Oceanographic surveying has been one of the key missions of the Chinese National Antarctic Research Expedition since 1984. Using the field data obtained in these surveys and the results from remote sensing and numeric...Oceanographic surveying has been one of the key missions of the Chinese National Antarctic Research Expedition since 1984. Using the field data obtained in these surveys and the results from remote sensing and numerical models, Chinese physical oceanographers have investigated the water masses, fronts and circulation patterns in the Southern Ocean. The results of nearly 30 years of research are summarized in this paper. Most oceanographic observations by Chinese researchers have been con- ducted in Prydz Bay and the adjacent seas. CTD (Conductivity Temperature and Depth) data, collected during the past 20 years, have been applied to study several features of the water masses in this region: The spatial variation of warm summer surface water, the northward extension of shelf water, the flow of ice shelf water from the cavity beneath the Amery Ice Shelf, the upweUing of the Circumpolar Deep Water, and the formation of the Antarctic Bottom Water. The circulation and its dynamic factors have been analyzed with dynamic heights calculated from CTD data as well as by numerical models. The structure and strength of the fronts in the southeast Indian Ocean and the Drake Passage were investigated with underway XBT/XCTD (Expendable Bathythermo- graph/Expendable CTD) and ADCP (Acoustic Doppler Current Profiler) data. Their interaunual variations have been determined and the factors of influence, especially the atmospheric forcing and mesoscale oceanic processes, were studied using remote sens- ing data. The dynamic mechanism of the Antarctic Circumpolar Current (ACC) was analyzed by theoretical models. The transport and pattern of the ACC have been well reproduced by coupled sea ice-ocean models. Additional details of ACC variability were identified based on satellite altimeter data. The response of the ACC to climate change was studied using reanalysis data. Prospects for future research are presented at the end of this paper.展开更多
As a part of the National Report of China for the International Association for Physical Science of Ocean (IAPSO), the main research results of Chinese scientists in Arctic physical oceanography during 2007-2010 are...As a part of the National Report of China for the International Association for Physical Science of Ocean (IAPSO), the main research results of Chinese scientists in Arctic physical oceanography during 2007-2010 are reviewed in this paper. This period overlaps with the International Polar Year (IPY), which is a catalyst for nations to emphasize activities and research in the polar regions. The Arctic also experienced a rapid change in sea ice, ocean, and climate during this time. China launched two Arctic cruises with the R/V XUE LONG icebreaker, in 2008 and 2010, which provided more opportunities for Chinese scientists to investigate the Arctic Ocean and its change. During this period, Chinese scientists participated in more than ten other cruises with international collaborations. The main research covered in this paper includes the upper ocean characteristic, ocean and sea ice optics, kinematics of sea ice and the Arctic impact on global climate change. The progress in sea ice optics, the observation technologies and Arctic Oscillation are especially remarkable.展开更多
In this study, the micro-and macro-physical properties, thermal structure and precipitation characteristics of cyclone eye walls and their surrounding spiral clouds were analysed with Cloud Sat and TRMM data for five ...In this study, the micro-and macro-physical properties, thermal structure and precipitation characteristics of cyclone eye walls and their surrounding spiral clouds were analysed with Cloud Sat and TRMM data for five tropical cyclones(TCs) in 2013. The results show that the ice-phase clouds of a mature TC are mainly above 5 km. With increasing altitude, the cloud droplet effective radius decreases, and the particle number concentration increases. Ice water content first increases and then decreases with increasing height. In the eye area, in addition to the well-known warm-core area, another warm core is also apparent around the eye at a height of 8 to 15 km. The horizontal distribution of precipitation is characterized by large-scale stratiform precipitation mixed with independent convective precipitation. The height of precipitation is mostly below 7.5 km, and the heavy rain is mainly below 5 km. When the peripheral convective clouds are strong enough, ice particles would be generated, thus providing conditions that are favourable for the formation of precipitation below.展开更多
Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-Apr...Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-April)was studied to reveal the variations of the key factors at different explosive-developing stages.This EC had weak low-level baroclinicity,mid-level cyclonic-vorticity advection,and strong low-level water vapor convergence at the initial explosive-developing stage.The low-level baroclinicity and mid-level cyclonic-vorticity advection increased substantially during the maximum-deepening-rate stage.The diagnostic analyses using the Zwack-Okossi equation showed that diabatic heating was the main contributor to the initial rapid intensification of this EC.The cyclonic-vorticity advection and warm-air advection enhanced rapidly in the middle and upper troposphere and contributed to the maximum rapid intensification,whereas the diabatic heating weakened slightly in the mid-low troposphere.The relative contribution of the diabatic heating decreased from the initial explosive-developing stage to the maximum-deepening-rate stage due to the enhancement of other factors(the cyclonic-vorticity advection and warm-air advection).Furthermore,the physical factors contributing to this EC varied with the explosive-developing stage.The non-key factors at the initial explosive-developing stage need attention to forecast the rapid intensification.展开更多
Besides the rapid retreating trend of Arctic sea-ice extent(SIE),this study found the most outstanding low-frequency variation of SIE to be a 4-6-year periodic variation.Using a clustering analysis algorithm,the SIE i...Besides the rapid retreating trend of Arctic sea-ice extent(SIE),this study found the most outstanding low-frequency variation of SIE to be a 4-6-year periodic variation.Using a clustering analysis algorithm,the SIE in most ice-covered regions was clustered into two special regions:Region-1 around the Barents Sea and Region-2 around the Canadian Basin,which were located on either side of the Arctic Transpolar Drift.Clear 4-6-year periodic variation in these two regions was identified using a novel method called“running linear fitting algorithm”.The rate of temporal variation of the Arctic SIE was related to three driving factors:the regional air temperature,the sea-ice areal flux across the Arctic Transpolar Drift,and the divergence of sea-ice drift.The 4-6-year periodic variation was found to have always been present since 1979,but the SIE responded to different factors under heavy and light ice conditions divided by the year 2005.The joint contribution of the three factors to SIE variation exceeded 83%and 59%in the two regions,respectively,remarkably reflecting their dynamic mechanism.It is proven that the process of El Niño-Southern Oscillation(ENSO)is closely associated with the three factors,being the fundamental source of the 4-6-year periodic variations of Arctic SIE.展开更多
In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The eff...In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The effectiveness of this algorithm is validated and compared with the nonlinear local Lyapunov exponent(NLLE)and signal-to-noise ratio methods using a coupled Lorenz model.The results show that the CNLLE method is able to capture the slow error growth constrained by external forcings,therefore,it can quantify the predictability limit induced by the external forcings.On this basis,a preliminary attempt was made to apply this method to measure the influence of ENSO on the predictability limit for both atmospheric and oceanic variable fields.The spatial distribution of the predictability limit induced by ENSO is similar to that arising from the initial conditions calculated by the NLLE method.This similarity supports ENSO as the major predictable signal for weather and climate prediction.In addition,a ratio of predictability limit(RPL)calculated by the CNLLE method to that calculated by the NLLE method was proposed.The RPL larger than 1 indicates that the external forcings can significantly benefit the long-term predictability limit.For instance,ENSO can effectively extend the predictability limit arising from the initial conditions of sea surface temperature over the tropical Indian Ocean by approximately four months,as well as the predictability limit of sea level pressure over the eastern and western Pacific Ocean.Moreover,the impact of ENSO on the geopotential height predictability limit is primarily confined to the troposphere.展开更多
This paper reviews recent progress made by Chinese scientists on the pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate within the framework of a“coupled oceanic-atmospheric(lan...This paper reviews recent progress made by Chinese scientists on the pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate within the framework of a“coupled oceanic-atmospheric(land-atmospheric or seaice-atmospheric)bridge”and“chain coupled bridge”.Four major categories of pathways are concentrated upon,as follows:Pathway A—from North Atlantic to East Asia;Pathway B—from the North Pacific to East Asia;Pathway C—from the Arctic to East Asia;and Pathway D—the synergistic effects of the mid-high latitudes and tropics.In addition,definitions of the terms“combined effect”,“synergistic effect”and“antagonistic effect”of two or more factors of influence or processes and their criteria are introduced,so as to objectively investigate those effects in future research.展开更多
In this study, a sea fog event which occurred on 27 March 2005 over the Yellow and Bohai Seas was investigated observationally and numerically. Almost all available observational data were used, including satellite im...In this study, a sea fog event which occurred on 27 March 2005 over the Yellow and Bohai Seas was investigated observationally and numerically. Almost all available observational data were used, including satellite imagery of Geostationary Operational Environmental Satellite (GOES)-9, three data sets from station observations at Dandong, Dalian and Qingdao, objectively reanalyzed data of final run analysis (FNL) issued by the National Center for Environmental Prediction (NCEP) and Regional Atmospheric Modeling System (RANIS) results. Synoptic conditions and fog characteristics were analyzed. The fog formed when warm, moist air was advected northwards over the cool water of the Yellow and Bohai Seas, and dissipated when a cold front brought northerly winds and cool, dry air. In order to better understand the fog formation mechanism, a high-resolution RAMS modeling with a 6km×6km grid, initialized and validated by FNL data, was designed. A 48h modeling that started from 12 UTC 26 March 2005 reproduced the main characteristics of this sea fog event. The simulated lower visibility area agreed reasonably well with the sea fog region identified from the satellite imagery. Advection cooling effect seemed to play a significant role in the fog formation.展开更多
On the basis of data of drifting bottles' tracks and the current measured in anchored stations, as well as temperature and salinity observed in cruise investigations and coastal stations, ADCP current data and AVHRR ...On the basis of data of drifting bottles' tracks and the current measured in anchored stations, as well as temperature and salinity observed in cruise investigations and coastal stations, ADCP current data and AVHRR surface sea temperature (SST) data on the western coast of Guangdong, synthetic results of analysis showed that the coastal currents in the west of the mouth of the Zhujiang River were mainly westward in summer, which constituted the north branch of cyclonic gyre in the east of the Qiongzhou Straits. Part of its water flowed westward into the Beibu Gulf through the Qiongzhou Straits. The coastal current pattern was not identical with the traditional current system which flowed westward in the Qiongzhou Straits in winter and eastward in summer. The summertime's coastal current was always westward, maybe temporarily turning northeast only when the southwest wind was strong. The important characteristics of coastal current on the western coast of Guangdong, in the Qiongzhou Straits and in the north of the Beibu Gulf were analyzed and their mechanisms also were explained.展开更多
Wave climate analysis and other applications for the Pacific Ocean require a reliable wave hindcast. Five source and sink term packages in the Wavewatch III model (v3.14 and v4.18) are compared and assessed in this ...Wave climate analysis and other applications for the Pacific Ocean require a reliable wave hindcast. Five source and sink term packages in the Wavewatch III model (v3.14 and v4.18) are compared and assessed in this study through comprehensive observations, including altimeter significant wave height, advanced synthetic aperture radar swell, and buoy wave parameters and spectrum. In addition to the evaluation of typically used integral parameters, the spectra partitioning method contributes to the detailed wave system and wave maturity validation. The modified performance evaluation method (PS) effectively reduces attribute numbers and facilitates the overall assessment. To avoid possible misleading results in the root mean square error-based validations, another indicator called HH (indicating the two authors) is also calculated to guarantee the consistency of the results. The widely used Tolman and Chalikov (TC) package is still generally efficient in determining the integral properties of wave spectra but is physically deficient in explaining the dissipation processes. The ST4 package performs well in overall wave parameters and significantly improves the accuracy of wave systems in the open ocean. Meanwhile, the newly published ST6 package is slightly better in determining swell energy variations. The two packages (ACC350 and BIA) obtained from Wavewatch III v3.14 exhibit large scatters at different sea states. The three most ideal packages are further examined in terms of reproducing wave- induced momentum flux from the perspective of transport. Stokes transport analysis indicates that ST4 is the closest to the NDBC-buoy-spectrum-based transport values, and TC and ST6 tend to overestimate and underestimate the transport magnitude, respectively, in swell mixed areas. This difference must be considered, particularly in air-wave-current coupling research and upper ocean analysis. The assessment results provide guidance for the selection of ST4 for use in a background Pacific Ocean hindcast for high wave climate research and China Sea swell type analysis.展开更多
A stratus-sea fog event that occurred over the Yellow and East China Seas on 3 June 2011 is investigated using observations and a numerical model, with a focus on the effects of background circulation and Sea Surface ...A stratus-sea fog event that occurred over the Yellow and East China Seas on 3 June 2011 is investigated using observations and a numerical model, with a focus on the effects of background circulation and Sea Surface Temperature Front (SSTF) on the transition of stratus into sea fog. Southerly winds of a synoptic high-pressure circulation transport water vapor to the Yellow Sea, creating conditions favorable for sea fog/stratus formation. The subsidence from the high-pressure contributes to the temperature inversion at the top of the stratus. The SSTF forces a secondary circulation within the ABL (Atmospheric Boundary Layer), the sinking branch of which on the cold flank of SSTF helps lower the stratus layer fiLrther to reach the sea surface. The cooling effect over the cold sea surface counteracts the adiabatic warming induced by subsidence. The secondary circulation becomes weak and the fog patches are shrtmk heavily with the smoothed SSTE A conceptual model is proposed for the transition of stratus into sea fog over the Yellow and East China Seas. Finally, the analyses suggest that sea fog frequency will probably decrease due to the weakened SSTF and the reduced subsidence of secondary circulation under global wanning.展开更多
The Argo data are used to calculate eddy(turbulence) heat transport(EHT) in the global ocean and analyze its horizontal distribution and vertical structure.We calculate the EHT by averaging all the v ′,T ′ profi...The Argo data are used to calculate eddy(turbulence) heat transport(EHT) in the global ocean and analyze its horizontal distribution and vertical structure.We calculate the EHT by averaging all the v ′,T ′ profiles within each 2 ×2 bin.The velocity and temperature anomalies are obtained by removing their climatological values from the Argo "instantaneous" values respectively.Through the Student's t-test and an error evaluation,we obtained a total of 87% Argo bins with significant depth-integrated EHTs(D-EHTs).The results reveal a positive-and-negative alternating D-EHT pattern along the western boundary currents(WBC) and Antarctic Circumpolar Current(ACC).The zonally-integrated D-EHT(ZI-EHT) of the global ocean reaches 0.12 PW in the northern WBC band and –0.38 PW in the ACC band respectively.The strong ZI-EHT across the ACC in the global ocean is mainly caused by the southern Indian Ocean.The ZI-EHT in the above two bands accounts for a large portion of the total oceanic heat transport,which may play an important role in regulating the climate.The analysis of vertical structures of the EHT along the 35 N and 45 S section reveals that the oscillating EHT pattern can reach deep in the northern WBC regions and the Agulhas Return Current(ARC) region.It also shows that the strong EHT could reach 600 m in the WBC regions and 1 000 m in the ARC region,with the maximum mainly located between 100 and 400 m depth.The results would provide useful information for improving the parameterization scheme in models.展开更多
The temperature and salinity data obtained by the Chinese national arctic research expedition (CHINARE2003) are used to study the water structure in the Bering Strait and ambient regions. Four water masses appeared ...The temperature and salinity data obtained by the Chinese national arctic research expedition (CHINARE2003) are used to study the water structure in the Bering Strait and ambient regions. Four water masses appeared in the research region: the intermediate Bering Sea water mass (IBWM), the Alaska coastal water (ACW), the Anadyr water (AW) and the Bering shelf water (BSW). The AW originates from the IBWM, but the upper layer water has been greatly altered. In the cruise on 28/29 July 2003, there were only the BSW and ACW in a section across the Bering Strait (BS section), but in the September 12/13 cruise, the AW, BSW and ACW flowed parallelly into the Bering Strait. The upper waters of these water masses were all altered due to ice melting, runoff, solar radiation, and wind mixing. The waters in the central and northern parts of Bering Strait stratified by two uniform layers,were expressed as the typical feature of the water masses originating from the pacific. A two-layer structure also dominated the vertical stratification in most part of the Chukchi Sea. An obvious subseasonal variation was observed in the BS section, which caused varying transportation of fresh water, heat, and substance, and produced a long-term and extensive impact on the Arctic Ocean.展开更多
The seasonal variations of several main water masses in the southern Yellow Sea (SYS) and East China Sea (ECS) in 2011 were analyzed using the in-situ data collected on four cruises.There was something special in the ...The seasonal variations of several main water masses in the southern Yellow Sea (SYS) and East China Sea (ECS) in 2011 were analyzed using the in-situ data collected on four cruises.There was something special in the observations for the Yellow Sea Warm Current (YSWC) ,the Yellow Sea Cold Water Mass (YSCWM) and the Changjiang Diluted Water (CDW) during that year.The YSWC was confirmed to be a seasonal current and its source was closely associated with the Kuroshio onshore intrusion and the northerly wind.It was also found that the YSCWM in the summer of 2011 occupied a more extensive area in comparison with the climatologically-mean case due to the abnormally powerful wind prevailing in the winter of 2010 and decaying gradually thereafter.Resulting from the reduced Changjiang River discharge,the CDW spreading toward the Cheju Island in the summer of 2011 was weaker than the long-term mean and was confined to flow southward in the other seasons.The other water masses seemed normal without noticeable anomalies in 2011.The Yellow Sea Coastal Current (YSCC) water,driven by the northerly wind,flowed southeastward as a whole except for its northeastward surface layer in summer.The Taiwan Warm Current (TWC) was the strongest in summer and the weakest in winter in its northward movement.The Kuroshio water with an enhanced onshore intrusion in autumn was stable in hydrographic features apart from the seasonal variation of its surface layer.展开更多
Explosive cyclones(ECs)over two basins in the Northern Hemisphere(20°-90°N)from January 1979 to December2016 are investigated using ERA-Interim and Optimum Interpolation Sea Surface Temperature(OISST)data.Th...Explosive cyclones(ECs)over two basins in the Northern Hemisphere(20°-90°N)from January 1979 to December2016 are investigated using ERA-Interim and Optimum Interpolation Sea Surface Temperature(OISST)data.The classical definition of an EC is modified considering not only the rapid drop of the central sea level pressure of the cyclone,but also the strong wind speed at the height of 10 m in which maximum wind speeds greater than 17.2 m s^-1are included.According to the locations of the northern Atlantic and northern Pacific,the whole Northern Hemisphere is divided into the"A region"(20°-90°N,90°W-90°E)and"P region"(20°-90°N,90°E-90°W).Over both the A and P regions,the climatological features of ECs,such as their spatial distribution,intensity,seasonal variation,interannual variation,and moving tracks,are documented.展开更多
Radium isotopes 226Ra and 228Ra in seawater of the western Yellow Sea were measured by using the Mn-fiber adsorption - HPGe 7 spectrum method. The distribution features of the two isotopes have been studied. The activ...Radium isotopes 226Ra and 228Ra in seawater of the western Yellow Sea were measured by using the Mn-fiber adsorption - HPGe 7 spectrum method. The distribution features of the two isotopes have been studied. The activities of 226Ra and 228Ra are 2.72-5.57 Bq m^-3 and 7.51-34.3 Bq m^-3 respectively. The activities of 226Ra and 228Ra from surface to bottom for each depth profile station are comparable within the experimental error, but the mean activities decrease with distance from the shore. From the distribution data of 228Ra, the horizontal eddy diffusion coefficient was estimated at 29 × 10^6 cm^2 s^- 1.展开更多
As a unique low-temperature water mass in Antarctic coastal region, the Ice Shelf Water (ISW) is an important component for the formation of the Antarctic Bottom Water (AABW). In this paper, we present a criterion for...As a unique low-temperature water mass in Antarctic coastal region, the Ice Shelf Water (ISW) is an important component for the formation of the Antarctic Bottom Water (AABW). In this paper, we present a criterion for ISW identification based on freezing point at the sea surface, and we study spatial distribution of ISW in front of the Amery Ice Shelf (AIS) and its flow path in Prydz Bay by analyzing hydrographic data from Australian cruises in 2001 and 2002, as well as Chinese cruises in 2003, 2005, 2006, and 2008, all being made in the austral summer. The relatively cold and fresh ISW occurred as several discrete water blocks with cold cores in front of the AIS, within the depth range of 100?600 m, under the seasonal thermocline. ISW had obvious temporal and spatial variations and the spatial distribution pattern changed greatly after 2005. Most of ISW was concentrated west of 73°E during 2001 to 2003 and 2006, but it was widespread to east in 2005 and 2008. In all observation years, a small amount of cold ISW always occurs at the west end of the AIS front section, where the coldest ISW in the whole section also occurred in 2001, 2003 and 2006. Considering general cyclonic circulation pattern under the AIS, the ISW flowing out from west end of the AIS front might have experienced the longest cooling period under ice shelf, so it would have the lowest temperature. Analysis of data from meridian sections in Prydz Bay in 2003 implied that ISW in the west could spread north to the continental break along the east flank of the Fram Bank near 70.5°E, mix with the upwelling Circumpolar Deep Water and possibly contribute to the formation of AABW.展开更多
Sea ice in the Arctic has been reducing rapidly in the past half century due to global warming. This study analyzes the variations of sea ice extent in the entire Arctic Ocean and its sub regions. The results indicate...Sea ice in the Arctic has been reducing rapidly in the past half century due to global warming. This study analyzes the variations of sea ice extent in the entire Arctic Ocean and its sub regions. The results indicate that sea ice extent reduction during 1979-2013 is most significant in summer, following by that in autumn, winter and spring. In years with rich sea ice, sea ice extent anomaly with seasonal cycle removed changes with a period of 4-6 years. The year of 2003-2006 is the ice-rich period with diverse regional difference in this century. In years with poor sea ice, sea ice margin retreats further north in the Arctic. Sea ice in the Fram Strait changes in an opposite way to that in the entire Arctic. Sea ice coverage index in melting-freezing period is an critical indicator for sea ice changes, which shows an coincident change in the Arctic and sub regions. Since 2002, Region C2 in north of the Pacific sector contributes most to sea ice changes in the central Aarctic, followed by C1 and C3. Sea ice changes in different regions show three relationships. The correlation coefficient between sea ice coverage index of the Chukchi Sea and that of the East Siberian Sea is high, suggesting good consistency of ice variation. In the Atlantic sector, sea ice changes are coincided with each other between the Kara Sea and the Barents Sea as a result of warm inflow into the Kara Sea from the Barents Sea. Sea ice changes in the central Arctic are affected by surrounding seas.展开更多
In this paper, a heavy sea fog event occurring over the Yellow Sea on 11 April 2004 was investigated based upon observational and modeling analyses. From the observational analyses, this sea fog event is a typical adv...In this paper, a heavy sea fog event occurring over the Yellow Sea on 11 April 2004 was investigated based upon observational and modeling analyses. From the observational analyses, this sea fog event is a typical advection cooling case. Sea surface temperature(SST) and specific humidity(SH) show strong gradients from south to north, in which warm water is located in the south and consequently, moisture is larger in the south than in the north due to evaporation processes. After fog formation, evaporation process provides more moisture into the air and further contributes to fog evolution. The sea fog event was reproduced by the Regional Atmospheric Modeling System(RAMS) reasonably. The roles of important physical processes such as radiation, turbulence as well as atmospheric stratification in sea fog's structure and its formation mechanisms were analyzed using the model results. The roles of long wave radiation cooling, turbulence as well as atmospheric stratification were analyzed based on the modeling results. It is found that the long wave radiative cooling at the fog top plays an important role in cooling down the fog layer through turbulence mixing. The fog top cooling can overpower warming from the surface. Sea fog develops upward with the aid of turbulence. The buoyancy term, i.e., the unstable layer, contributes to the generation of TKE in the fog region. However, the temperature inversion layer prevents fog from growing upward.展开更多
Since 2002, an artificial water and sediment regulation(AWSR) has been carried out, which largely reduced water and sediment discharged from the Yellow River into the Bohai Sea. Although the sediment transport in the ...Since 2002, an artificial water and sediment regulation(AWSR) has been carried out, which largely reduced water and sediment discharged from the Yellow River into the Bohai Sea. Although the sediment transport in the Yellow River Mouth(YRM) has been observed and modeled intensively since AWSR, but preferentially for the non-storm conditions. In this study, a three-dimensional current-wave-sediment coupled model, DHI-MIKE numerical model, was used to examine the seasonal suspended-sediment transport in the YRM after the AWSR. Results show that the seasonal distribution of suspended-sediments in the YRM is dominated by wind and wave rather than river input. The major transport pathway of suspended-sediments is from the western Laizhou Bay to the Bohai Strait during the winter monsoon, especially in storm events. In addition, about 66% of the river sediments deposit within 30 km of the YRM, which is smaller than previous estimations. It suggests that the YRM has been eroded in recent decades.展开更多
基金supported by the Chinese Polar Environment Comprehensive Investigation and Assessment Programmes (Grant nos.CHINARE2013-04-01,CHINARE2013-04-04)the National High-tech Research & Development Program of China (Grant no.2010CB950301)
文摘Oceanographic surveying has been one of the key missions of the Chinese National Antarctic Research Expedition since 1984. Using the field data obtained in these surveys and the results from remote sensing and numerical models, Chinese physical oceanographers have investigated the water masses, fronts and circulation patterns in the Southern Ocean. The results of nearly 30 years of research are summarized in this paper. Most oceanographic observations by Chinese researchers have been con- ducted in Prydz Bay and the adjacent seas. CTD (Conductivity Temperature and Depth) data, collected during the past 20 years, have been applied to study several features of the water masses in this region: The spatial variation of warm summer surface water, the northward extension of shelf water, the flow of ice shelf water from the cavity beneath the Amery Ice Shelf, the upweUing of the Circumpolar Deep Water, and the formation of the Antarctic Bottom Water. The circulation and its dynamic factors have been analyzed with dynamic heights calculated from CTD data as well as by numerical models. The structure and strength of the fronts in the southeast Indian Ocean and the Drake Passage were investigated with underway XBT/XCTD (Expendable Bathythermo- graph/Expendable CTD) and ADCP (Acoustic Doppler Current Profiler) data. Their interaunual variations have been determined and the factors of influence, especially the atmospheric forcing and mesoscale oceanic processes, were studied using remote sens- ing data. The dynamic mechanism of the Antarctic Circumpolar Current (ACC) was analyzed by theoretical models. The transport and pattern of the ACC have been well reproduced by coupled sea ice-ocean models. Additional details of ACC variability were identified based on satellite altimeter data. The response of the ACC to climate change was studied using reanalysis data. Prospects for future research are presented at the end of this paper.
基金supported by the National Department Public Benefit Research Foundation (Grant no.201105022)the National Natural Science Foundation of China(Grant nos. 40876006, 40976111)
文摘As a part of the National Report of China for the International Association for Physical Science of Ocean (IAPSO), the main research results of Chinese scientists in Arctic physical oceanography during 2007-2010 are reviewed in this paper. This period overlaps with the International Polar Year (IPY), which is a catalyst for nations to emphasize activities and research in the polar regions. The Arctic also experienced a rapid change in sea ice, ocean, and climate during this time. China launched two Arctic cruises with the R/V XUE LONG icebreaker, in 2008 and 2010, which provided more opportunities for Chinese scientists to investigate the Arctic Ocean and its change. During this period, Chinese scientists participated in more than ten other cruises with international collaborations. The main research covered in this paper includes the upper ocean characteristic, ocean and sea ice optics, kinematics of sea ice and the Arctic impact on global climate change. The progress in sea ice optics, the observation technologies and Arctic Oscillation are especially remarkable.
基金Young Scientists Fund of National Natural Science Foundation of China Grant(41505013,41575017)Natural Science Foundation of Shandong Province(BS2015HZ019)
文摘In this study, the micro-and macro-physical properties, thermal structure and precipitation characteristics of cyclone eye walls and their surrounding spiral clouds were analysed with Cloud Sat and TRMM data for five tropical cyclones(TCs) in 2013. The results show that the ice-phase clouds of a mature TC are mainly above 5 km. With increasing altitude, the cloud droplet effective radius decreases, and the particle number concentration increases. Ice water content first increases and then decreases with increasing height. In the eye area, in addition to the well-known warm-core area, another warm core is also apparent around the eye at a height of 8 to 15 km. The horizontal distribution of precipitation is characterized by large-scale stratiform precipitation mixed with independent convective precipitation. The height of precipitation is mostly below 7.5 km, and the heavy rain is mainly below 5 km. When the peripheral convective clouds are strong enough, ice particles would be generated, thus providing conditions that are favourable for the formation of precipitation below.
基金jointly funded by the State Key Program of the National Natural Science Foundation of China(No.42130605)the Major Program of the National Natural Science Foundation of China(No.72293604)+5 种基金the Youth Innovative Talents Program of Guangdong Colleges and Universities(No.2022KQNCX026)the Natural Science Foundation of Shandong(No.ZR2022MD038)the Project of Enhancing School with Innovation of Guangdong Ocean University(No.230419106)the State Key Program of the National Natural Science Foundation of China(No.42130605)the National Natural Science Foundation of China(Nos.42275001,42276019,42205014,and 42275017)the Guangdong Ocean University Ph.D.Scientific Research Program(No.R19045).
文摘Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-April)was studied to reveal the variations of the key factors at different explosive-developing stages.This EC had weak low-level baroclinicity,mid-level cyclonic-vorticity advection,and strong low-level water vapor convergence at the initial explosive-developing stage.The low-level baroclinicity and mid-level cyclonic-vorticity advection increased substantially during the maximum-deepening-rate stage.The diagnostic analyses using the Zwack-Okossi equation showed that diabatic heating was the main contributor to the initial rapid intensification of this EC.The cyclonic-vorticity advection and warm-air advection enhanced rapidly in the middle and upper troposphere and contributed to the maximum rapid intensification,whereas the diabatic heating weakened slightly in the mid-low troposphere.The relative contribution of the diabatic heating decreased from the initial explosive-developing stage to the maximum-deepening-rate stage due to the enhancement of other factors(the cyclonic-vorticity advection and warm-air advection).Furthermore,the physical factors contributing to this EC varied with the explosive-developing stage.The non-key factors at the initial explosive-developing stage need attention to forecast the rapid intensification.
基金funded by a key project of the National Natural Science Foundation of China called“Research on the Energy Process of Rapid Change of Arctic”(Grant Nos.41941012 and 41976022)the National Natural Science Foundation of China(Grant Nos.42276239 and 42106221)+1 种基金the Natural Science Foundation of Shandong Province(Grant No.ZR2022MD076)Ph.D Foundation“Variation of Arctic Sea Ice Age and Its Relationship with Atmospheric Circulation Field”(Grant No.PY112101).
文摘Besides the rapid retreating trend of Arctic sea-ice extent(SIE),this study found the most outstanding low-frequency variation of SIE to be a 4-6-year periodic variation.Using a clustering analysis algorithm,the SIE in most ice-covered regions was clustered into two special regions:Region-1 around the Barents Sea and Region-2 around the Canadian Basin,which were located on either side of the Arctic Transpolar Drift.Clear 4-6-year periodic variation in these two regions was identified using a novel method called“running linear fitting algorithm”.The rate of temporal variation of the Arctic SIE was related to three driving factors:the regional air temperature,the sea-ice areal flux across the Arctic Transpolar Drift,and the divergence of sea-ice drift.The 4-6-year periodic variation was found to have always been present since 1979,but the SIE responded to different factors under heavy and light ice conditions divided by the year 2005.The joint contribution of the three factors to SIE variation exceeded 83%and 59%in the two regions,respectively,remarkably reflecting their dynamic mechanism.It is proven that the process of El Niño-Southern Oscillation(ENSO)is closely associated with the three factors,being the fundamental source of the 4-6-year periodic variations of Arctic SIE.
基金supported by the National Natural Science Foundation of China(Grant Nos.42225501 and 42105059)the National Key Scientific and Tech-nological Infrastructure project“Earth System Numerical Simula-tion Facility”(EarthLab).
文摘In order to quantify the influence of external forcings on the predictability limit using observational data,the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent(CNLLE)method.The effectiveness of this algorithm is validated and compared with the nonlinear local Lyapunov exponent(NLLE)and signal-to-noise ratio methods using a coupled Lorenz model.The results show that the CNLLE method is able to capture the slow error growth constrained by external forcings,therefore,it can quantify the predictability limit induced by the external forcings.On this basis,a preliminary attempt was made to apply this method to measure the influence of ENSO on the predictability limit for both atmospheric and oceanic variable fields.The spatial distribution of the predictability limit induced by ENSO is similar to that arising from the initial conditions calculated by the NLLE method.This similarity supports ENSO as the major predictable signal for weather and climate prediction.In addition,a ratio of predictability limit(RPL)calculated by the CNLLE method to that calculated by the NLLE method was proposed.The RPL larger than 1 indicates that the external forcings can significantly benefit the long-term predictability limit.For instance,ENSO can effectively extend the predictability limit arising from the initial conditions of sea surface temperature over the tropical Indian Ocean by approximately four months,as well as the predictability limit of sea level pressure over the eastern and western Pacific Ocean.Moreover,the impact of ENSO on the geopotential height predictability limit is primarily confined to the troposphere.
基金supported by the National Natural Science Foundation of China(41790474)the State Oceanic Administration International Cooperation Program on Global Change and Air–Sea Interactions(GASI-IPOVAI-03)
文摘This paper reviews recent progress made by Chinese scientists on the pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate within the framework of a“coupled oceanic-atmospheric(land-atmospheric or seaice-atmospheric)bridge”and“chain coupled bridge”.Four major categories of pathways are concentrated upon,as follows:Pathway A—from North Atlantic to East Asia;Pathway B—from the North Pacific to East Asia;Pathway C—from the Arctic to East Asia;and Pathway D—the synergistic effects of the mid-high latitudes and tropics.In addition,definitions of the terms“combined effect”,“synergistic effect”and“antagonistic effect”of two or more factors of influence or processes and their criteria are introduced,so as to objectively investigate those effects in future research.
基金supported by the National Natural Science Foundation of China under the grant number 40675060the Chinese Ministry of Science and Technology under the 863 Project grant number 2006AA09Z151+2 种基金supported by the State Oceanic Administration under the grant 908-02-03-10the Chinese Meteorological Administration under the grant CMATG 2006M32supported by the National Science Foundation under grant number OISE-0229657.
文摘In this study, a sea fog event which occurred on 27 March 2005 over the Yellow and Bohai Seas was investigated observationally and numerically. Almost all available observational data were used, including satellite imagery of Geostationary Operational Environmental Satellite (GOES)-9, three data sets from station observations at Dandong, Dalian and Qingdao, objectively reanalyzed data of final run analysis (FNL) issued by the National Center for Environmental Prediction (NCEP) and Regional Atmospheric Modeling System (RANIS) results. Synoptic conditions and fog characteristics were analyzed. The fog formed when warm, moist air was advected northwards over the cool water of the Yellow and Bohai Seas, and dissipated when a cold front brought northerly winds and cool, dry air. In order to better understand the fog formation mechanism, a high-resolution RAMS modeling with a 6km×6km grid, initialized and validated by FNL data, was designed. A 48h modeling that started from 12 UTC 26 March 2005 reproduced the main characteristics of this sea fog event. The simulated lower visibility area agreed reasonably well with the sea fog region identified from the satellite imagery. Advection cooling effect seemed to play a significant role in the fog formation.
文摘On the basis of data of drifting bottles' tracks and the current measured in anchored stations, as well as temperature and salinity observed in cruise investigations and coastal stations, ADCP current data and AVHRR surface sea temperature (SST) data on the western coast of Guangdong, synthetic results of analysis showed that the coastal currents in the west of the mouth of the Zhujiang River were mainly westward in summer, which constituted the north branch of cyclonic gyre in the east of the Qiongzhou Straits. Part of its water flowed westward into the Beibu Gulf through the Qiongzhou Straits. The coastal current pattern was not identical with the traditional current system which flowed westward in the Qiongzhou Straits in winter and eastward in summer. The summertime's coastal current was always westward, maybe temporarily turning northeast only when the southwest wind was strong. The important characteristics of coastal current on the western coast of Guangdong, in the Qiongzhou Straits and in the north of the Beibu Gulf were analyzed and their mechanisms also were explained.
基金The National High Technology Research and Development Program(863 Program) of China under contract No.2013AA122803the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11010104
文摘Wave climate analysis and other applications for the Pacific Ocean require a reliable wave hindcast. Five source and sink term packages in the Wavewatch III model (v3.14 and v4.18) are compared and assessed in this study through comprehensive observations, including altimeter significant wave height, advanced synthetic aperture radar swell, and buoy wave parameters and spectrum. In addition to the evaluation of typically used integral parameters, the spectra partitioning method contributes to the detailed wave system and wave maturity validation. The modified performance evaluation method (PS) effectively reduces attribute numbers and facilitates the overall assessment. To avoid possible misleading results in the root mean square error-based validations, another indicator called HH (indicating the two authors) is also calculated to guarantee the consistency of the results. The widely used Tolman and Chalikov (TC) package is still generally efficient in determining the integral properties of wave spectra but is physically deficient in explaining the dissipation processes. The ST4 package performs well in overall wave parameters and significantly improves the accuracy of wave systems in the open ocean. Meanwhile, the newly published ST6 package is slightly better in determining swell energy variations. The two packages (ACC350 and BIA) obtained from Wavewatch III v3.14 exhibit large scatters at different sea states. The three most ideal packages are further examined in terms of reproducing wave- induced momentum flux from the perspective of transport. Stokes transport analysis indicates that ST4 is the closest to the NDBC-buoy-spectrum-based transport values, and TC and ST6 tend to overestimate and underestimate the transport magnitude, respectively, in swell mixed areas. This difference must be considered, particularly in air-wave-current coupling research and upper ocean analysis. The assessment results provide guidance for the selection of ST4 for use in a background Pacific Ocean hindcast for high wave climate research and China Sea swell type analysis.
文摘A stratus-sea fog event that occurred over the Yellow and East China Seas on 3 June 2011 is investigated using observations and a numerical model, with a focus on the effects of background circulation and Sea Surface Temperature Front (SSTF) on the transition of stratus into sea fog. Southerly winds of a synoptic high-pressure circulation transport water vapor to the Yellow Sea, creating conditions favorable for sea fog/stratus formation. The subsidence from the high-pressure contributes to the temperature inversion at the top of the stratus. The SSTF forces a secondary circulation within the ABL (Atmospheric Boundary Layer), the sinking branch of which on the cold flank of SSTF helps lower the stratus layer fiLrther to reach the sea surface. The cooling effect over the cold sea surface counteracts the adiabatic warming induced by subsidence. The secondary circulation becomes weak and the fog patches are shrtmk heavily with the smoothed SSTE A conceptual model is proposed for the transition of stratus into sea fog over the Yellow and East China Seas. Finally, the analyses suggest that sea fog frequency will probably decrease due to the weakened SSTF and the reduced subsidence of secondary circulation under global wanning.
基金The Major Program of the National Natural Science Foundation of China under contact No.40890153The National High Tech-nology Research and Development Program of China(863 Program)under contact No.2008AA09A402
文摘The Argo data are used to calculate eddy(turbulence) heat transport(EHT) in the global ocean and analyze its horizontal distribution and vertical structure.We calculate the EHT by averaging all the v ′,T ′ profiles within each 2 ×2 bin.The velocity and temperature anomalies are obtained by removing their climatological values from the Argo "instantaneous" values respectively.Through the Student's t-test and an error evaluation,we obtained a total of 87% Argo bins with significant depth-integrated EHTs(D-EHTs).The results reveal a positive-and-negative alternating D-EHT pattern along the western boundary currents(WBC) and Antarctic Circumpolar Current(ACC).The zonally-integrated D-EHT(ZI-EHT) of the global ocean reaches 0.12 PW in the northern WBC band and –0.38 PW in the ACC band respectively.The strong ZI-EHT across the ACC in the global ocean is mainly caused by the southern Indian Ocean.The ZI-EHT in the above two bands accounts for a large portion of the total oceanic heat transport,which may play an important role in regulating the climate.The analysis of vertical structures of the EHT along the 35 N and 45 S section reveals that the oscillating EHT pattern can reach deep in the northern WBC regions and the Agulhas Return Current(ARC) region.It also shows that the strong EHT could reach 600 m in the WBC regions and 1 000 m in the ARC region,with the maximum mainly located between 100 and 400 m depth.The results would provide useful information for improving the parameterization scheme in models.
基金supported by the National Natural Science Foundation of China under contract Nos 40376007 and 40306005.
文摘The temperature and salinity data obtained by the Chinese national arctic research expedition (CHINARE2003) are used to study the water structure in the Bering Strait and ambient regions. Four water masses appeared in the research region: the intermediate Bering Sea water mass (IBWM), the Alaska coastal water (ACW), the Anadyr water (AW) and the Bering shelf water (BSW). The AW originates from the IBWM, but the upper layer water has been greatly altered. In the cruise on 28/29 July 2003, there were only the BSW and ACW in a section across the Bering Strait (BS section), but in the September 12/13 cruise, the AW, BSW and ACW flowed parallelly into the Bering Strait. The upper waters of these water masses were all altered due to ice melting, runoff, solar radiation, and wind mixing. The waters in the central and northern parts of Bering Strait stratified by two uniform layers,were expressed as the typical feature of the water masses originating from the pacific. A two-layer structure also dominated the vertical stratification in most part of the Chukchi Sea. An obvious subseasonal variation was observed in the BS section, which caused varying transportation of fresh water, heat, and substance, and produced a long-term and extensive impact on the Arctic Ocean.
基金supported by National Basic Research Program of China(973 Program,2010CB428904)
文摘The seasonal variations of several main water masses in the southern Yellow Sea (SYS) and East China Sea (ECS) in 2011 were analyzed using the in-situ data collected on four cruises.There was something special in the observations for the Yellow Sea Warm Current (YSWC) ,the Yellow Sea Cold Water Mass (YSCWM) and the Changjiang Diluted Water (CDW) during that year.The YSWC was confirmed to be a seasonal current and its source was closely associated with the Kuroshio onshore intrusion and the northerly wind.It was also found that the YSCWM in the summer of 2011 occupied a more extensive area in comparison with the climatologically-mean case due to the abnormally powerful wind prevailing in the winter of 2010 and decaying gradually thereafter.Resulting from the reduced Changjiang River discharge,the CDW spreading toward the Cheju Island in the summer of 2011 was weaker than the long-term mean and was confined to flow southward in the other seasons.The other water masses seemed normal without noticeable anomalies in 2011.The Yellow Sea Coastal Current (YSCC) water,driven by the northerly wind,flowed southeastward as a whole except for its northeastward surface layer in summer.The Taiwan Warm Current (TWC) was the strongest in summer and the weakest in winter in its northward movement.The Kuroshio water with an enhanced onshore intrusion in autumn was stable in hydrographic features apart from the seasonal variation of its surface layer.
基金the National Natural Science Foundation of China for financial support (Grant Nos. 41775042 and 41275049)
文摘Explosive cyclones(ECs)over two basins in the Northern Hemisphere(20°-90°N)from January 1979 to December2016 are investigated using ERA-Interim and Optimum Interpolation Sea Surface Temperature(OISST)data.The classical definition of an EC is modified considering not only the rapid drop of the central sea level pressure of the cyclone,but also the strong wind speed at the height of 10 m in which maximum wind speeds greater than 17.2 m s^-1are included.According to the locations of the northern Atlantic and northern Pacific,the whole Northern Hemisphere is divided into the"A region"(20°-90°N,90°W-90°E)and"P region"(20°-90°N,90°E-90°W).Over both the A and P regions,the climatological features of ECs,such as their spatial distribution,intensity,seasonal variation,interannual variation,and moving tracks,are documented.
文摘Radium isotopes 226Ra and 228Ra in seawater of the western Yellow Sea were measured by using the Mn-fiber adsorption - HPGe 7 spectrum method. The distribution features of the two isotopes have been studied. The activities of 226Ra and 228Ra are 2.72-5.57 Bq m^-3 and 7.51-34.3 Bq m^-3 respectively. The activities of 226Ra and 228Ra from surface to bottom for each depth profile station are comparable within the experimental error, but the mean activities decrease with distance from the shore. From the distribution data of 228Ra, the horizontal eddy diffusion coefficient was estimated at 29 × 10^6 cm^2 s^- 1.
基金Supported by the National Natural Science Foundation of China(No.40676011)the Key Technology Research and Development Program of China(No.2006BAB18B02)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20100132110016)
文摘As a unique low-temperature water mass in Antarctic coastal region, the Ice Shelf Water (ISW) is an important component for the formation of the Antarctic Bottom Water (AABW). In this paper, we present a criterion for ISW identification based on freezing point at the sea surface, and we study spatial distribution of ISW in front of the Amery Ice Shelf (AIS) and its flow path in Prydz Bay by analyzing hydrographic data from Australian cruises in 2001 and 2002, as well as Chinese cruises in 2003, 2005, 2006, and 2008, all being made in the austral summer. The relatively cold and fresh ISW occurred as several discrete water blocks with cold cores in front of the AIS, within the depth range of 100?600 m, under the seasonal thermocline. ISW had obvious temporal and spatial variations and the spatial distribution pattern changed greatly after 2005. Most of ISW was concentrated west of 73°E during 2001 to 2003 and 2006, but it was widespread to east in 2005 and 2008. In all observation years, a small amount of cold ISW always occurs at the west end of the AIS front section, where the coldest ISW in the whole section also occurred in 2001, 2003 and 2006. Considering general cyclonic circulation pattern under the AIS, the ISW flowing out from west end of the AIS front might have experienced the longest cooling period under ice shelf, so it would have the lowest temperature. Analysis of data from meridian sections in Prydz Bay in 2003 implied that ISW in the west could spread north to the continental break along the east flank of the Fram Bank near 70.5°E, mix with the upwelling Circumpolar Deep Water and possibly contribute to the formation of AABW.
基金The National Basic Research Program of China under contract No.2015CB953900the Key Project of Chinese Natural Science Foundation under contract No.41330960the Polar Science Strategic Research Foundation of China under contract No.20120102
文摘Sea ice in the Arctic has been reducing rapidly in the past half century due to global warming. This study analyzes the variations of sea ice extent in the entire Arctic Ocean and its sub regions. The results indicate that sea ice extent reduction during 1979-2013 is most significant in summer, following by that in autumn, winter and spring. In years with rich sea ice, sea ice extent anomaly with seasonal cycle removed changes with a period of 4-6 years. The year of 2003-2006 is the ice-rich period with diverse regional difference in this century. In years with poor sea ice, sea ice margin retreats further north in the Arctic. Sea ice in the Fram Strait changes in an opposite way to that in the entire Arctic. Sea ice coverage index in melting-freezing period is an critical indicator for sea ice changes, which shows an coincident change in the Arctic and sub regions. Since 2002, Region C2 in north of the Pacific sector contributes most to sea ice changes in the central Aarctic, followed by C1 and C3. Sea ice changes in different regions show three relationships. The correlation coefficient between sea ice coverage index of the Chukchi Sea and that of the East Siberian Sea is high, suggesting good consistency of ice variation. In the Atlantic sector, sea ice changes are coincided with each other between the Kara Sea and the Barents Sea as a result of warm inflow into the Kara Sea from the Barents Sea. Sea ice changes in the central Arctic are affected by surrounding seas.
基金supported by the 201205010-5 program of the State Oceanic Administration of China and the Natural Science Foundation of China under the grant 41306028partly supported by the National Natural Science Foundation of China under the grant number, 406750060 and 41275049+5 种基金the Chinese Ministry of Science and Technology under the 863 Project grant number 2006 AA09Z151the Chinese Meteorological Administration under the grant number GYHY(QX)200706031the China Scholarship Council for the financial support to his study in NOAA from 2008 to 2010, which enables him to participate in the present worksupported by China postdoctoral funding under the grant 2012M511545the Natural Science Foundation of China under the grant 41305086supported by the open project of the Lab. of Physical Oceanography, Ocean University of China
文摘In this paper, a heavy sea fog event occurring over the Yellow Sea on 11 April 2004 was investigated based upon observational and modeling analyses. From the observational analyses, this sea fog event is a typical advection cooling case. Sea surface temperature(SST) and specific humidity(SH) show strong gradients from south to north, in which warm water is located in the south and consequently, moisture is larger in the south than in the north due to evaporation processes. After fog formation, evaporation process provides more moisture into the air and further contributes to fog evolution. The sea fog event was reproduced by the Regional Atmospheric Modeling System(RAMS) reasonably. The roles of important physical processes such as radiation, turbulence as well as atmospheric stratification in sea fog's structure and its formation mechanisms were analyzed using the model results. The roles of long wave radiation cooling, turbulence as well as atmospheric stratification were analyzed based on the modeling results. It is found that the long wave radiative cooling at the fog top plays an important role in cooling down the fog layer through turbulence mixing. The fog top cooling can overpower warming from the surface. Sea fog develops upward with the aid of turbulence. The buoyancy term, i.e., the unstable layer, contributes to the generation of TKE in the fog region. However, the temperature inversion layer prevents fog from growing upward.
基金supported by the National Natural Science Foundation of China (Nos. 41476030, U1706215, and 41406081)the Project of Taishan Scholar
文摘Since 2002, an artificial water and sediment regulation(AWSR) has been carried out, which largely reduced water and sediment discharged from the Yellow River into the Bohai Sea. Although the sediment transport in the Yellow River Mouth(YRM) has been observed and modeled intensively since AWSR, but preferentially for the non-storm conditions. In this study, a three-dimensional current-wave-sediment coupled model, DHI-MIKE numerical model, was used to examine the seasonal suspended-sediment transport in the YRM after the AWSR. Results show that the seasonal distribution of suspended-sediments in the YRM is dominated by wind and wave rather than river input. The major transport pathway of suspended-sediments is from the western Laizhou Bay to the Bohai Strait during the winter monsoon, especially in storm events. In addition, about 66% of the river sediments deposit within 30 km of the YRM, which is smaller than previous estimations. It suggests that the YRM has been eroded in recent decades.