Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate o...Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm.展开更多
The deep-processing utility of pure hydrogen sulfide (H_(2)S) is a significant direction in natural gas chemical industry.Herein,a brand-new strategy of H_(2)S conversion by a,β-unsaturated carboxylate esters into th...The deep-processing utility of pure hydrogen sulfide (H_(2)S) is a significant direction in natural gas chemical industry.Herein,a brand-new strategy of H_(2)S conversion by a,β-unsaturated carboxylate esters into thiols or thioethers using task-specific carboxylate ionic liquids (ILs) as catalyst has been developed,firstly accomplishing the phase separation of product and catalyst without introducing the third component.It can be considered as a cascade reaction in which the product selectivity can be controlled by adjusting the molar ratio of H_(2)S to a,β-unsaturated carboxylate esters.Also,the effects of ILs with different anions and cations,intermittent feeding operations,as well as pressure-time kinetic behaviors on cascade reaction were investigated.Furthermore,the proposed interaction mechanism of H_(2)S conversion using butyl acrylate catalyzed by[Emim][Ac]was revealed by DFT-based theoretical calculation.The approach enables the self-phase separation promotion of catalyst and product and achieves 99%quantitative conversion under mild conditions in the absence of solvent,making the entire process ecologically benign.High-efficiency reaction activity can still be maintained after ten cycles of the catalyst.Therefore,the good results,combined with its simplicity of operation and the high recyclability of the catalyst,make this green method environmentally friendly and cost-effective.It is anticipated that this self-separation method mediated by task-specific ILs will provide a feasible strategy for H_(2)S utilization,which will guide its application on an industrial scale.展开更多
CO_(2) methanation has a potential in the large-scale utilization of carbon dioxide.It has also been considered to be useful for the renewable energy storage.The commercial pipeline for natural gas transportation can ...CO_(2) methanation has a potential in the large-scale utilization of carbon dioxide.It has also been considered to be useful for the renewable energy storage.The commercial pipeline for natural gas transportation can be directly applied for the methane product of CO_(2) methanation.The supported ruthenium(Ru)catalyst has been confirmed to be active and stable for CO_(2) methanation with its high ability in the dissociation of hydrogen and the strong binding of carbon monoxide.CO_(2) methanation over the supported Ru catalyst is structure sensitive.The size of the Ru catalyst and the support have significant effects on the activity and the mechanism.A significant challenge re-mained is the structural controllable preparation of the supported Ru catalyst toward a sufficiently high low-temperature activity.In this review,the recent progresses in the investigations of the supported Ru catalysts for CO_(2) methanation are summarized.The challenges and the future devel-opments are also discussed.展开更多
Recent advances in utilizing ^(17)O isotopic labeling methods for solid-state nuclear magnetic resonance(NMR)investigations of metal oxides for lithium-ion batteries have yielded extensive insights into their structur...Recent advances in utilizing ^(17)O isotopic labeling methods for solid-state nuclear magnetic resonance(NMR)investigations of metal oxides for lithium-ion batteries have yielded extensive insights into their structural and dynamic details.Herein,we commence with a brief introduction to recent research on lithium-ion battery oxide materials studied using ^(17)O solid-state NMR spectroscopy.Then we delve into a review of ^(17)O isotopic labeling methods for tagging oxygen sites in both the bulk and surfaces of metal oxides.At last,the unresolved problems and the future research directions for advancing the ^(17)O labeling technique are discussed.展开更多
SiOx is attractive as an anode material for lithium-ion batteries(LIBs)due to its high capacity,low cost,and relatively higher cyclic stability than Si anode.However,the intrinsic low electronic conductivity,low initi...SiOx is attractive as an anode material for lithium-ion batteries(LIBs)due to its high capacity,low cost,and relatively higher cyclic stability than Si anode.However,the intrinsic low electronic conductivity,low initial coulombic efficiency(ICE),and volume expansion during cycles hinder its applications.In this review,we summarize advances in high performance SiOx anodes,mainly from two aspects:active material and binders.The future perspective is investigated at the end of this review.Our review provides strategical guidance for developing high performance SiOx anodes.展开更多
To solve the environmental pollution and low yield during the sythesis of zeolitic imidazolate frameworks(ZIFs)and their derived materials,a KOH-assisted aqueous strategy is proposed to synthesize cobalt zeolitic imid...To solve the environmental pollution and low yield during the sythesis of zeolitic imidazolate frameworks(ZIFs)and their derived materials,a KOH-assisted aqueous strategy is proposed to synthesize cobalt zeolitic imidazolate framework(ZIF-67)polyhedrons,which are used as precursors to prepare cobalt selenide/carbon composites with different crystal phases(Co_(0.85)Se,CoSe_2).When evaluated as anode material for lithium ion batteries,Co_(0.85)Se/C composites deliver a reversible capacity of 758.7 m A·h·g^(-1)with a capacity retention rate of 90.5%at 1.0 A·g^(-1)after 500 cycles,and the superior rate capability is 620 m A·h·g^(-1)at 2.0 A·g^(-1).The addition of KOH accelerates the production of ZIF-67 crystals by boosting deprotonation of dimethylimidazole,resulting in rapid growth and structures transition from two-dimensional to three-dimensional of ZIF-67 in aqueous solution,which greatly promotes the application of MOFs in the field of energy storage and conversion.展开更多
The development of self-charging supercapacitor power cells(SCSPCs)has profound implications for smart electronic devices used in different fields.Here,we epitaxially electrodeposited Mo-and Fe-codoped MnO_(2)films on...The development of self-charging supercapacitor power cells(SCSPCs)has profound implications for smart electronic devices used in different fields.Here,we epitaxially electrodeposited Mo-and Fe-codoped MnO_(2)films on piezoelectric ZnO nanoarrays(NAs)grown on the flexible carbon cloth(denoted ZnO@Mo-Fe-MnO_(2)NAs).A self-charging supercapacitor power cell device was assembled with the Mo-and Fe-codoped MnO_(2)nanoarray electrode and poly(vinylidenefluoride-co-trifluoroethylene)(PVDF-Trfe)piezoelectric film doped with BaTiO_(3)(BTO)and carbon nanotubes(CNTs)(denoted PVDF-Trfe/CNTs/BTO).The self-charging supercapacitor power cell device exhibited an energy density of 30μWh cm^(-2)with a high power density of 40 mW cm^(-2)and delivered an excellent self-charging performance of 363 mV(10 N)driven by both the piezoelectric ZnO nanoarrays and the poly(vinylidenefluoride-co-trifluoroethylene)piezoelectric film doped with BaTiO_(3)and carbon nanotubes.More intriguingly,the device could also be self-charged by 184 mV due to residual stress alone and showed excellent energy conversion efficiency and low self-discharge rate.This work illustrates for the first time the self-charging mechanism involving electrolyte ion migration driven by both electrodes and films.A comprehensive analysis strongly confirmed the important contribution of the piezoelectric ZnO nanoarrays in the self-charging process of the self-charging supercapacitor power cell device.This work provides novel directions and insights for the development of selfcharging supercapacitor power cells.展开更多
A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incor...A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1).展开更多
Since the successful exfoliation of graphene in 2014,twodimensional(2D)materials have explosively increased in the past few years[1].2D pnictogen materials with intriguing properties beyond graphene are gradually comi...Since the successful exfoliation of graphene in 2014,twodimensional(2D)materials have explosively increased in the past few years[1].2D pnictogen materials with intriguing properties beyond graphene are gradually coming into eyesight,such as black phosphorous(BP)[2],arsenene[3],antimonene[4],bismuthine[5],etc.BP is a star material in 2D materials.展开更多
Polyoxymethylene dimethyl ethers(PODE)were synthesized from the reaction of paraformaldehyde with dimethoxymethane(DMM)over different acid catalysts at different conditions.Products were found to follow the Schulz-Flo...Polyoxymethylene dimethyl ethers(PODE)were synthesized from the reaction of paraformaldehyde with dimethoxymethane(DMM)over different acid catalysts at different conditions.Products were found to follow the Schulz-Flory distribution law.The chain propagation proceeds through the insertion of an individual segment of CH2O one by one,while the simultaneous insertion of a few CH2O segments or their assembly is unlikely.Due to the restriction of this law,it is difficult to increase the selectivity to the desired products(e.g.,PODE3 4).展开更多
This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature....This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts.展开更多
Permeabilities and selectivities of gases such as carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen (N2) and methane (CH4) in six imidazolium-based ionic liquids ([emim][BF4], [bmim][BF4], [bmim][PF6], [ba...Permeabilities and selectivities of gases such as carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen (N2) and methane (CH4) in six imidazolium-based ionic liquids ([emim][BF4], [bmim][BF4], [bmim][PF6], [banim][BF4], [bmim][Tf2N] and [emim][CF3SO3]) supported on polyethersulfone microfiltration membranes are investigated in a single gas feed system using nitrogen as the environment and reference component at temperature from 25 to 45℃ and pressure of N2 from 100 to 400 kPa. It is found that SO2 has the highest permeability in the tested supported ionic liquid membranes, being an order of magnitude higher than that of CO2, and about 2 to 3 orders of magnitude larger than those of N2 and CH4. The observed selectivity of SO2 over the two ordinary gas components is also striking. It is shown experimentally that the dissolution and transport of gas components in the supported ionic liquid membranes, as well as the nature of ionic liquids play important roles in the gas permeation. A nonlinear increase of permeation rate with temperature and operation pressure is also observed for all sample gases. By considering the factors that influence the permeabilities and selectivities of CO2 and SO2, it is expected to develop an optimal supported ionic liquid membrane technology for the isolation of acidic gases in the near future.展开更多
The 80%Ni2P/Al2O3 catalysts were prepared by the phosphidation of corresponding 80%Ni/Al2O3 with triphenylphosphine in liquid phase and compared with the 60%Ni2P/Al2O3 for hydrotreating reactions. Both the60%Ni2P/Al2O...The 80%Ni2P/Al2O3 catalysts were prepared by the phosphidation of corresponding 80%Ni/Al2O3 with triphenylphosphine in liquid phase and compared with the 60%Ni2P/Al2O3 for hydrotreating reactions. Both the60%Ni2P/Al2O3 and 80%Ni2P/Al2O3 in comparison exhibited the small and uniform Ni2 P particles(6.3 and8.4 nm,respectively),high CO uptakes(305 and 345 μmol/g,respectively) and thus high activities for the hydrotreating reactions. After the hydrotreating reactions,the small and uniform Ni2 P particles were remained,although the CO uptakes on the used 60%Ni2P/Al2O3 and 80%Ni2P/Al2O3 were greatly decreased(to 68 and95 μmol/g,respectively) due to the incorporation of S into the Ni2 P surfaces. The 80%Ni2P/Al2O3 was found to be significantly more active than the 60%Ni2P/Al2O3 due to that the 80%Ni2P/Al2O3 possessed more,and more active Ni2 P sites than the 60%Ni2P/Al2O3,probably due to the less S incorporated in the 80%Ni2P/Al2O3 than in the 60%Ni2P/Al2O3 during the hydrotreating reactions.展开更多
A 60%Fe/Al_2O_3 catalyst was prepared by the co-precipitation method.It was reduced by H_2 to produce metallic Fe,which was then sulfided by CS_2 to Fe_(0.96) S and Fe_3S_4 or phosphided by triphenylphosphine(PPh3) in...A 60%Fe/Al_2O_3 catalyst was prepared by the co-precipitation method.It was reduced by H_2 to produce metallic Fe,which was then sulfided by CS_2 to Fe_(0.96) S and Fe_3S_4 or phosphided by triphenylphosphine(PPh3) in liquid phases to Fe2 P and Fe P.It was found that the iron sulfides(Fe0.96 S and Fe_3S_4) exhibited the low activity for the hydrodesulfurization(HDS) reactions.The HDS activity was also low on the Fe(metal)/Al_2O_3 and Fe_2 P/Al_2O_3 catalysts since they were converted into Fe0.96 S and Fe_3S_4 during the HDS reactions.In contrast,the FeP/Al_2O_3 was found to be stable and active for the HDS reactions.In particular,Fe P/Al_2O_3 possessed significantly smaller Fe P particles than Fe P/C,leading to the significant higher HDS activity of FeP/Al_2O_3 than Fe P/C.展开更多
A series of hexadecylphosphate acid(HDPA) terminated mixed-oxide nanoparticles have been investigated to catalyze the oxidation of toluene exclusive to benzaldehyde under mild conditions in an emulsion of toluene/wate...A series of hexadecylphosphate acid(HDPA) terminated mixed-oxide nanoparticles have been investigated to catalyze the oxidation of toluene exclusive to benzaldehyde under mild conditions in an emulsion of toluene/water with the catalysts as stabilizers. With the HDPA-Fe2 O3/Al2 O3 as the basic catalyst, a series of transition metals, such as Mn, Co, Ni, Cu, Cr, Mo, V, and Ti, was respectively doped to the basic catalyst to modify the performance of the catalytic system, in expectation of influencing the mobility of the lattice oxygen species in the oxide catalysts. Under normally working conditions of the catalytic system, the nanoparticles of catalysts located themselves at the interface between the oil and water phases, constituting the Pickering emulsion. Both the doped iron oxide and its surface adsorbed hexadecylphosphate molecules were essential to the catalytic system for excellent performances with high toluene conversions as well as the exclusive selectivity to benzaldehyde. Under optimal conditions, ~83% of toluene conversion and >99% selectivity to benzaldehyde were obtained, using molecular oxygen as oxidant and HDPA-(Fe2 O3-Ni O)/Al2 O3 as the catalyst. This process is green and low cost to produce high quality benzaldehyde from O2 oxidation of toluene.展开更多
A nanocomposite catalyst with a nonstoichiometric titanium oxide loaded on a special nanotubular alumina(γ‐Al2O3‐nt)was developed and used to reduce cinnamaldehyde to cinnamyl alcohol with sacrificial isopropanol,i...A nanocomposite catalyst with a nonstoichiometric titanium oxide loaded on a special nanotubular alumina(γ‐Al2O3‐nt)was developed and used to reduce cinnamaldehyde to cinnamyl alcohol with sacrificial isopropanol,i.e.,a Meerwein‐Ponndorf‐Verley type reaction.The deposition process produced a highly disperse layer of titanium oxide on the surface of aγ‐Al2O3‐nt support.After a reduction treatment,the as‐prepared TiOx/γ‐Al2O3‐nt was a highly efficient catalyst for the hydrogen transfer reaction between isopropanol and cinnamaldehyde.Selectivity for cinnamic alcohol was higher than99%and the conversion of cinnamaldehyde was higher than95%.The regular morphology of theγ‐Al2O3‐nt support with homogeneous surface sites and the uniformly dispersed titanium oxide featured a high concentration surface Ti(III)species.These factors contributed to the high performance of the TiOx/γ‐Al2O3‐nt catalyst.展开更多
Mesoporous superacids S2O82–-Fe2O3/SBA-15(SFS)with active nanoparticles are prepared by ultrasonic adsorption method.This method is adopted to ensure a homo-dispersed nanoparticle active phase,large specific surface ...Mesoporous superacids S2O82–-Fe2O3/SBA-15(SFS)with active nanoparticles are prepared by ultrasonic adsorption method.This method is adopted to ensure a homo-dispersed nanoparticle active phase,large specific surface area and many acidic sites.Compared with bulk S2O82–-Fe2O3,Br?nsted acid catalysts and other reported catalysts,SFS with an Fe2O3 loading of 30%(SFS-30)exhibits an outstanding activity in the probe reaction of alcoholysis of styrene oxide by methanol with 100%yield.Moreover,SFS-30 also shows a more excellent catalytic performance than bulk S2O82–-Fe2O3 towards the alcoholysis of other ROHs(R=C2H5-C4H9).Lewis and Bronsted acid sites on the SFS-30 surfaces are confirmed by pyridine adsorbed infrared spectra.The highly efficient catalytic activity of SFS-30 may be attributed to the synergistic effect from the nano-effect of S2O82–-Fe2O3 nanoparticles and the mesostructure of SBA-15.Finally,SFS-30 shows a good catalytic reusability,providing an 84.1%yield after seven catalytic cycles.展开更多
The influence of tungsten trioxide(WO3)loading on the selective catalytic reduction(SCR)of nitric oxide(NO)by ammonia(NH3)over WO3/cerium dioxide(CeO2)was investigated.The NO conversion first rose and then declined wi...The influence of tungsten trioxide(WO3)loading on the selective catalytic reduction(SCR)of nitric oxide(NO)by ammonia(NH3)over WO3/cerium dioxide(CeO2)was investigated.The NO conversion first rose and then declined with increasing WO3loading.It was found that the crystalline WO3in the1.6WO3/CeO2sample could be removed in25wt%ammonium hydroxide at70°C,which improved the catalytic activity of the sample.The obtained samples were characterized by X‐ray diffraction,Raman spectroscopy,X‐ray photoelectron spectroscopy,hydrogen(H2)temperature programmed reduction,NH3temperature programmed desorption,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The results revealed that the dispersed WO3promoted the catalytic activity of WO3/CeO2while the crystalline WO3inhibited catalytic activity.The oxygen activation of CeO2was inhibited by the coverage of WO3,which weakened NO oxidation and adsorption of nitrate species over WO3/CeO2.In addition,the NH3adsorption performance on CeO2was improved by modification with WO3.NH3was the most stable adsorbed species under NH3SCR reaction conditions.In situ DRIFT spectra suggested that the NH3SCR reaction proceeded via the Eley‐Rideal mechanism over WO3/CeO2.Thus,when the loading of WO3was close to the dispersion capacity,the effects of NH3adsorption and activation were maximized to promote the reaction via the Eley‐Rideal route.展开更多
The Ni2P/MgAlO catalysts with different MgO/Al2O3 ratios were prepared by the phosphidation of corresponding Ni/MgAlO catalysts with triphenylphosphine in liquid phase. It was found that the MgO/Al2O3 ratio affected t...The Ni2P/MgAlO catalysts with different MgO/Al2O3 ratios were prepared by the phosphidation of corresponding Ni/MgAlO catalysts with triphenylphosphine in liquid phase. It was found that the MgO/Al2O3 ratio affected the Ni2P/MgAlO catalysts significantly. The Ni2P/MgAlO catalyst with the MgO/Al2O3 ratio of 3 (w/w) exhibited the highly dispersed Ni2P particles (similar to 9 nm) with the highest CO uptake (344 mu mol/g) and thus the highest activities for the hydrotreating reactions. However, based on the CO uptakes on the used catalysts, the TOF values for the hydrodesulphurization of dibenzothiophene as well as those for the hydrogenation of tetralin on all the Ni2P/MgAlO catalysts were respectively similar, indicating that the MgO/Al2O3 ratio did not affect the intrinsic activities of Ni2P supported on the MgAlO support for the hydrotreating reactions. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
Base on the principle of absolute quantification of size exclusion chromatography (SEC), a light scattering (LS) detector coupled with a concentration detector (refractive index detector) is utilized to determin...Base on the principle of absolute quantification of size exclusion chromatography (SEC), a light scattering (LS) detector coupled with a concentration detector (refractive index detector) is utilized to determine the compositions of complicated binary mixtures. A theoretical analysis predicts that the response factors for both LS and RI detectors are linear functions with the composition of any specified polymer mixtures in the binary polymer mixtures. Two pairs of complicated binary mixtures were used to test the theory mentioned in the present paper, and the experimental results show an excellent accordance with the theory.展开更多
基金financial support of the National Natural Science Foundation of China(21776122).
文摘Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm.
基金sponsored by the National Natural Science Foundation of China (Nos. 22208140 and 22078145)。
文摘The deep-processing utility of pure hydrogen sulfide (H_(2)S) is a significant direction in natural gas chemical industry.Herein,a brand-new strategy of H_(2)S conversion by a,β-unsaturated carboxylate esters into thiols or thioethers using task-specific carboxylate ionic liquids (ILs) as catalyst has been developed,firstly accomplishing the phase separation of product and catalyst without introducing the third component.It can be considered as a cascade reaction in which the product selectivity can be controlled by adjusting the molar ratio of H_(2)S to a,β-unsaturated carboxylate esters.Also,the effects of ILs with different anions and cations,intermittent feeding operations,as well as pressure-time kinetic behaviors on cascade reaction were investigated.Furthermore,the proposed interaction mechanism of H_(2)S conversion using butyl acrylate catalyzed by[Emim][Ac]was revealed by DFT-based theoretical calculation.The approach enables the self-phase separation promotion of catalyst and product and achieves 99%quantitative conversion under mild conditions in the absence of solvent,making the entire process ecologically benign.High-efficiency reaction activity can still be maintained after ten cycles of the catalyst.Therefore,the good results,combined with its simplicity of operation and the high recyclability of the catalyst,make this green method environmentally friendly and cost-effective.It is anticipated that this self-separation method mediated by task-specific ILs will provide a feasible strategy for H_(2)S utilization,which will guide its application on an industrial scale.
文摘CO_(2) methanation has a potential in the large-scale utilization of carbon dioxide.It has also been considered to be useful for the renewable energy storage.The commercial pipeline for natural gas transportation can be directly applied for the methane product of CO_(2) methanation.The supported ruthenium(Ru)catalyst has been confirmed to be active and stable for CO_(2) methanation with its high ability in the dissociation of hydrogen and the strong binding of carbon monoxide.CO_(2) methanation over the supported Ru catalyst is structure sensitive.The size of the Ru catalyst and the support have significant effects on the activity and the mechanism.A significant challenge re-mained is the structural controllable preparation of the supported Ru catalyst toward a sufficiently high low-temperature activity.In this review,the recent progresses in the investigations of the supported Ru catalysts for CO_(2) methanation are summarized.The challenges and the future devel-opments are also discussed.
基金supported by National Key R&D Program of China(2021YFA1502803)the National Natural Science Foundation of China(NSFC)(21972066,91745202)+3 种基金NSFC-Royal Society Joint Program(21661130149)L.P.thanks the Royal Society and Newton Fund for a Royal Society-Newton Advanced Fellowshipsupported by the Research Funds for the Frontiers Science Centre for Critical Earth Material Cycling,Nanjing Universitya Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Recent advances in utilizing ^(17)O isotopic labeling methods for solid-state nuclear magnetic resonance(NMR)investigations of metal oxides for lithium-ion batteries have yielded extensive insights into their structural and dynamic details.Herein,we commence with a brief introduction to recent research on lithium-ion battery oxide materials studied using ^(17)O solid-state NMR spectroscopy.Then we delve into a review of ^(17)O isotopic labeling methods for tagging oxygen sites in both the bulk and surfaces of metal oxides.At last,the unresolved problems and the future research directions for advancing the ^(17)O labeling technique are discussed.
基金National Natural Science Foundation of China(No.21905194)Natural Science Foundation of the Jiangsu Higher Education Institution of China(No.23KJB150032).
文摘SiOx is attractive as an anode material for lithium-ion batteries(LIBs)due to its high capacity,low cost,and relatively higher cyclic stability than Si anode.However,the intrinsic low electronic conductivity,low initial coulombic efficiency(ICE),and volume expansion during cycles hinder its applications.In this review,we summarize advances in high performance SiOx anodes,mainly from two aspects:active material and binders.The future perspective is investigated at the end of this review.Our review provides strategical guidance for developing high performance SiOx anodes.
基金financially supported by the National Key Research and Development Program of China (2017YFA0208200)the National Natural Science Foundation of China (52102100,22022505 and 21872069)+4 种基金the Natural Science Foundation of Jiangsu Province (BK20181469)Guangdong Basic and Applied Basic Research Foundation (2020A1515110035)the Fundamental Research Funds for the Central Universities (0205-14380266,0205-14380272)the Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province (BK20220008)the 2021 Suzhou Gusu Leading Talents of Science and Technology Innovation and Entrepreneurship in Wujiang District。
文摘To solve the environmental pollution and low yield during the sythesis of zeolitic imidazolate frameworks(ZIFs)and their derived materials,a KOH-assisted aqueous strategy is proposed to synthesize cobalt zeolitic imidazolate framework(ZIF-67)polyhedrons,which are used as precursors to prepare cobalt selenide/carbon composites with different crystal phases(Co_(0.85)Se,CoSe_2).When evaluated as anode material for lithium ion batteries,Co_(0.85)Se/C composites deliver a reversible capacity of 758.7 m A·h·g^(-1)with a capacity retention rate of 90.5%at 1.0 A·g^(-1)after 500 cycles,and the superior rate capability is 620 m A·h·g^(-1)at 2.0 A·g^(-1).The addition of KOH accelerates the production of ZIF-67 crystals by boosting deprotonation of dimethylimidazole,resulting in rapid growth and structures transition from two-dimensional to three-dimensional of ZIF-67 in aqueous solution,which greatly promotes the application of MOFs in the field of energy storage and conversion.
基金the support by the Key Research and Development Program of Jiangxi Province(20203BBE53069)the National Key R&D Program of China(2017YFA0208200)+5 种基金the National Natural Science Foundation of China(51862026,22022505,and 21872069)the Fundamental Research Funds for the Central Universities of China(02051438026,020514380272 and 020514380274)the Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province(BK20220008)the Natural Science Foundation of Jiangxi Province(20192ACBL21048)the Nanjing International Col aboration Research Program(202201007 and 2022SX00000955)the Suzhou Gusu Leading Talent Program of Science and Technology Innovation and Entrepreneurship in Wujiang District(ZXL2021273)
文摘The development of self-charging supercapacitor power cells(SCSPCs)has profound implications for smart electronic devices used in different fields.Here,we epitaxially electrodeposited Mo-and Fe-codoped MnO_(2)films on piezoelectric ZnO nanoarrays(NAs)grown on the flexible carbon cloth(denoted ZnO@Mo-Fe-MnO_(2)NAs).A self-charging supercapacitor power cell device was assembled with the Mo-and Fe-codoped MnO_(2)nanoarray electrode and poly(vinylidenefluoride-co-trifluoroethylene)(PVDF-Trfe)piezoelectric film doped with BaTiO_(3)(BTO)and carbon nanotubes(CNTs)(denoted PVDF-Trfe/CNTs/BTO).The self-charging supercapacitor power cell device exhibited an energy density of 30μWh cm^(-2)with a high power density of 40 mW cm^(-2)and delivered an excellent self-charging performance of 363 mV(10 N)driven by both the piezoelectric ZnO nanoarrays and the poly(vinylidenefluoride-co-trifluoroethylene)piezoelectric film doped with BaTiO_(3)and carbon nanotubes.More intriguingly,the device could also be self-charged by 184 mV due to residual stress alone and showed excellent energy conversion efficiency and low self-discharge rate.This work illustrates for the first time the self-charging mechanism involving electrolyte ion migration driven by both electrodes and films.A comprehensive analysis strongly confirmed the important contribution of the piezoelectric ZnO nanoarrays in the self-charging process of the self-charging supercapacitor power cell device.This work provides novel directions and insights for the development of selfcharging supercapacitor power cells.
文摘A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1).
基金the National Natural Science Foundation of China(22022505 and 21872069)the Fundamental Research Funds for the Central Universities of China(020514380266,020514380272,and 020514380274)+5 种基金the Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province(BK20220008)the Scientific and Technological Achievements Transformation Special Fund of Jiangsu Province(BA2023037)the International Collaboration Research Program of Nanjing City(202201007 and 2022SX00000955)the Gusu Leading Talent Program of Scientific and Technological Innovation and Entrepreneurship of Wujiang District in Suzhou City(ZXL2021273)the National Key Research and Development Program of China(2022YFB3803300,2023YFE0116800)Beijing Natural Science Foundation(IS23037).
文摘Since the successful exfoliation of graphene in 2014,twodimensional(2D)materials have explosively increased in the past few years[1].2D pnictogen materials with intriguing properties beyond graphene are gradually coming into eyesight,such as black phosphorous(BP)[2],arsenene[3],antimonene[4],bismuthine[5],etc.BP is a star material in 2D materials.
文摘Polyoxymethylene dimethyl ethers(PODE)were synthesized from the reaction of paraformaldehyde with dimethoxymethane(DMM)over different acid catalysts at different conditions.Products were found to follow the Schulz-Flory distribution law.The chain propagation proceeds through the insertion of an individual segment of CH2O one by one,while the simultaneous insertion of a few CH2O segments or their assembly is unlikely.Due to the restriction of this law,it is difficult to increase the selectivity to the desired products(e.g.,PODE3 4).
基金supported by the National Natural Science Foundation of China (No. 21507130)the Open Project Program of Beijing National Laboratory for Molecular Sciences (No. 20140142)+3 种基金the Open Project Program of Chongqing Key Laboratory of Environmental Materials and Remediation Technology from Chongqing University of Arts and Sciences (No. CEK1405)the Open Project Program of Jiangsu Key Laboratory of Vehicle Emissions Control (No. OVEC001)the Open Project Program of Chongqing Key Laboratory of Catalysis and Functional Organic Molecules from Chongqing Technology and Business University (1456029)the Chongqing Science & Technology Commission (Nos. cstc2016jcyj A0070, cstc2014pt-gc20002, cstckjcxljrc13)~~
文摘This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts.
基金Supported by the National Natural Science Foundation of China (20776065), the Natural Science Foundation of Jiangsu Province (BK2008023), and the National Found for Fostering Talents of Basic Science 00630425).
文摘Permeabilities and selectivities of gases such as carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen (N2) and methane (CH4) in six imidazolium-based ionic liquids ([emim][BF4], [bmim][BF4], [bmim][PF6], [banim][BF4], [bmim][Tf2N] and [emim][CF3SO3]) supported on polyethersulfone microfiltration membranes are investigated in a single gas feed system using nitrogen as the environment and reference component at temperature from 25 to 45℃ and pressure of N2 from 100 to 400 kPa. It is found that SO2 has the highest permeability in the tested supported ionic liquid membranes, being an order of magnitude higher than that of CO2, and about 2 to 3 orders of magnitude larger than those of N2 and CH4. The observed selectivity of SO2 over the two ordinary gas components is also striking. It is shown experimentally that the dissolution and transport of gas components in the supported ionic liquid membranes, as well as the nature of ionic liquids play important roles in the gas permeation. A nonlinear increase of permeation rate with temperature and operation pressure is also observed for all sample gases. By considering the factors that influence the permeabilities and selectivities of CO2 and SO2, it is expected to develop an optimal supported ionic liquid membrane technology for the isolation of acidic gases in the near future.
基金supports from NSFC (21273105)MSTC (2013AA031703)NSFJC (BK20140596)
文摘The 80%Ni2P/Al2O3 catalysts were prepared by the phosphidation of corresponding 80%Ni/Al2O3 with triphenylphosphine in liquid phase and compared with the 60%Ni2P/Al2O3 for hydrotreating reactions. Both the60%Ni2P/Al2O3 and 80%Ni2P/Al2O3 in comparison exhibited the small and uniform Ni2 P particles(6.3 and8.4 nm,respectively),high CO uptakes(305 and 345 μmol/g,respectively) and thus high activities for the hydrotreating reactions. After the hydrotreating reactions,the small and uniform Ni2 P particles were remained,although the CO uptakes on the used 60%Ni2P/Al2O3 and 80%Ni2P/Al2O3 were greatly decreased(to 68 and95 μmol/g,respectively) due to the incorporation of S into the Ni2 P surfaces. The 80%Ni2P/Al2O3 was found to be significantly more active than the 60%Ni2P/Al2O3 due to that the 80%Ni2P/Al2O3 possessed more,and more active Ni2 P sites than the 60%Ni2P/Al2O3,probably due to the less S incorporated in the 80%Ni2P/Al2O3 than in the 60%Ni2P/Al2O3 during the hydrotreating reactions.
基金Financial supports from the NSFC-DFG (21761132006),NSFC (21773108)fundamental research funds for central universities are acknowledged
文摘A 60%Fe/Al_2O_3 catalyst was prepared by the co-precipitation method.It was reduced by H_2 to produce metallic Fe,which was then sulfided by CS_2 to Fe_(0.96) S and Fe_3S_4 or phosphided by triphenylphosphine(PPh3) in liquid phases to Fe2 P and Fe P.It was found that the iron sulfides(Fe0.96 S and Fe_3S_4) exhibited the low activity for the hydrodesulfurization(HDS) reactions.The HDS activity was also low on the Fe(metal)/Al_2O_3 and Fe_2 P/Al_2O_3 catalysts since they were converted into Fe0.96 S and Fe_3S_4 during the HDS reactions.In contrast,the FeP/Al_2O_3 was found to be stable and active for the HDS reactions.In particular,Fe P/Al_2O_3 possessed significantly smaller Fe P particles than Fe P/C,leading to the significant higher HDS activity of FeP/Al_2O_3 than Fe P/C.
基金supported by the National Natural Science Foundation of China(91434101,91745108)the Ministry of Science and Technology of the People’s Republic of China(2017YFB0702900)~~
文摘A series of hexadecylphosphate acid(HDPA) terminated mixed-oxide nanoparticles have been investigated to catalyze the oxidation of toluene exclusive to benzaldehyde under mild conditions in an emulsion of toluene/water with the catalysts as stabilizers. With the HDPA-Fe2 O3/Al2 O3 as the basic catalyst, a series of transition metals, such as Mn, Co, Ni, Cu, Cr, Mo, V, and Ti, was respectively doped to the basic catalyst to modify the performance of the catalytic system, in expectation of influencing the mobility of the lattice oxygen species in the oxide catalysts. Under normally working conditions of the catalytic system, the nanoparticles of catalysts located themselves at the interface between the oil and water phases, constituting the Pickering emulsion. Both the doped iron oxide and its surface adsorbed hexadecylphosphate molecules were essential to the catalytic system for excellent performances with high toluene conversions as well as the exclusive selectivity to benzaldehyde. Under optimal conditions, ~83% of toluene conversion and >99% selectivity to benzaldehyde were obtained, using molecular oxygen as oxidant and HDPA-(Fe2 O3-Ni O)/Al2 O3 as the catalyst. This process is green and low cost to produce high quality benzaldehyde from O2 oxidation of toluene.
基金supported by the National Natural Science Foundation of China (91434101)the National Key R&D Plan (2017YFB0702800)~~
文摘A nanocomposite catalyst with a nonstoichiometric titanium oxide loaded on a special nanotubular alumina(γ‐Al2O3‐nt)was developed and used to reduce cinnamaldehyde to cinnamyl alcohol with sacrificial isopropanol,i.e.,a Meerwein‐Ponndorf‐Verley type reaction.The deposition process produced a highly disperse layer of titanium oxide on the surface of aγ‐Al2O3‐nt support.After a reduction treatment,the as‐prepared TiOx/γ‐Al2O3‐nt was a highly efficient catalyst for the hydrogen transfer reaction between isopropanol and cinnamaldehyde.Selectivity for cinnamic alcohol was higher than99%and the conversion of cinnamaldehyde was higher than95%.The regular morphology of theγ‐Al2O3‐nt support with homogeneous surface sites and the uniformly dispersed titanium oxide featured a high concentration surface Ti(III)species.These factors contributed to the high performance of the TiOx/γ‐Al2O3‐nt catalyst.
文摘Mesoporous superacids S2O82–-Fe2O3/SBA-15(SFS)with active nanoparticles are prepared by ultrasonic adsorption method.This method is adopted to ensure a homo-dispersed nanoparticle active phase,large specific surface area and many acidic sites.Compared with bulk S2O82–-Fe2O3,Br?nsted acid catalysts and other reported catalysts,SFS with an Fe2O3 loading of 30%(SFS-30)exhibits an outstanding activity in the probe reaction of alcoholysis of styrene oxide by methanol with 100%yield.Moreover,SFS-30 also shows a more excellent catalytic performance than bulk S2O82–-Fe2O3 towards the alcoholysis of other ROHs(R=C2H5-C4H9).Lewis and Bronsted acid sites on the SFS-30 surfaces are confirmed by pyridine adsorbed infrared spectra.The highly efficient catalytic activity of SFS-30 may be attributed to the synergistic effect from the nano-effect of S2O82–-Fe2O3 nanoparticles and the mesostructure of SBA-15.Finally,SFS-30 shows a good catalytic reusability,providing an 84.1%yield after seven catalytic cycles.
基金supported by the National Natural Foundation of China(21607019,21503115)the Open Project Program of Jiangsu Key Laboratory of Vehicle Emissions Control(OVEC013)the Talent Introduction Project of Chongqing Three Gorges University~~
文摘The influence of tungsten trioxide(WO3)loading on the selective catalytic reduction(SCR)of nitric oxide(NO)by ammonia(NH3)over WO3/cerium dioxide(CeO2)was investigated.The NO conversion first rose and then declined with increasing WO3loading.It was found that the crystalline WO3in the1.6WO3/CeO2sample could be removed in25wt%ammonium hydroxide at70°C,which improved the catalytic activity of the sample.The obtained samples were characterized by X‐ray diffraction,Raman spectroscopy,X‐ray photoelectron spectroscopy,hydrogen(H2)temperature programmed reduction,NH3temperature programmed desorption,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The results revealed that the dispersed WO3promoted the catalytic activity of WO3/CeO2while the crystalline WO3inhibited catalytic activity.The oxygen activation of CeO2was inhibited by the coverage of WO3,which weakened NO oxidation and adsorption of nitrate species over WO3/CeO2.In addition,the NH3adsorption performance on CeO2was improved by modification with WO3.NH3was the most stable adsorbed species under NH3SCR reaction conditions.In situ DRIFT spectra suggested that the NH3SCR reaction proceeded via the Eley‐Rideal mechanism over WO3/CeO2.Thus,when the loading of WO3was close to the dispersion capacity,the effects of NH3adsorption and activation were maximized to promote the reaction via the Eley‐Rideal route.
基金Financial supports from NSFC(21273105)MSTC(2013AA031703)+1 种基金NSFJC(BK20140596)the fundamental research funds for central universities
文摘The Ni2P/MgAlO catalysts with different MgO/Al2O3 ratios were prepared by the phosphidation of corresponding Ni/MgAlO catalysts with triphenylphosphine in liquid phase. It was found that the MgO/Al2O3 ratio affected the Ni2P/MgAlO catalysts significantly. The Ni2P/MgAlO catalyst with the MgO/Al2O3 ratio of 3 (w/w) exhibited the highly dispersed Ni2P particles (similar to 9 nm) with the highest CO uptake (344 mu mol/g) and thus the highest activities for the hydrotreating reactions. However, based on the CO uptakes on the used catalysts, the TOF values for the hydrodesulphurization of dibenzothiophene as well as those for the hydrogenation of tetralin on all the Ni2P/MgAlO catalysts were respectively similar, indicating that the MgO/Al2O3 ratio did not affect the intrinsic activities of Ni2P supported on the MgAlO support for the hydrotreating reactions. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金supported by the National Natural Science Foundation of China(No.50633030)
文摘Base on the principle of absolute quantification of size exclusion chromatography (SEC), a light scattering (LS) detector coupled with a concentration detector (refractive index detector) is utilized to determine the compositions of complicated binary mixtures. A theoretical analysis predicts that the response factors for both LS and RI detectors are linear functions with the composition of any specified polymer mixtures in the binary polymer mixtures. Two pairs of complicated binary mixtures were used to test the theory mentioned in the present paper, and the experimental results show an excellent accordance with the theory.