The interannual variations of rainfall over southwest China(SWC) during spring and its relationship with sea surface temperature anomalies(SSTAs) in the Pacific are analyzed, based on monthly mean precipitation data f...The interannual variations of rainfall over southwest China(SWC) during spring and its relationship with sea surface temperature anomalies(SSTAs) in the Pacific are analyzed, based on monthly mean precipitation data from 26 stations in SWC between 1961 and 2010, NCEP/NCAR re-analysis data, and Hadley global SST data. Sensitivity tests are conducted to assess the response of precipitation in SWC to SSTAs over two key oceanic domains, using the global atmospheric circulation model ECHAM5. The interannual variation of rainfall over SWC in spring is very significant.There are strong negative(positive) correlation coefficients between the anomalous precipitation over SWC and SSTAs over the equatorial central Pacific(the mid-latitude Pacific) during spring. Numerical simulations show that local rainfall in the northwest of the equatorial central Pacific is suppressed, and a subtropical anticyclone circulation anomaly is produced, while a cyclonic circulation anomaly in the mid-latitude western Pacific occurs, when the equatorial Pacific SSTAs are in a cold phase in spring. Anomalous northerly winds appear in the northeastern part of SWC in the lower troposphere. Precipitation increases over the Maritime Continent of the western equatorial Pacific, while a cyclonic circulation anomaly appears in the northwest of the western equatorial Pacific. A trough over the Bay of Bengal enhances the southerly flow in the south of SWC. The trough also enhances the transport of moisture to SWC. The warm moisture intersects with anomalous cold air over the northeast of SWC, and so precipitation increases during spring. On the interannual time scale, the impacts of the mid-latitude Pacific SSTAs on rainfall in SWC during spring are not significant, because the mid-latitude Pacific SSTAs are affected by the equatorial central Pacific SSTAs; that is,the mid-latitude Pacific SSTAs are a feedback to the circulation anomaly caused by the equatorial central Pacific SSTAs.展开更多
As root water uptake(RWU)is an important link in the water and heat exchange between plants and ambient air,improving its parameterization is key to enhancing the performance of land surface model simulations.Althou...As root water uptake(RWU)is an important link in the water and heat exchange between plants and ambient air,improving its parameterization is key to enhancing the performance of land surface model simulations.Although different types of RWU functions have been adopted in land surface models,there is no evidence as to which scheme most applicable to maize farmland ecosystems.Based on the 2007–09 data collected at the farmland ecosystem field station in Jinzhou,the RWU function in the Common Land Model(Co LM)was optimized with scheme options in light of factors determining whether roots absorb water from a certain soil layer(W_x)and whether the baseline cumulative root efficiency required for maximum plant transpiration(W_c)is reached.The sensibility of the parameters of the optimization scheme was investigated,and then the effects of the optimized RWU function on water and heat flux simulation were evaluated.The results indicate that the model simulation was not sensitive to W_x but was significantly impacted by W_c.With the original model,soil humidity was somewhat underestimated for precipitation-free days;soil temperature was simulated with obvious interannual and seasonal differences and remarkable underestimations for the maize late-growth stage;and sensible and latent heat fluxes were overestimated and underestimated,respectively,for years with relatively less precipitation,and both were simulated with high accuracy for years with relatively more precipitation.The optimized RWU process resulted in a significant improvement of Co LM’s performance in simulating soil humidity,temperature,sensible heat,and latent heat,for dry years.In conclusion,the optimized RWU scheme available for the Co LM model is applicable to the simulation of water and heat flux for maize farmland ecosystems in arid areas.展开更多
基金National Natural Science Foundation of China(41575083)National Basic Research Program of China(973 Program)(2015CB453200)
文摘The interannual variations of rainfall over southwest China(SWC) during spring and its relationship with sea surface temperature anomalies(SSTAs) in the Pacific are analyzed, based on monthly mean precipitation data from 26 stations in SWC between 1961 and 2010, NCEP/NCAR re-analysis data, and Hadley global SST data. Sensitivity tests are conducted to assess the response of precipitation in SWC to SSTAs over two key oceanic domains, using the global atmospheric circulation model ECHAM5. The interannual variation of rainfall over SWC in spring is very significant.There are strong negative(positive) correlation coefficients between the anomalous precipitation over SWC and SSTAs over the equatorial central Pacific(the mid-latitude Pacific) during spring. Numerical simulations show that local rainfall in the northwest of the equatorial central Pacific is suppressed, and a subtropical anticyclone circulation anomaly is produced, while a cyclonic circulation anomaly in the mid-latitude western Pacific occurs, when the equatorial Pacific SSTAs are in a cold phase in spring. Anomalous northerly winds appear in the northeastern part of SWC in the lower troposphere. Precipitation increases over the Maritime Continent of the western equatorial Pacific, while a cyclonic circulation anomaly appears in the northwest of the western equatorial Pacific. A trough over the Bay of Bengal enhances the southerly flow in the south of SWC. The trough also enhances the transport of moisture to SWC. The warm moisture intersects with anomalous cold air over the northeast of SWC, and so precipitation increases during spring. On the interannual time scale, the impacts of the mid-latitude Pacific SSTAs on rainfall in SWC during spring are not significant, because the mid-latitude Pacific SSTAs are affected by the equatorial central Pacific SSTAs; that is,the mid-latitude Pacific SSTAs are a feedback to the circulation anomaly caused by the equatorial central Pacific SSTAs.
基金Supported by the National Natural Science Foundation of China(41305058)Cultivation Plan for Young Agricultural Science and Technology Talents of Liaoning Province(2015060 and 2014060)Key Agricultural Science and Industrialization Project of the Science and Technology Department of Liaoning Province(2014210003)
文摘As root water uptake(RWU)is an important link in the water and heat exchange between plants and ambient air,improving its parameterization is key to enhancing the performance of land surface model simulations.Although different types of RWU functions have been adopted in land surface models,there is no evidence as to which scheme most applicable to maize farmland ecosystems.Based on the 2007–09 data collected at the farmland ecosystem field station in Jinzhou,the RWU function in the Common Land Model(Co LM)was optimized with scheme options in light of factors determining whether roots absorb water from a certain soil layer(W_x)and whether the baseline cumulative root efficiency required for maximum plant transpiration(W_c)is reached.The sensibility of the parameters of the optimization scheme was investigated,and then the effects of the optimized RWU function on water and heat flux simulation were evaluated.The results indicate that the model simulation was not sensitive to W_x but was significantly impacted by W_c.With the original model,soil humidity was somewhat underestimated for precipitation-free days;soil temperature was simulated with obvious interannual and seasonal differences and remarkable underestimations for the maize late-growth stage;and sensible and latent heat fluxes were overestimated and underestimated,respectively,for years with relatively less precipitation,and both were simulated with high accuracy for years with relatively more precipitation.The optimized RWU process resulted in a significant improvement of Co LM’s performance in simulating soil humidity,temperature,sensible heat,and latent heat,for dry years.In conclusion,the optimized RWU scheme available for the Co LM model is applicable to the simulation of water and heat flux for maize farmland ecosystems in arid areas.