyst synthesis could also decrease the active site density and complicate the identification of real active site. Herein, we developed a facial hydrogen etching methodology to yield single site Fe-N-C catalysts featured with micro/mesoporous hierarchical structure. The hydrogen concentration in pyrolysis process was designated to effectively regulate the pore structure and active site density of the resulted catalysts.The optimized sample achieves excellent ORR catalytic performance with an ultralow H2O2 yield(1%)and superb stability over 10,000 cycles. Our finding provides new thoughts for the rational design of hierarchically porous carbon-based materials and highly promising non-precious metal ORR catalysts.展开更多
Direct methanol fuel cells (DMFCs) are very promising power source for stationary and portable miniatureelectric appliances due to its high efficiency and low emissions of pollutants. As the key material, cata-lysts...Direct methanol fuel cells (DMFCs) are very promising power source for stationary and portable miniatureelectric appliances due to its high efficiency and low emissions of pollutants. As the key material, cata-lysts for both cathode and anode face several problems which hinder the commercialization of DMFCs.In this review, we mainly focus on anode catalysts of DMFCs. The process and mechanism of methanolelectrooxidation on Pt and Pt-based catalysts in acidic medium have been introduced. The influences ofsize effect and morphology on electrocatalytic activity are discussed though whether there is a size effectin MOP, catalyst is under debate. Besides, the non Pt catalysts are also listed to emphasize though Pt isstill deemed as the indispensable element in anode catalyst of DMFCs in acidic medium. Different cata-lyst systems are compared to illustrate the level of research at present. ome debates need to be verifiedwith experimental evidences.展开更多
With the rapid development of consumer electronics and electric vehicles(EV), a large number of spent lithium-ion batteries(LIBs) have been generated worldwide. Thus, effective recycling technologies to recapture a si...With the rapid development of consumer electronics and electric vehicles(EV), a large number of spent lithium-ion batteries(LIBs) have been generated worldwide. Thus, effective recycling technologies to recapture a significant amount of valuable metals contained in spent LIBs are highly desirable to prevent the environmental pollution and resource depletion. In this work, a novel recycling technology to regenerate a LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 cathode material from spent LIBs with different cathode chemistries has been developed. By dismantling, crushing,leaching and impurity removing, the LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2(selected as an example of LiNi_xCo_yMn_(1-x-y)O_2) powder can be directly prepared from the purified leaching solution via co-precipitation followed by solid-state synthesis. For comparison purposes, a fresh-synthesized sample with the same composition has also been prepared using the commercial raw materials via the same method. X-ray diffraction(XRD), scanning electron microscopy(SEM) and electrochemical measurements have been carried out to characterize these samples. The electrochemical test result suggests that the re-synthesized sample delivers cycle performance and low rate capability which are comparable to those of the freshsynthesized sample. This novel recycling technique can be of great value to the regeneration of a pure and marketable LiNi_xCo_yMn_(1-x-y)O_2 cathode material with low secondary pollution.展开更多
Pyrolyzed Fe-Nx/C materials derived from Fe-doped ZIF-8 are recently emerged as promising alternativesto noble metal platinum-based catalysts towards oxygen reduction reaction (ORR) and elucidating the de-pendacne o...Pyrolyzed Fe-Nx/C materials derived from Fe-doped ZIF-8 are recently emerged as promising alternativesto noble metal platinum-based catalysts towards oxygen reduction reaction (ORR) and elucidating the de-pendacne of Fe source on the active site structure and final ORR performance is highly desirbale for fur-ther development of these materials. Here, we designed and synthesized a series of Fe-N-C catalysts usingZIF-8 and various iron salts (Fe(acac)3, FeCI3, Fe(NO3)3) as precusors. We found that the iron precursors,mainly the molecular size, hydrolysis extent, do play a major role in determining the final morphology ofFe, namely forming the Fe-Nx coordination or Fe3C nanoparticles, as well as the site density, therefore,significantly affecting the ORR activity. Among the three iron sources, Fe(acac)3 is most advantageous tothe preferential formation of single-atom Fe-Nx active sites and the derived catalyst demonstrated bestORR performance.展开更多
The electrochemical methanol oxidation reaction(MOR) is of paramount importance for direct methanol fuel cell(DMFC) application, where efficient catalysts are required to facilitate the complicated multiple charge tra...The electrochemical methanol oxidation reaction(MOR) is of paramount importance for direct methanol fuel cell(DMFC) application, where efficient catalysts are required to facilitate the complicated multiple charge transfer process. The catalyst support not only determines the dispersion status of the catalysts particles, but also exerts great influence on the electronic structure of the catalysts, thereby altering its intrinsic activity. Herein, we demonstrated that nitrogen atoms, assisted by the pre-treatment of carbon matrix with oxidants, can be easily doped into carbon nanotubes at low temperature. The obtained nitrogen-doped carbon nanotubes can effectively improve the dispersion of the supported platinum nanoparticles and facilitate the MOR by modifying the electronic structure of platinum atoms,through catalyst-support interaction.展开更多
Lithium-sulfur battery is desirable for the future potential electrochemical energy storage device with advantages of high theoretical energy density,low cost and environmental friendliness.However,some natural hindra...Lithium-sulfur battery is desirable for the future potential electrochemical energy storage device with advantages of high theoretical energy density,low cost and environmental friendliness.However,some natural hindrances,particularly fast capacity degradation resulting from the migration of dissolved polysulfide intermediates,remain to be significant challenges prior to the practical applications.In this work,a composite interlayer of carbon nanofibers(CNFs)which are enriched by Co-based metal organic frameworks(ZIF-67)growth in-situ is exploited.Notably,physical blocking and chemical trapping abilities are obtained synergistically from the ZIF/CNFs interlayer,which enables to restrain the dissolution of polysulfides and alleviate shuttle effect.Moreover,the three-dimensional fiber networks provide an interconnected conductive framework between each ZIF microreactor to promote fast electron transfer during cycling,thus contributing to excellent rate and cycling performance.As a result,Li-S cells with ZIF/CNFs interlayer show a high specific capacity of 1334 mAh g^(-1) at 1 C with an excellent cycling stability over 300 cycles.Besides,this scalable and affordable electrospinning fabrication method provides a promising approach for the design of MOFs-derived carbon materials for high performance Li-S batteries.展开更多
Controllable design and synthesis of catalysts with the target active sites are extremely important for their applications such as for the oxygen reduction reaction(ORR)in fuel cells.However,the controllably synthesiz...Controllable design and synthesis of catalysts with the target active sites are extremely important for their applications such as for the oxygen reduction reaction(ORR)in fuel cells.However,the controllably synthesizing electrocatalysts with a single type of active site still remains a grand challenge.In this study,we developed a facile and scalable method for fabricating highly efficient ORR electrocatalysts with sole atomic Fe-N4 species as the active site.Herein,the use of cost-effective highly porous carbon as the support not only could avoid the aggregation of the atomic Fe species but also a feasible approach to reduce the catalyst cost.The obtained atomic Fe-N4 in activated carbon(aFe@AC)shows excellent ORR activity.Its half-wave potential is 59 mV more negative but 47 mV more positive than that of the commercial Pt/C in acidic and alkaline electrolytes,respectively.The full cell performance test results show that the aFe@AC sample is a promising candidate for direct methanol fuel cells.This study provides a general method to prepare catalysts with a certain type of active site and definite numbers.展开更多
Carbon supported Pt(Pt/C) electrocatalysts were prepared with glucose as protection agent and NaBH 4 as reductant.The Pt nanoparticles deposited on carbon support presented reduced size and well dispersity attribute...Carbon supported Pt(Pt/C) electrocatalysts were prepared with glucose as protection agent and NaBH 4 as reductant.The Pt nanoparticles deposited on carbon support presented reduced size and well dispersity attributed to the protection effect of glucose.Glucose absorbed on the particle surface was readily removed by water washing without leading to agglomeration of the Pt nanoparticles.The as-prepared Pt/C electrocatalysts showed improved mass activity for methanol electrooxidation compared to the catalyst prepared without glucose protection.The improved performance is attributed to the larger electrochemical active surface area thus increased active sites on the Pt/C elctrocatalysts prepared under the protection of glucose.展开更多
Lithium–sulfur(Li-S) battery is considered as one of the most promising candidates for future portable electronics and electric vehicles due to high energy density and potentially low cost. However, the severe polysu...Lithium–sulfur(Li-S) battery is considered as one of the most promising candidates for future portable electronics and electric vehicles due to high energy density and potentially low cost. However, the severe polysulfides shuttling in Li-S battery always causes low Coulombic efficiency, capacity fading, and hindering its practical commercialization. Herein, a dualfunctional PEI@MWCNTs-CB/MWCNTs/PP(briefly denoted as PMS)separator is assembled through Langmuir–Blodgett–Scooping(LBS) technique for improvement of Li-S battery performance, that is, rational integrating conductive MWCNTs multilayer on a routine PP separator with polyethyleneimine(PEI) polymer. Owing to "proton-sponge"-based PEI feature with the abundant amino/imine groups and branched structures, the PMS separator can provide strong affinity to immobilize the negatively charged polysulfides via electrostatic interaction. Simultaneously,incorporated with the conductive MWCNTs multilayers for the electron transportation, the Li-S cells assembled with PMS separators achieve exceptional high delivery capacity, good rate performance(~550 m Ah g-1 at a current density of 9 A g-1), and stable cycling retention(retention of84.5% at a current density of 1 A g-1) even over 120 cycles, especially in the case of high-loading sulfur cathode(80 wt% of S content). This multifunctional separator with dual-structural architectures via self-assembly LBS method paves new avenues to develop high-performance Li-S batteries.展开更多
The reactant concentration at the catalytic interface holds the key to the activity of electrocatalytic hydrogen evolution reaction(HER),mainly referring to the capacity of adsorbing hydrogen and electron accessibilit...The reactant concentration at the catalytic interface holds the key to the activity of electrocatalytic hydrogen evolution reaction(HER),mainly referring to the capacity of adsorbing hydrogen and electron accessibility.With hydrogen adsorption free energy(ΔGH)as a reactivity descriptor,the volcano curve based on Sabatier principle is established to evaluate the hydrogen evolution activity of catalysts.However,the role of electron as reactant received insufficient attention,especially for noble metal-free compound catalysts with poor conductivity,leading to cognitive gap between electronic conductivity and apparent catalytic activity.Herein we successfully construct a series of catalyst models with gradient conductivities by regulating molybdenum disulfide(MoS_(2))electronic bandgap via a simple solvothermal method.We demonstrate that the conductivity of catalysts greatly affects the overall catalytic activity.We further elucidate the key role of intrinsic conductivity of catalyst towards water electrolysis,mainly concentrating on the electron transport from electrode to catalyst,the electron accumulation process at the catalyst layer,and the charge transfer progress from catalyst to reactant.Theoretical and experimental evidence demonstrates that,with the enhancement in electron accessibility at the catalytic interface,the dominant parameter governing overall HER activity gradually converts from electron accessibility to combination of electron accessibility and hydrogen adsorbing energy.Our results provide the insight from various perspective for developing noble metal-free catalysts in electrocatalysis beyond HER.展开更多
Lithium metal anode is a promising electrode with high theoretical specific capacity and low electrode potential.However,its unstable interface and low Coulombic efficiency,resulting from the dendritic growth of lithi...Lithium metal anode is a promising electrode with high theoretical specific capacity and low electrode potential.However,its unstable interface and low Coulombic efficiency,resulting from the dendritic growth of lithium,limits its commercial application.PIM-1(PIM:polymer of intrinsic microporosity),which is a polymer with abundant micropores,exhibits high rigidity and flexibility with contorted spirocenters in the backbone,and is an ideal candidate for artificial solid electrolyte interphases(SEI).In this work,a PIM-1 membrane was synthesized and fabricated as a protective membrane on the surface of an electrode to facilitate the uniform flux of Li ions and act as a stable interface for the lithium plating/stripping process.Nodule-like lithium with rounded edges was observed under the PIM-1 membrane.The Li@PIM-1 electrode delivered a high average Coulombic efficiency(99.7%),excellent cyclability(80%capacity retention rate after 600 cycles at 1 C),and superior rate capability(125.3 m Ah g-1 at 10 C).Electrochemical impedance spectrum(EIS)showed that the PIM-1 membrane could lower the diffusion rate of Li+significantly and change the rate-determining step from charge transfer to Li+diffusion.Thus,the PIM-1 membrane is proven to act as an artificial SEI to facilitate uniform and stable deposition of lithium,in favor of obtaining a compact and dense Li-plating pattern.This work extends the application of PIMs in the field of lithium batteries and provides ideas for the construction of artificial SEI.展开更多
Hydrogen production from formic acid decomposition(FAD)is a promising means of hydrogen energy storage and utilization in fuel cells.Development of efficient catalysts for dehydrogenation of formic acid is a challengi...Hydrogen production from formic acid decomposition(FAD)is a promising means of hydrogen energy storage and utilization in fuel cells.Development of efficient catalysts for dehydrogenation of formic acid is a challenging topic.The surface chemical and electronic structure of the active catalysis components is important in formic acid decomposition at room-temperature.Here,the pyrdinic-nitrogen doped catalysts from hyperbranched polyamide were prepared via in situ polymerization reaction process by using activated carbon as a support.Because of the introduction of the polymer,the particles of the catalysts were stabilized,and the average particle diameter was only 1.64 nm.Under mild conditions,the catalysts activities were evaluated for FAD.The optimized Pd-N30/C catalyst exhibited high performance achieving almost full conversion,with a turnover frequency of 3481 h^-1 at 30℃.展开更多
基金supported by the National Key Research and Development Program of China(No.2020YFB1506002,2019YFB1504503,2016YFB0101202)National 973 Program of China(No.2012CB215501)National Natural Science Foundation of China(No.52021004,22022502(2021),21822803(2019),21576031(2016),51272297(2013),20936008(2010),20676156(2007),20376088(2004),20176066(2002),29976047(2000)).
文摘Two major challenges,high cost and short lifespan,have been hindering the commercialization process of lowtemperature fuel cells.Professor Wei's group has been focusing on decreasing cathode Pt loadings without losses of activity and durability,and their research advances in this area over the past three decades are briefly reviewed herein.Regarding the Pt-based catalysts and the low Pt usage,they have firstly tried to clarify the degradation mechanism of Pt/C catalysts,and then demonstrated that the activity and stability could be improved by three strategies:regulating the nanostructures of the active sites,enhancing the effects of support materials,and optimizing structures of the three-phase boundary.For Pt-free catalysts,especialiy carbon-based ones,several strategies that they proposed to enhance the activity of nitrogen-/heteroatom-doped carbon catalysts are firstly presented.Then,an indepth understanding of the degradation mechanism for carbon-based catalysts is discussed,and followed by the corresponding stability enhancement strategies.Also,the carbon-based electrode at the micrometer-scale,faces the challenges such as low active-site density,thick catalytic layer,and the effect of hydrogen peroxide,which require rational structure design for the integral cathodic electrode.This review finally gives a brief conclusion and outlook about the low cost and long lifespan of cathodic oxygen reduction catalysts.
基金supported by the China National Funds for Distinguished Young Scientists(21925503)the National Natural Science Foundation of China(21835004)the Jilin Scientific and Technological Development Program(20220301018GX)。
文摘Cobalt-free,nickel-rich LiNi_(1-x)Al_(x)O_(2)(x≤0.1)is an attractive cathode material because of high energy density and low cost but suffers from severe structural degradation and poor rate performance.In this study,we propose a molten salt-assisted synthesis in combination with a Li-refeeding induced aluminum segregation strategy to prepare Li_(5)AlO_(4)-coated single-crystalline slightly Li-rich Li_(1.04)Ni_(0.92)Al_(0.04)O_(2).The symbiotic formation of Li_(5)AlO_(4)from reaction between molten lithium hydroxide and doped aluminum in the bulk ensures a high lattice matching between the Ni-rich oxide and the homogenous conductive Li_(5)AlO_(4)that permits high Li^(+)conductivity.Benefiting from mitigated undesirable side reactions and phase evolution,the Li_(5)AlO_(4)-coated single-crystalline Li_(1.04)Ni_(0.92)Al_(0.04)O_(2)delivers a high specific capacity of220.2 mA h g^(-1)at 0.1 C and considerable rate capability(182.5 mA h g^(-1)at 10 C).Besides,superior capacity retention of 90.8%is obtained at 1/3 C after 100 cycles in a 498.1 mA h pouch full cell.Furthermore,the particulate morphology of Li_(1.04)Ni_(0.92)Al_(0.04)O_(2)remains intact after cycling at a cutoff voltage of 4.3 V,whereas slightly Li-deficient Li_(0.98)Ni_(0.97)Al_(0.05)O_(2)features intragranular cracks and irreversible lattice distortion.The results highlight the value of molten salt-assisted synthesis and Li-refeeding induced elemental segregation strategy to upgrade Ni-based layered oxide cathode materials for advanced Li-ion batteries.
基金supported by the National Natural Science Foundation of China(Grant Nos.52072322,22209137,51604250)the Department of Science and Technology of Sichuan Province(CN)(GrantNos.2022YFG0294,23GJHZ0147,23ZDYF0262)Production-Education Integration Demonstration Project of Sichuan Province"Photovoltaic Industry Production-Education Integration Comprehensive Demonstration Base of Sichuan Province"(Sichuan Financial Education[2022]No.106.n)。
文摘Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)shuttling problems during the sluggish Na^(+) redox process,leading to"voltage failure"and rapid capacity decay.Herein,a metal cobalt-doping vanadium disulfide(Co-VS_(2))is proposed to simulta-neously accelerate the electrochemical reaction of VS_(2) and enhance the bidirectional redox of soluble NaPSs.It is found that the strong adsorption of NaPSs by V-Co alloy nanoparticles formed in situ during the conversion reaction of Co-VS_(2) can effectively inhibit the dissolution and shuttle of NaPSs,and ther-modynamically reduce the formation energy barrier of the reaction path to effectively drive the complete conversion reaction,while the metal transition of Co elements enhances reconversion kinetics to achieve high reversibility.Moreover,Co-VS_(2) also produce abundant sulfur vacancies and unsaturated sulfur edge defects,significantly improve ionic/electron diffusion kinetics.Therefore,the Co-VS_(2) anode exhibits ultrahigh rate capability(562 mA h g^(-1) at 5 A g^(-1)),high initial coulombic efficiency(~90%)and 12,000 ultralong cycle life with capacity retention of 90%in sodium-ion batteries(SIBs),as well as impressive energy/power density(118 Wh kg^(-1)/31,250 W kg^(-1))and over 10.000 stable cycles in sodium-ion hybrid capacitors(SIHCs).Moreover,the pouch cell-type SIHC displays a high-energy density of 102 Wh kg^(-1) and exceed 600 stable cycles.This work deepens the understanding of the electrochemical reaction mechanism of conversion-type metal sulfide anodes and provides a valuable solution to the shuttlingofNaPSs inSIBsandSIHCs.
基金The work described in this paper was fully supported by a Grant from the City University of Hong Kong(Project No.9610641).
文摘Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.
基金financially supported by the National Key R&D Program of China(2022YFB4004100)the National Natural Science Foundation of China(22272161)+6 种基金the Jilin Province Science and Technology Development Program(20230101367JC)financially supported by the National Natural Science Foundation of China(22073094)the Science and Technology Development Program of Jilin Province(20210402059GH)the Science and Technology Plan Projects of Yunnan Province(202101BC070001–007)the Major Science and Technology Projects for Independent Innovation of China FAW Group Co.,Ltd(20220301018GX)the essential support of the Network and Computing Center,CIAC,CASthe Computing Center of Jilin Province。
文摘Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air batteries.Although Fe-N-C single atom catalysts(SACs) have been hailed as the most promising candidate due to the optimal binding strength of ORR intermediates on the Fe-N_(4) sites,they suffer from serious mass transport limitations as microporous templates/substrates,i.e.,zeolitic imidazolate frameworks(ZIFs),are usually employed to host the active sites.Motivated by this challenge,we herein develop a hydrogen-bonded organic framework(HOF)-assisted pyrolysis strategy to construct hierarchical micro/mesoporous carbon nanoplates for the deposition of atomically dispersed Fe-N_(4) sites.Such a design is accomplished by employing HOF nanoplates assembled from 2-aminoterephthalic acid(NH_(2)-BDC) and p-phenylenediamine(PDA) as both soft templates and C,N precursors.Benefitting from the structural merits inherited from HOF templates,the optimized catalyst(denoted as Fe-N-C SAC-950) displays outstanding ORR activity with a high half-wave potential of 0.895 V(vs.reversible hydrogen electrode(RHE)) and a small overpotential of 356 mV at 10 mA cm^(-2) for the oxygen evolution reaction(OER).More excitingly,its application potential is further verified by delivering superb rechargeability and cycling stability with a nearly unfading charge-discharge gap of 0.72 V after 160 h.Molecular dynamics(MD) simulations reveal that micro/mesoporous structure is conducive to the rapid mass transfer of O_(2),thus enhancing the ORR performance.In situ Raman results further indicate that the conversion of O_(2) to~*O_(2)-the rate-determining step(RDS) for Fe-N-C SAC-950.This work will provide a versatile strategy to construct single atom catalysts with desirable catalytic properties.
基金supported by the National Natural Science Foundation of China (grant No.52072322)the Department of Science and Technology of Sichuan Province (CN) (grant no.23GJHZ0147,23ZDYF0262,2022YFG0294)Research and Innovation Fund for Graduate Students of Southwest Petroleum University (No.:2022KYCX111)。
文摘Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures.Herein,a flame-retardant,low-cost and thermally stable long chain phosphate ester based(tributyl phosphate,TBP)electrolyte is reported,which can effectively enhance the cycling stability of highly loaded high-nickel LMBs with high safety through co-solvation strategy.The interfacial compatibility between TBP and electrode is effectively improved using a short-chain ether(glycol dimethyl ether,DME),and a specially competitive solvation structure is further constructed using lithium borate difluorooxalate(LiDFOB)to form the stable and inorganic-rich electrode interphases.Benefiting from the presence of the cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)enriched with LiF and Li_(x)PO_(y)F_(z),the electrolyte demonstrates excellent cycling stability assembled using a 50μm lithium foil anode in combination with a high loading NMC811(15.4 mg cm^(-2))cathode,with 88%capacity retention after 120 cycles.Furthermore,the electrolyte exhibits excellent high-temperature characteristics when used in a 1-Ah pouch cell(N/P=0.26),and higher thermal runaway temperature(238℃)in the ARC(accelerating rate calorimeter)demonstrating high safety.This novel electrolyte adopts long-chain phosphate as the main solvent for the first time,and would provide a new idea for the development of extremely high safety and high-temperature electrolytes.
基金Hebei Natural Science Fund for Distinguished Young Scholar,Grant/Award Number:E2019209433Natural Science Foundation of Hebei Province,Grant/Award Number:E2022209158+2 种基金National Natural Science Foundation of China,Grant/Award Number:52302223National Research Foundation of Korea,Grant/Award Number:NRF-2019R1A2C2090443Technology Innovation Program(Ministry of Trade,Industry&Energy,Korea),Grant/Award Number:20013621。
文摘Rechargeable aqueous zinc-ion batteries(AZIBs)offer high energy density,low cost,and are environmentally friendly,rendering them potential energy storage devices.However,dendrite growth on the zinc anode and numerous side reac-tions during operation challenge their commercialization.Recent advancements have introduced various materials for the functionalization of zinc anodes.These developments effectively mitigate the performance degradation of zinc anode,enhancing both its cycle stability and the overall performance of AZIBs.Herein,the construction of functionalized zinc anodes is discussed,current materials(including organic,inorganic and their composites)for modified zinc anodes are categorized,and the protective mechanism behind functionalized zinc anodes is analyzed.The study concludes by outlining the characteristics of materials suitable for dendritic-free zinc anode construction and the prospects for future development directions of functionalized zinc anodes in AZIBs.
基金supported by the National Key Research and Development Program of China(2021YFB4001301)the Science and Technology Commission of Shanghai Municipality(21DZ1208600)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2021ZD105)。
文摘The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts.
基金supported by the National Natural Science Foundation of China(21633008,21433003,U1601211,21733004)National Science and Technology Major Project(2016YFB0101202)+1 种基金Jilin Province Science and Technology Development Program(20150101066JC,20160622037JC,20170203003SF,20170520150JH)Hundred Talents Program of Chinese Academy of Sciences and the Recruitment Program of Foreign Experts(WQ20122200077)
文摘Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the active site hosts, its hostility to electron/mass transfer could lead to the incomplete fulfillment of the catalytic activity. Besides, the formation of inactive metallic Fe particles during the conventional catalyst synthesis could also decrease the active site density and complicate the identification of real active site. Herein, we developed a facial hydrogen etching methodology to yield single site Fe-N-C catalysts featured with micro/mesoporous hierarchical structure. The hydrogen concentration in pyrolysis process was designated to effectively regulate the pore structure and active site density of the resulted catalysts.The optimized sample achieves excellent ORR catalytic performance with an ultralow H2O2 yield(1%)and superb stability over 10,000 cycles. Our finding provides new thoughts for the rational design of hierarchically porous carbon-based materials and highly promising non-precious metal ORR catalysts.
基金supported by the National Natural Science Foundation of China (21633008,21673221)the Jilin Province Science and Technology Development Program (20160622037JC,20170203003SF,and 20170520150JH)+1 种基金the Hundred Talents Program of the Chinese Academy of Sciencesthe Recruitment Program of Foreign Experts (WQ20122200077)
文摘Direct methanol fuel cells (DMFCs) are very promising power source for stationary and portable miniatureelectric appliances due to its high efficiency and low emissions of pollutants. As the key material, cata-lysts for both cathode and anode face several problems which hinder the commercialization of DMFCs.In this review, we mainly focus on anode catalysts of DMFCs. The process and mechanism of methanolelectrooxidation on Pt and Pt-based catalysts in acidic medium have been introduced. The influences ofsize effect and morphology on electrocatalytic activity are discussed though whether there is a size effectin MOP, catalyst is under debate. Besides, the non Pt catalysts are also listed to emphasize though Pt isstill deemed as the indispensable element in anode catalyst of DMFCs in acidic medium. Different cata-lyst systems are compared to illustrate the level of research at present. ome debates need to be verifiedwith experimental evidences.
基金supported by the National Natural Science Foundation of China(No.51274075)the National Environmental Technology Special Project(No.201009028)Guangdong Province-department University-industry Collaboration Project(Grant No.2012B091100315)
文摘With the rapid development of consumer electronics and electric vehicles(EV), a large number of spent lithium-ion batteries(LIBs) have been generated worldwide. Thus, effective recycling technologies to recapture a significant amount of valuable metals contained in spent LIBs are highly desirable to prevent the environmental pollution and resource depletion. In this work, a novel recycling technology to regenerate a LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 cathode material from spent LIBs with different cathode chemistries has been developed. By dismantling, crushing,leaching and impurity removing, the LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2(selected as an example of LiNi_xCo_yMn_(1-x-y)O_2) powder can be directly prepared from the purified leaching solution via co-precipitation followed by solid-state synthesis. For comparison purposes, a fresh-synthesized sample with the same composition has also been prepared using the commercial raw materials via the same method. X-ray diffraction(XRD), scanning electron microscopy(SEM) and electrochemical measurements have been carried out to characterize these samples. The electrochemical test result suggests that the re-synthesized sample delivers cycle performance and low rate capability which are comparable to those of the freshsynthesized sample. This novel recycling technique can be of great value to the regeneration of a pure and marketable LiNi_xCo_yMn_(1-x-y)O_2 cathode material with low secondary pollution.
基金supported by the National Natural Science Foundation of China(21633008,21433003,U1601211,21733004)National Science and Technology Major Project(2016YFB0101202)+2 种基金Jilin Province Science and Technology Development Program(20150101066JC,20160622037JC,20170203003SF,20170520150JH)Hundred Talents Program of Chinese Academy of Sciencesthe Recruitment Program of Foreign Experts(WQ20122200077)
文摘Pyrolyzed Fe-Nx/C materials derived from Fe-doped ZIF-8 are recently emerged as promising alternativesto noble metal platinum-based catalysts towards oxygen reduction reaction (ORR) and elucidating the de-pendacne of Fe source on the active site structure and final ORR performance is highly desirbale for fur-ther development of these materials. Here, we designed and synthesized a series of Fe-N-C catalysts usingZIF-8 and various iron salts (Fe(acac)3, FeCI3, Fe(NO3)3) as precusors. We found that the iron precursors,mainly the molecular size, hydrolysis extent, do play a major role in determining the final morphology ofFe, namely forming the Fe-Nx coordination or Fe3C nanoparticles, as well as the site density, therefore,significantly affecting the ORR activity. Among the three iron sources, Fe(acac)3 is most advantageous tothe preferential formation of single-atom Fe-Nx active sites and the derived catalyst demonstrated bestORR performance.
基金supported by the National Natural Science Foundation of China (21433003, 21633008)the Jilin Province Science and Technology Development Program (20150101066JC, 20160622037JC, 20170203003SF, and 20170520150JH)the Hundred Talents Program of the Chinese Academy of Sciences and the Recruitment Program of Foreign Experts (WQ20122200077)
文摘The electrochemical methanol oxidation reaction(MOR) is of paramount importance for direct methanol fuel cell(DMFC) application, where efficient catalysts are required to facilitate the complicated multiple charge transfer process. The catalyst support not only determines the dispersion status of the catalysts particles, but also exerts great influence on the electronic structure of the catalysts, thereby altering its intrinsic activity. Herein, we demonstrated that nitrogen atoms, assisted by the pre-treatment of carbon matrix with oxidants, can be easily doped into carbon nanotubes at low temperature. The obtained nitrogen-doped carbon nanotubes can effectively improve the dispersion of the supported platinum nanoparticles and facilitate the MOR by modifying the electronic structure of platinum atoms,through catalyst-support interaction.
基金financially supported by the National Natural Science Foundation of China(51971080)the Natural Science Foundation of Guangdong Province,China(2018A030313182)+1 种基金Shenzhen Bureau of Science,Technology and Innovation Commission(JCYJ20170811154527927)the Opening Project of State Key Laboratory of Advanced Chemical Power Sources。
文摘Lithium-sulfur battery is desirable for the future potential electrochemical energy storage device with advantages of high theoretical energy density,low cost and environmental friendliness.However,some natural hindrances,particularly fast capacity degradation resulting from the migration of dissolved polysulfide intermediates,remain to be significant challenges prior to the practical applications.In this work,a composite interlayer of carbon nanofibers(CNFs)which are enriched by Co-based metal organic frameworks(ZIF-67)growth in-situ is exploited.Notably,physical blocking and chemical trapping abilities are obtained synergistically from the ZIF/CNFs interlayer,which enables to restrain the dissolution of polysulfides and alleviate shuttle effect.Moreover,the three-dimensional fiber networks provide an interconnected conductive framework between each ZIF microreactor to promote fast electron transfer during cycling,thus contributing to excellent rate and cycling performance.As a result,Li-S cells with ZIF/CNFs interlayer show a high specific capacity of 1334 mAh g^(-1) at 1 C with an excellent cycling stability over 300 cycles.Besides,this scalable and affordable electrospinning fabrication method provides a promising approach for the design of MOFs-derived carbon materials for high performance Li-S batteries.
基金The authors would like to thank the Australian Research Council(ARC DP170103317,DP200103043)for financial support during the course of this study.Prof Jun Chen would like to thank the Australian National Fabrication Facility and EMC at the University of Wollongong for facilities/equipment access.
文摘Controllable design and synthesis of catalysts with the target active sites are extremely important for their applications such as for the oxygen reduction reaction(ORR)in fuel cells.However,the controllably synthesizing electrocatalysts with a single type of active site still remains a grand challenge.In this study,we developed a facile and scalable method for fabricating highly efficient ORR electrocatalysts with sole atomic Fe-N4 species as the active site.Herein,the use of cost-effective highly porous carbon as the support not only could avoid the aggregation of the atomic Fe species but also a feasible approach to reduce the catalyst cost.The obtained atomic Fe-N4 in activated carbon(aFe@AC)shows excellent ORR activity.Its half-wave potential is 59 mV more negative but 47 mV more positive than that of the commercial Pt/C in acidic and alkaline electrolytes,respectively.The full cell performance test results show that the aFe@AC sample is a promising candidate for direct methanol fuel cells.This study provides a general method to prepare catalysts with a certain type of active site and definite numbers.
基金Supported by the National Innovative Research Program for Undergraduates,China(No.2010A33039)the Science and Technology Development Program of Jilin Province,China(No.20100420)
文摘Carbon supported Pt(Pt/C) electrocatalysts were prepared with glucose as protection agent and NaBH 4 as reductant.The Pt nanoparticles deposited on carbon support presented reduced size and well dispersity attributed to the protection effect of glucose.Glucose absorbed on the particle surface was readily removed by water washing without leading to agglomeration of the Pt nanoparticles.The as-prepared Pt/C electrocatalysts showed improved mass activity for methanol electrooxidation compared to the catalyst prepared without glucose protection.The improved performance is attributed to the larger electrochemical active surface area thus increased active sites on the Pt/C elctrocatalysts prepared under the protection of glucose.
基金support of the National Natural Science Foundation of China (51671135, 21875141)support of the Program of Shanghai Subject Chief Scientist (17XD1403000)+2 种基金Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-07-E00015)Shanghai Outstanding Academic Leaders Plan, Shanghai Pujiang Program (18PJ1409000)the Opening Project of State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS-C-23)
文摘Lithium–sulfur(Li-S) battery is considered as one of the most promising candidates for future portable electronics and electric vehicles due to high energy density and potentially low cost. However, the severe polysulfides shuttling in Li-S battery always causes low Coulombic efficiency, capacity fading, and hindering its practical commercialization. Herein, a dualfunctional PEI@MWCNTs-CB/MWCNTs/PP(briefly denoted as PMS)separator is assembled through Langmuir–Blodgett–Scooping(LBS) technique for improvement of Li-S battery performance, that is, rational integrating conductive MWCNTs multilayer on a routine PP separator with polyethyleneimine(PEI) polymer. Owing to "proton-sponge"-based PEI feature with the abundant amino/imine groups and branched structures, the PMS separator can provide strong affinity to immobilize the negatively charged polysulfides via electrostatic interaction. Simultaneously,incorporated with the conductive MWCNTs multilayers for the electron transportation, the Li-S cells assembled with PMS separators achieve exceptional high delivery capacity, good rate performance(~550 m Ah g-1 at a current density of 9 A g-1), and stable cycling retention(retention of84.5% at a current density of 1 A g-1) even over 120 cycles, especially in the case of high-loading sulfur cathode(80 wt% of S content). This multifunctional separator with dual-structural architectures via self-assembly LBS method paves new avenues to develop high-performance Li-S batteries.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA21090400)the Instrument Developing Project of the Chinese Academy of Sciencesthe Jilin Province Science and Technology Development Program(Nos.20210301008GX,20200201001JC,and 20210502002ZP).
文摘The reactant concentration at the catalytic interface holds the key to the activity of electrocatalytic hydrogen evolution reaction(HER),mainly referring to the capacity of adsorbing hydrogen and electron accessibility.With hydrogen adsorption free energy(ΔGH)as a reactivity descriptor,the volcano curve based on Sabatier principle is established to evaluate the hydrogen evolution activity of catalysts.However,the role of electron as reactant received insufficient attention,especially for noble metal-free compound catalysts with poor conductivity,leading to cognitive gap between electronic conductivity and apparent catalytic activity.Herein we successfully construct a series of catalyst models with gradient conductivities by regulating molybdenum disulfide(MoS_(2))electronic bandgap via a simple solvothermal method.We demonstrate that the conductivity of catalysts greatly affects the overall catalytic activity.We further elucidate the key role of intrinsic conductivity of catalyst towards water electrolysis,mainly concentrating on the electron transport from electrode to catalyst,the electron accumulation process at the catalyst layer,and the charge transfer progress from catalyst to reactant.Theoretical and experimental evidence demonstrates that,with the enhancement in electron accessibility at the catalytic interface,the dominant parameter governing overall HER activity gradually converts from electron accessibility to combination of electron accessibility and hydrogen adsorbing energy.Our results provide the insight from various perspective for developing noble metal-free catalysts in electrocatalysis beyond HER.
基金supported by the Opening Project(SKLACPS-C-21)of the State Key Laboratory of Advanced Chemical Power Source,Guizhou Meiling Power Sources Co.,Ltd.the Program for Innovative and Entrepreneurial team in Zhuhai(ZH01110405160007PWC).
文摘Lithium metal anode is a promising electrode with high theoretical specific capacity and low electrode potential.However,its unstable interface and low Coulombic efficiency,resulting from the dendritic growth of lithium,limits its commercial application.PIM-1(PIM:polymer of intrinsic microporosity),which is a polymer with abundant micropores,exhibits high rigidity and flexibility with contorted spirocenters in the backbone,and is an ideal candidate for artificial solid electrolyte interphases(SEI).In this work,a PIM-1 membrane was synthesized and fabricated as a protective membrane on the surface of an electrode to facilitate the uniform flux of Li ions and act as a stable interface for the lithium plating/stripping process.Nodule-like lithium with rounded edges was observed under the PIM-1 membrane.The Li@PIM-1 electrode delivered a high average Coulombic efficiency(99.7%),excellent cyclability(80%capacity retention rate after 600 cycles at 1 C),and superior rate capability(125.3 m Ah g-1 at 10 C).Electrochemical impedance spectrum(EIS)showed that the PIM-1 membrane could lower the diffusion rate of Li+significantly and change the rate-determining step from charge transfer to Li+diffusion.Thus,the PIM-1 membrane is proven to act as an artificial SEI to facilitate uniform and stable deposition of lithium,in favor of obtaining a compact and dense Li-plating pattern.This work extends the application of PIMs in the field of lithium batteries and provides ideas for the construction of artificial SEI.
基金supported by the National Natural Science Foundation of China (21633008, 21733004, and 21603216)Jilin Province Science and Technology Development Program (20180101030JC)+2 种基金the Hundred Talents Program of Chinese Academy of Sciencesthe Recruitment Program of Foreign Experts (WQ20122200077)RFBR (18-53-53025)
文摘Hydrogen production from formic acid decomposition(FAD)is a promising means of hydrogen energy storage and utilization in fuel cells.Development of efficient catalysts for dehydrogenation of formic acid is a challenging topic.The surface chemical and electronic structure of the active catalysis components is important in formic acid decomposition at room-temperature.Here,the pyrdinic-nitrogen doped catalysts from hyperbranched polyamide were prepared via in situ polymerization reaction process by using activated carbon as a support.Because of the introduction of the polymer,the particles of the catalysts were stabilized,and the average particle diameter was only 1.64 nm.Under mild conditions,the catalysts activities were evaluated for FAD.The optimized Pd-N30/C catalyst exhibited high performance achieving almost full conversion,with a turnover frequency of 3481 h^-1 at 30℃.