In order to understand the effect of gradual changes in photoperiod on immune function, adult female Siberian hamsters (Phodopus sungorus) were randomly divided into the control group (12L:12D, Con, n = 11) and the sh...In order to understand the effect of gradual changes in photoperiod on immune function, adult female Siberian hamsters (Phodopus sungorus) were randomly divided into the control group (12L:12D, Con, n = 11) and the shortening day length group (SD, n = 11), in which day length was reduced from 12:12 h to 8:16 h light-dark cycle at the pace of half an hour every week. Meanwhile the winter immunoenhancement hypothesis, which holds that animals’ immune function would be enhanced in winter or winter-like conditions, was tested. Gradual shortening day length had no effect on body mass and body composition including wet carcass mass, the subcutaneous, retroperitoneal, mesenteric and total body fat masses in Siberian hamsters. The masses of liver and small intestine with contents were higher in the SD group than in the Con group, however other organ masses such as brain, heart, kidney and so on did not differ between the two groups. Phytohemagglutinin (PHA) response after 24 h of PHA injection was enhanced by the shortening photoperiod, which supported the winter immunoenhancement hypothesis. The masses of spleen and thymus, white blood cells, bacteria killing capacity indicative of innate immunity were not affected, which did not support this hypothesis. In summary, gradually decrease in day length increased cellular immunity, but had no effect on other immunological parameters in Siberian hamsters.展开更多
Using the daily precipitation data of 118 meteorological stations in Northwest China from January 1, 1961 to December 31,2010, we analyzed extreme precipitation events from prime precipitation data by applying R-langu...Using the daily precipitation data of 118 meteorological stations in Northwest China from January 1, 1961 to December 31,2010, we analyzed extreme precipitation events from prime precipitation data by applying R-language Climate Index (RClimDex). The spatial-temporal change characteristics in the past 50 years have been examined using the method of trend analysis, Mann-Kendall and the spatial analysis module of Arcgis9.2. The results show that the spatial distribution of the indices for extreme precipitation in Northwest China is greatly influenced by geographic location, atmospheric circulation and topography, and the spatial difference of extreme precipitation events is very evident, while the indices reduce from the southeast to the northwest except Consecutive Dry Days (CDD). In Xinjiang region, high values appear in Tianshan Mountains and decrease towards the south and north respectively. In the past 50 years, the temporal variation tendency of the indices for extreme precipitation in Northwest China has a great spatial distinction. It shows that the variation tendency is opposite between the east (decrease) and the west (increase), and CDD has a decreasing tendency while other indices increase. For each region, it is found that the indices for extreme precipitation in Xinjiang and Qinghai Province shows an increasing trend, and it is remarkable in Tianshan Mountains, the north of Xinjiang and the northeast of Qinghai Province. The temporal variation tendency of the indices for extreme precipitation in Ningxia, Shaanxi and Gansu has a large spatial distinction. The stations which have an increasing tend are mainly found in the north of Ningxia, south of Shaanxi and Hexi Corridor of Gansu. However, the south of Ningxia, north of Shaanxi and Longnan of Gansu Province mainly present a decreasing trend. The temporal variation tendency of the indices for extreme precipitation in Inner Mongolia is not obvious. Overall, the east part of Northwest China has a dry tendency, while the west part has an opposite trend.展开更多
In the context of cavity quantum electrodynamics (QED),a potential scheme is proposed to generate entangled coherent states. The scheme includes twice interactions of two-level atoms with cavities. In the first intera...In the context of cavity quantum electrodynamics (QED),a potential scheme is proposed to generate entangled coherent states. The scheme includes twice interactions of two-level atoms with cavities. In the first interaction,two atoms are sent into a microwave cavity with the large detuning respectively. And then the second interaction is that the two atoms enter another microwave cavity and are driven by a resonant classical field meantime. When we choose the proper interaction time and make measurement on the two atoms,the two microwave cavity mode fields are determinatively entangled. In addition,it is easy to generalize the scheme to multi-cavity and multi-atom.展开更多
Oscillatory behavior of solutions of second order nonlinear difference equation is studied. Oscillation criteria for its solutions are given. Examples are given in the text to illustrate the results.
Molar heat capacities of the pure samples of acetone, methanol and the azeotropic mixture composed of acetone cyclohexane and methanol were measured by an adiabatic calorimeter from 78 to 320 K. The solid-solid and so...Molar heat capacities of the pure samples of acetone, methanol and the azeotropic mixture composed of acetone cyclohexane and methanol were measured by an adiabatic calorimeter from 78 to 320 K. The solid-solid and solid-liquid phase transitions of the pure samples and the mixture were determined based on the curve of the heat capacity with respect to temperature. The phase transitions took place at (126.16±0.68) and (178.96±1.47) K for the sample of acetone, (157.79±0.95) and (175.93±0.95) K for methanol, which were corresponding to the solid-solid and the solid-liquid phase transitions of the acetone and the methanol, respectively. And the phase transitions occurred in the temperature ranges of 120 to 190 K and 278 to 280 K corresponding to the solid-solid and the solid-liquid phase transitions of mixture of acetone, cyclohexane and methanol, respectively. The thermodynamic functions and the excess thermodynamic functions of the mixture relative to standard temperature of 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity with respect to temperature.展开更多
文摘In order to understand the effect of gradual changes in photoperiod on immune function, adult female Siberian hamsters (Phodopus sungorus) were randomly divided into the control group (12L:12D, Con, n = 11) and the shortening day length group (SD, n = 11), in which day length was reduced from 12:12 h to 8:16 h light-dark cycle at the pace of half an hour every week. Meanwhile the winter immunoenhancement hypothesis, which holds that animals’ immune function would be enhanced in winter or winter-like conditions, was tested. Gradual shortening day length had no effect on body mass and body composition including wet carcass mass, the subcutaneous, retroperitoneal, mesenteric and total body fat masses in Siberian hamsters. The masses of liver and small intestine with contents were higher in the SD group than in the Con group, however other organ masses such as brain, heart, kidney and so on did not differ between the two groups. Phytohemagglutinin (PHA) response after 24 h of PHA injection was enhanced by the shortening photoperiod, which supported the winter immunoenhancement hypothesis. The masses of spleen and thymus, white blood cells, bacteria killing capacity indicative of innate immunity were not affected, which did not support this hypothesis. In summary, gradually decrease in day length increased cellular immunity, but had no effect on other immunological parameters in Siberian hamsters.
基金Supported by the Natural Science Foundation of Shandong Province,China(ZR2010DM011)
文摘Using the daily precipitation data of 118 meteorological stations in Northwest China from January 1, 1961 to December 31,2010, we analyzed extreme precipitation events from prime precipitation data by applying R-language Climate Index (RClimDex). The spatial-temporal change characteristics in the past 50 years have been examined using the method of trend analysis, Mann-Kendall and the spatial analysis module of Arcgis9.2. The results show that the spatial distribution of the indices for extreme precipitation in Northwest China is greatly influenced by geographic location, atmospheric circulation and topography, and the spatial difference of extreme precipitation events is very evident, while the indices reduce from the southeast to the northwest except Consecutive Dry Days (CDD). In Xinjiang region, high values appear in Tianshan Mountains and decrease towards the south and north respectively. In the past 50 years, the temporal variation tendency of the indices for extreme precipitation in Northwest China has a great spatial distinction. It shows that the variation tendency is opposite between the east (decrease) and the west (increase), and CDD has a decreasing tendency while other indices increase. For each region, it is found that the indices for extreme precipitation in Xinjiang and Qinghai Province shows an increasing trend, and it is remarkable in Tianshan Mountains, the north of Xinjiang and the northeast of Qinghai Province. The temporal variation tendency of the indices for extreme precipitation in Ningxia, Shaanxi and Gansu has a large spatial distinction. The stations which have an increasing tend are mainly found in the north of Ningxia, south of Shaanxi and Hexi Corridor of Gansu. However, the south of Ningxia, north of Shaanxi and Longnan of Gansu Province mainly present a decreasing trend. The temporal variation tendency of the indices for extreme precipitation in Inner Mongolia is not obvious. Overall, the east part of Northwest China has a dry tendency, while the west part has an opposite trend.
基金the National Science Foundation of China (Grant No.10774088)the Key Program of National Science Foundation of China (Grant No.10534030)Funds from Qufu Normal University (Grant No.XJ0621)
文摘In the context of cavity quantum electrodynamics (QED),a potential scheme is proposed to generate entangled coherent states. The scheme includes twice interactions of two-level atoms with cavities. In the first interaction,two atoms are sent into a microwave cavity with the large detuning respectively. And then the second interaction is that the two atoms enter another microwave cavity and are driven by a resonant classical field meantime. When we choose the proper interaction time and make measurement on the two atoms,the two microwave cavity mode fields are determinatively entangled. In addition,it is easy to generalize the scheme to multi-cavity and multi-atom.
基金This research was supposed by the NSF of China (10071043)Shandong Province (Q2001A03).
文摘Oscillatory behavior of solutions of second order nonlinear difference equation is studied. Oscillation criteria for its solutions are given. Examples are given in the text to illustrate the results.
基金Project supported by the National Natural Science Foundation of China (No. 20073047) and the Doctor Foundation of Shandong Province (No. 2004B S04021 ).
文摘Molar heat capacities of the pure samples of acetone, methanol and the azeotropic mixture composed of acetone cyclohexane and methanol were measured by an adiabatic calorimeter from 78 to 320 K. The solid-solid and solid-liquid phase transitions of the pure samples and the mixture were determined based on the curve of the heat capacity with respect to temperature. The phase transitions took place at (126.16±0.68) and (178.96±1.47) K for the sample of acetone, (157.79±0.95) and (175.93±0.95) K for methanol, which were corresponding to the solid-solid and the solid-liquid phase transitions of the acetone and the methanol, respectively. And the phase transitions occurred in the temperature ranges of 120 to 190 K and 278 to 280 K corresponding to the solid-solid and the solid-liquid phase transitions of mixture of acetone, cyclohexane and methanol, respectively. The thermodynamic functions and the excess thermodynamic functions of the mixture relative to standard temperature of 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity with respect to temperature.