Liaoning is located in northeast China with a high level of seismic activity,and earthquake early warning is important for the mitigation of seismic hazard.In this work,we implement PRESTo,an open-source software plat...Liaoning is located in northeast China with a high level of seismic activity,and earthquake early warning is important for the mitigation of seismic hazard.In this work,we implement PRESTo,an open-source software platform for earthquake early warning based on regional seismic records,to the Liaoning seismic network.For the early warning of earthquakes in Liaoning,a travel-time table is created for event detection and location using an average crustal model,and the empirical relation is established between the earthquake magnitude and the initial P-wave amplitudes.Using archived seismic records of past earthquakes,we determine the optimal values for Liaoning using the core algorithms of PRESTo.Based on the optimal parameters,the uncertainty in event location is generally less than 5 km,and the lead time of the early warning is~15 s at 100-km epicentral distance.The implemented system can be directly put into routine earthquake early warning operation by linking it with the real-time data stream from the Liaoning seismic network.展开更多
Rapidly monitoring regional water quality and the changing trend is of great practical and scientific significance,especially for the Beijing-Tianjin-Hebei(BTH)region of China where water resources are relatively scar...Rapidly monitoring regional water quality and the changing trend is of great practical and scientific significance,especially for the Beijing-Tianjin-Hebei(BTH)region of China where water resources are relatively scarce and inland water bodies are generally small.The remote sensing data of the GF 1 satellite launched in 2013 have characteristics of high spatial and temporal resolution,which can be used for the dynamic monitoring of the water environment in small lakes and reservoirs.However,the water quality remote sensing monitoring model based on the GF 1 satellite data for lakes and reservoirs in BTH is still lacking because of the considerable differences in the optical characteristics of the lakes and reservoirs.In this paper,the typical reservoirs in BTH-Guanting Reservoir,Yuqiao Reservoir,Panjiakou Reservoir,and Daheiting Reservoir are taken as the study areas.In the atmospheric correction of GF 1-WFV,the relative radiation normalized atmospheric correction was adopted after comparing it with other methods,such as 6 S and FLAASH.In the water clarity retrieval,a water color hue angle based model was proposed and outperformed other available published models,with the R 2 of 0.74 and MRE of 31.7%.The clarity products of the four typical reservoirs in the BTH region in 2013-2019 were produced using the GF 1-WFV data.Based on the products,temporal and spatial changes in clarity were analyzed,and the main influencing factors for each water body were discussed.It was found that the clarity of Guanting,Daheiting,and Panjiakou reservoirs showed an upward trend during this period,while that of Yuqiao Reservoir showed a downward trend.In the influencing factors,the water level of the water bodies can be an important factor related to the water clarity changes in this region.展开更多
The Yangbi M_(S)6.4 earthquake occurred on May 21,2021 in western Yunnan,China,where moderate earthquakes strike frequently.It exhibited a typical“foreshock-mainshock-aftershock”sequence and did not occur on a pre-e...The Yangbi M_(S)6.4 earthquake occurred on May 21,2021 in western Yunnan,China,where moderate earthquakes strike frequently.It exhibited a typical“foreshock-mainshock-aftershock”sequence and did not occur on a pre-existing active fault.The seismogenic environment and mechanism of this earthquake have aroused considerable research attention.In this study,we obtain the three-dimensional v_(P),v_(S)and v_(P)/v_(S)images using the v_(P)/v_(S)consistency-constrained double-difference tomography method,which improves the accuracy of v_(P)/v_(S)models.We focus on characteristics of v_(P)/v_(S)images in areas with a lateral resolution of 0.1°,and reveal the seismogenic environment of the Yangbi M_(S)6.4 earthquake.The conclusions are as follows:(1)Low velocity and high-v_(P)/v_(S)anomalies are revealed at different depths around the northern segment of the Red River fault.v_(S)and v_(P)/v_(S)images along the Weixi-Qiaohou-Weishan fault and the buried faults on its west show obviously segmented feature.(2)The source region of the Yangbi M_(S)6.4 earthquake is located in a low-v_(P)/v_(S)zone implying high medium strength.High-v_(P)/v_(S)anomalies in its NW direction indicate cracks development and the existence of fluids or partial melts,which are unfavorable for stress accumulation and triggering large earthquakes.Such conditions have also prevented the earthquake sequence from extending northwestward.(3)With the southeastward extrusion of materials from the Tibetan Plateau,fluid migration was blocked by the low-v_(P)/v_(S)body in the source region.The high-v_(P)/v_(S)anomaly beneath the source region may implies that the fluids or partial melts in the middle and lower crust gradually weakened medium strength at the bottom of the seismogenic layer,and preparing the largest foreshock in the transition zone of high to low v_(P)/v_(S).Meanwhile,tectonic stress incessantly accumulated in the brittle upper crust,eventually led to the M_(S)6.4 earthquake occurrence.展开更多
High-density electrical method has been proved to be an effective method for probing shallow sedimentary layers.It is principally used to identify the boundary between the Quaternary soil layer and bedrock according t...High-density electrical method has been proved to be an effective method for probing shallow sedimentary layers.It is principally used to identify the boundary between the Quaternary soil layer and bedrock according to the vertical change of apparent resistivity.However,the artificial filling layer has the characteristics of heterogeneity and high porosity,which makes it challenging to detect the artificial filling layer by high-density electrical method.The key to solve this problem is to detect the difference of conductivity between the filling layer and the underlying bedrock.This paper takes the land in Chengjiangshan area of Huaibei City,Anhui Province as the detection target.On the basis of fully analyzing the physical properties of the artificial filling layer,two-dimensional high-density electrical survey and inversion are used to define the thickness of the artificial filling layer.The research shows that the highdensity resistivity method has obvious advantages in delineating the distribution of bedrock and the thickness of the filling layer,and the reliability of the high-density electrical method in the detection of the artificial filling layer,and delineates the scope of the filling layer is verified by the borehole data.展开更多
文摘Liaoning is located in northeast China with a high level of seismic activity,and earthquake early warning is important for the mitigation of seismic hazard.In this work,we implement PRESTo,an open-source software platform for earthquake early warning based on regional seismic records,to the Liaoning seismic network.For the early warning of earthquakes in Liaoning,a travel-time table is created for event detection and location using an average crustal model,and the empirical relation is established between the earthquake magnitude and the initial P-wave amplitudes.Using archived seismic records of past earthquakes,we determine the optimal values for Liaoning using the core algorithms of PRESTo.Based on the optimal parameters,the uncertainty in event location is generally less than 5 km,and the lead time of the early warning is~15 s at 100-km epicentral distance.The implemented system can be directly put into routine earthquake early warning operation by linking it with the real-time data stream from the Liaoning seismic network.
基金Supported by the International Partnership Program of Chinese Academy of Sciences(No.313GJHZ2022085 FN)the Dragon 5 Cooperation(No.59193)。
文摘Rapidly monitoring regional water quality and the changing trend is of great practical and scientific significance,especially for the Beijing-Tianjin-Hebei(BTH)region of China where water resources are relatively scarce and inland water bodies are generally small.The remote sensing data of the GF 1 satellite launched in 2013 have characteristics of high spatial and temporal resolution,which can be used for the dynamic monitoring of the water environment in small lakes and reservoirs.However,the water quality remote sensing monitoring model based on the GF 1 satellite data for lakes and reservoirs in BTH is still lacking because of the considerable differences in the optical characteristics of the lakes and reservoirs.In this paper,the typical reservoirs in BTH-Guanting Reservoir,Yuqiao Reservoir,Panjiakou Reservoir,and Daheiting Reservoir are taken as the study areas.In the atmospheric correction of GF 1-WFV,the relative radiation normalized atmospheric correction was adopted after comparing it with other methods,such as 6 S and FLAASH.In the water clarity retrieval,a water color hue angle based model was proposed and outperformed other available published models,with the R 2 of 0.74 and MRE of 31.7%.The clarity products of the four typical reservoirs in the BTH region in 2013-2019 were produced using the GF 1-WFV data.Based on the products,temporal and spatial changes in clarity were analyzed,and the main influencing factors for each water body were discussed.It was found that the clarity of Guanting,Daheiting,and Panjiakou reservoirs showed an upward trend during this period,while that of Yuqiao Reservoir showed a downward trend.In the influencing factors,the water level of the water bodies can be an important factor related to the water clarity changes in this region.
基金This work was jointly supported by the National Key R&D Program of China(No.2021YFC3000700)the National Natural Science Foundation of China(No.42174066).
文摘The Yangbi M_(S)6.4 earthquake occurred on May 21,2021 in western Yunnan,China,where moderate earthquakes strike frequently.It exhibited a typical“foreshock-mainshock-aftershock”sequence and did not occur on a pre-existing active fault.The seismogenic environment and mechanism of this earthquake have aroused considerable research attention.In this study,we obtain the three-dimensional v_(P),v_(S)and v_(P)/v_(S)images using the v_(P)/v_(S)consistency-constrained double-difference tomography method,which improves the accuracy of v_(P)/v_(S)models.We focus on characteristics of v_(P)/v_(S)images in areas with a lateral resolution of 0.1°,and reveal the seismogenic environment of the Yangbi M_(S)6.4 earthquake.The conclusions are as follows:(1)Low velocity and high-v_(P)/v_(S)anomalies are revealed at different depths around the northern segment of the Red River fault.v_(S)and v_(P)/v_(S)images along the Weixi-Qiaohou-Weishan fault and the buried faults on its west show obviously segmented feature.(2)The source region of the Yangbi M_(S)6.4 earthquake is located in a low-v_(P)/v_(S)zone implying high medium strength.High-v_(P)/v_(S)anomalies in its NW direction indicate cracks development and the existence of fluids or partial melts,which are unfavorable for stress accumulation and triggering large earthquakes.Such conditions have also prevented the earthquake sequence from extending northwestward.(3)With the southeastward extrusion of materials from the Tibetan Plateau,fluid migration was blocked by the low-v_(P)/v_(S)body in the source region.The high-v_(P)/v_(S)anomaly beneath the source region may implies that the fluids or partial melts in the middle and lower crust gradually weakened medium strength at the bottom of the seismogenic layer,and preparing the largest foreshock in the transition zone of high to low v_(P)/v_(S).Meanwhile,tectonic stress incessantly accumulated in the brittle upper crust,eventually led to the M_(S)6.4 earthquake occurrence.
文摘High-density electrical method has been proved to be an effective method for probing shallow sedimentary layers.It is principally used to identify the boundary between the Quaternary soil layer and bedrock according to the vertical change of apparent resistivity.However,the artificial filling layer has the characteristics of heterogeneity and high porosity,which makes it challenging to detect the artificial filling layer by high-density electrical method.The key to solve this problem is to detect the difference of conductivity between the filling layer and the underlying bedrock.This paper takes the land in Chengjiangshan area of Huaibei City,Anhui Province as the detection target.On the basis of fully analyzing the physical properties of the artificial filling layer,two-dimensional high-density electrical survey and inversion are used to define the thickness of the artificial filling layer.The research shows that the highdensity resistivity method has obvious advantages in delineating the distribution of bedrock and the thickness of the filling layer,and the reliability of the high-density electrical method in the detection of the artificial filling layer,and delineates the scope of the filling layer is verified by the borehole data.