Polychlorinated biphenyl (PCBs) congeners were measured in (unwashed) whole-body field (deer) mice (Peromyscus maniculaltus) collected directly upgradient from a sediment retention structure (weir) within Los Alamos C...Polychlorinated biphenyl (PCBs) congeners were measured in (unwashed) whole-body field (deer) mice (Peromyscus maniculaltus) collected directly upgradient from a sediment retention structure (weir) within Los Alamos Canyon (LAC), Los Alamos National Laboratory (LANL), New Mexico, USA, from 2007 through 2013. Samples were also collected approximately 8 km downgradient of the retention structure in 2009 and 2013. LAC, a major drainage that crosses LANL lands, contains legacy waste, including PCBs, and occasionally discharges storm water and snowmelt flows to the Rio Grande approximately 8.8 km away from the weir. The Rio Grande is the major waterway that flows southward across the state. The weir was constructed across the channel on the northeastern boundary of LANL in late 2000 to help contain sediments mobilized by floodwaters as a result of a large wildfire in early 2000 that burned forest lands west and adjacent to LANL. Total PCBs in field mice directly upgradient of the sediment retention structure from 2007 through 2012 were significantly greater (p 0.05) than in field mice collected from background locations but decreased in concentration over time;by 2013 the levels were statistically similar (p > 0.05) to background. The highest mean total PCB concentration in field mice was below the levels that may negatively impact field mice population attributes. Total PCBs in field mice collected 8 km below the sediment retention structure in 2009 were lower than field mice collected from behind the weir and decreased over time;also by 2013, the amount of PCBs in field mice 8 km below the sediment retention structure were not significantly different (p > 0.05) from background. The rank order of concentrations of ICES 7 PCB congeners in upgradient and downgradient field mice were: No. 153 > 180 > 138 > 118 > 28 > 101 > 52 and No. 153 > 180 > 138 > 52 > 101 > 118 > 28, respectively. Based on the PCB homolog distribution, the major formulation detected in field mice was Aroclor-1260. Overall, the reduction of PCBs in whole-body field mice from both sites over time was attributed, in part, to sediment control practices.展开更多
Breeding bird abundance, species richness, evenness, diversity, composition, productivity, and survivorship were determined near a high-explosive detonation site at Los Alamos National Laboratory, New Mexico, USA, dur...Breeding bird abundance, species richness, evenness, diversity, composition, productivity, and survivorship were determined near a high-explosive detonation site at Los Alamos National Laboratory, New Mexico, USA, during pre-operation (1997-1999) and operation (2000-2014) periods. The operation periods consisted of detonations ( 0.05) in mean avian abundance and species evenness in any of the operation periods as compared with the pre-operation period. Species richness and diversity were significantly higher (p < 0.05) during the vessel containment period (2007-2014) than the pre-operation period. The time period of this study coincided with a wildfire (2000), a bark beetle infestation (2002), and two periods of drought (Nov 1999-Mar 2004 and Dec 2005-Dec 2014) that affected the study area. Analysis of aerial photos determined that the average percent canopy cover of mature ponderosa pines (Pinus ponderosa) within 100 feet of mist net sites declined from 12% to 3% between 1991 and 2014 and the percent cover of shrubs slightly increased. The percent similarity in presence/abundance between the pre-operation avian community and avian community during the open air, foam containment, and vessel containment periods were 59%, 63% and 68% respectively. Two bird species associated with large trees became less common over the study period (capture rate dropped below 2.0 adults per 600 net-hours relative to the pre-operations period), and four bird species associated with edge and scrub habitats became more common over the study period (capture rate increased to more than 2.0 adults per 600 net-hours relative to the pre-operations period). Bird demographics (productivity and survival) were not negatively affected by the initiation of firing site operations. The increase in diversity and the change in bird species composition over time were probably related to the change in vegetation from a woodland to a more open woodland/shrub environment.展开更多
Benthic macroinvertebrates (aquatic insects) were collected from the Rio Grande upstream and downstream of Los Alamos Canyon (LAC), a major drainage that crosses Los Alamos National Laboratory (LANL) lands in northern...Benthic macroinvertebrates (aquatic insects) were collected from the Rio Grande upstream and downstream of Los Alamos Canyon (LAC), a major drainage that crosses Los Alamos National Laboratory (LANL) lands in northern New Mexico, USA. LAC contains legacy waste, including radionuclides and polychlorinated biphenyls, and occasionally discharges storm water and snowmelt flows to the Rio Grande. The Rio Grande is the major waterway that flows southward across the state. In 2009, rock baskets were placed in waters 61- to 76-cm-deep within each reach (five per reach), and, after approximately 6 weeks of colonization, the rock baskets were retrieved. All samples were sorted completely and organisms were identified to the lowest possible taxonomic level. Both reaches in 2009 were dominated by the collector filtering net-spinning caddisfly, Hydropsyche occidentalis. In 2011, benthic macroinvertebrates were collected using D kick nets from shallow riffle locations (15- to 31-cm depth) from each reach (six per reach). These samples were collected after post- (Las Conchas) fire flooding events moved sediment and ash through the two study areas—the downstream reach, however, was affected by higher flows and greater number of flooding events than those affecting the upstream reach. Each kick net sample consisted of ten 1-m (kick) samples. The 10 subsamples were composited and organisms were picked from randomly selected cells in a sorting pan until 500 organisms had been identified to the lowest possible taxonomic level. Both reaches in 2011 were dominated by the collector-gathering mayfly, Baetis tricaudatus. A bioassessment of the downstream reach compared with the upstream (reference) reach was conducted by scoring 10 metrics related to the structure and function of the benthic macroinvertebrate community. While 2009 ranked at the highest level (nonimpaired), 2011 ranked a level lower (slightly impaired). The slightly lower bioassessment score of the downstream reach in 2011 may be a result of flooding impacts following the Las Conchas fire rather than of LANL operations. Overall, based on the similarity of benthic macroinvertebrate metrics between reaches and the composition of benthic macroinvertebrates favoring pollution intolerant taxa, LANL influences, if any, via the LAC system to the Rio Grande are not significantly impacting water quality of the Rio Grande.展开更多
Los Alamos National Laboratory (LANL) was established in 1943 as part of the Manhattan Project to build nuclear weapons, and currently operates as a national research laboratory. As part of an ongoing assessment of si...Los Alamos National Laboratory (LANL) was established in 1943 as part of the Manhattan Project to build nuclear weapons, and currently operates as a national research laboratory. As part of an ongoing assessment of site-related ecological risk at LANL, western bluebird (Sialia mexicana) and ash-throated flycatcher (Myiarchus cinerascens) eggs were collected from 1997 to 2012 and analyzed for 18 inorganic elements. Concentrations of many inorganic elements in eggs were below reporting limits. Between species comparisons revealed that western bluebird eggs had higher levels of barium while ash-throated flycatcher eggs had higher levels of mercury. No statistically significant differences were observed in concentrations of inorganic elements in western bluebird eggs collected from the study area (which consists of areas within the current and historic LANL boundary) and from a non-industrial reference site;nor were any statistically significant differences observed between two canyons of interest, known to have received effluents and storm water runoff from LANL facilities, and the non-industrial reference site. Inorganic element levels detected in western bluebirds were typically within the range measured in eggs of other passerine in the published literature. These data suggest that concentrations of inorganic elements in passerine eggs collected from the study area appear to be at levels causing negligible risks to local bird populations.展开更多
Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of ...Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff.展开更多
Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and ...Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and infor- mation concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs from several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of under- standing the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. It was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.展开更多
Hydrodynamic instabilities such as the Rayleigh–Taylor(RT)and Richtmyer–Meshkov instabilities disrupt inertial confinement fusion(ICF)implosions through the growth of 3D perturbations.Growth of these 3D imperfection...Hydrodynamic instabilities such as the Rayleigh–Taylor(RT)and Richtmyer–Meshkov instabilities disrupt inertial confinement fusion(ICF)implosions through the growth of 3D perturbations.Growth of these 3D imperfections at the interfaces of an ICF capsule during implosion lead to mixing between materials that is detrimental to performance.These instabilities have been studied extensively in planar geometry,but such experiments lack the effects of convergence in spherical implosions.While several studies have been performed in spherical geometry,these often lack a direct means to measure perturbation growth.Experiments in cylindrical geometry include convergence effects while maintaining direct diagnostic access.Although cylinders have less compression than spheres,they do provide an excellent platform to validate modeling for convergent geometries.The problem with previous cylindrical implosion experiments was that the convergence ratios were limited to∼4.With the National Ignition Facility(NIF),larger cylindrical targets can be driven to convergences of 10–15 while maintaining a large enough final diameter to measure perturbation growth.This paper reviews the design process used to both benchmark radiation hydrodynamics codes and enable 1D post-processed simulations to explore design space to separate compression effects from acceleration/deceleration RT instability.Results from 1D simulations suggest that cylindrical implosions on the NIF can produce high-convergence experiments to validate RT instability growth for ICF implosions.展开更多
The impact of fuel-ion diffusion in inertial confinement fusion implosions is assessed using nuclear reaction yield ratios and reaction histories.In T3He-gas-filled(with trace D)shock-driven implosions,the observed TT...The impact of fuel-ion diffusion in inertial confinement fusion implosions is assessed using nuclear reaction yield ratios and reaction histories.In T3He-gas-filled(with trace D)shock-driven implosions,the observed TT/T3He yield ratio is∼23lower than expected from temperature scaling.InD3He-gas-filled(with trace T)shock-driven implosions,the timing of theD3He reaction history is∼50 ps earlier than those of the DT reaction histories,and average-ion hydrodynamic simulations cannot reconcile this timing difference.Both experimental observations are consistent with reduced T ions in the burn region as predicted by multi-ion diffusion theory and particle-in-cell simulations.展开更多
TO THE EDITOR We read the study by Medeiros-Filho et al with much interest. The study shed light on early HCV RNA kinetics in conjunction with liver cirrhosis, different genotypes (gen-1 vs gen-3) of HCV and sustain...TO THE EDITOR We read the study by Medeiros-Filho et al with much interest. The study shed light on early HCV RNA kinetics in conjunction with liver cirrhosis, different genotypes (gen-1 vs gen-3) of HCV and sustained viral response (SVR) rates. In particular, Medeiros-Filho et al showed that the HCV RNA first phase decline, under interferon-or (IFN) and ribavirin therapy,展开更多
Debonding at the cement-casing interface is recognized as a principal failure mechanism leading to CO_(2) leakage in wells.This detachment gives rise to a microannulus,which notably possesses greater permeability than...Debonding at the cement-casing interface is recognized as a principal failure mechanism leading to CO_(2) leakage in wells.This detachment gives rise to a microannulus,which notably possesses greater permeability than undamaged cement,undermining its sealing efficacy.Conventionally,the permeability of the microannulus is regarded as a uniform value throughout the well.However,fundamentally,a microannulus is one type of fracture,and its gap or aperture size is affected by the effective stress.In this work,we developed a unique experimental apparatus.This equipment facilitates the curing of cement inside a steel casing,the formation of a microannulus between the casing and the cement,and the investigation of the fluid flow dynamics along the microannulus under laboratory-replicated in situ conditions.The microannulus was formed by injecting fluid from one end of the setup,and receiving similar amount of fluid on the other end signified the development of the leakage channel.Additionally,strain gauges affixed to the casing’s external surface yielded key information on the microannulus’s opening and closure.We observed a noticeable decline in microannulus hydraulic aperture(or permeability)in relation to effective stress and an exponential equation fits their relationship.Our findings also indicate a distinct behavior when comparing liquid CO_(2) with water.Specifically,it is easier for liquid CO_(2) to create the microannulus.However,the hydraulic aperture range for this microannulus(0.7-6 mm)is considerably smaller than that created by water flow(2-17 mm).Finally,we integrated the stressdependent microannulus aperture size into the combined analysis of well mechanical integrity and well leakage.The outcomes consistently demonstrated that when factoring in the stress-dependent aperture sizes,the leakage rates are 3e5 times compared to a fixed aperture model.The traditional assumption of a constant aperture significantly underestimates fluid leakage risks.展开更多
Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and e...Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations.展开更多
An intense laser pulse focused onto a plasma can excite nonlinear plasma waves.Under appropriate conditions,electrons from the background plasma are trapped in the plasma wave and accelerated to ultra-relativistic vel...An intense laser pulse focused onto a plasma can excite nonlinear plasma waves.Under appropriate conditions,electrons from the background plasma are trapped in the plasma wave and accelerated to ultra-relativistic velocities.This scheme is called a laser wakefield accelerator.In this work,we present results from a laser wakefield acceleration experiment using a petawatt-class laser to excite the wakefields as well as nanoparticles to assist the injection of electrons into the accelerating phase of the wakefields.We find that a 10-cm-long,nanoparticle-assisted laser wakefield accelerator can generate 340 pC,10±1.86 GeV electron bunches with a 3.4 GeV rms convolved energy spread and a 0.9 mrad rms divergence.It can also produce bunches with lower energies in the 4–6 GeV range.展开更多
Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-st...Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-step process:a high-quality graphene layer synthesis on metal substrate through chemical vapor deposition(CVD)followed by delicate layer transfer onto device-relevant substrates.Here,we report a novel synthesis approach combining ion implantation for a precise graphene layer control and dual-metal smart Janus substrate for a diffusion-limiting graphene formation to directly synthesize large area,high quality,and layer-tunable graphene films on arbitrary substrates without the post-synthesis layer transfer process.Carbon(C)ion implantation was performed on Cu-Ni film deposited on a variety of device-relevant substrates.A well-controlled number of layers of graphene,primarily monolayer and bilayer,is precisely controlled by the equivalent fluence of the implanted C-atoms(1 monolayer~4×10^(15)C-atoms/cm^(2)).Upon thermal annealing to promote Cu-Ni alloying,the pre-implanted C-atoms in the Ni layer are pushed toward the Ni/substrate interface by the top Cu layer due to the poor C-solubility in Cu.As a result,the expelled C-atoms precipitate into a graphene structure at the interface facilitated by the Cu-like alloy catalysis.After removing the alloyed Cu-like surface layer,the layer-tunable graphene on the desired substrate is directly realized.The layer-selectivity,high quality,and uniformity of the graphene films are not only confirmed with detailed characterizations using a suite of surface analysis techniques but more importantly are successfully demonstrated by the excellent properties and performance of several devices directly fabricated from these graphene films.Molecular dynamics(MD)simulations using the reactive force field(ReaxFF)were performed to elucidate the graphene formation mechanisms in this novel synthesis approach.With the wide use of ion implantation technology in the microelectronics industry,this novel graphene synthesis approach with precise layer-tunability and transfer-free processing has the promise to advance efficient graphene-device manufacturing and expedite their versatile applications in many fields.展开更多
We are delighted to serve as guest editors for this special issue in the Journal of Rock Mechanics and Geotechnical Engineering.The purpose of this special issue is dedicated to gathering the latest research work on M...We are delighted to serve as guest editors for this special issue in the Journal of Rock Mechanics and Geotechnical Engineering.The purpose of this special issue is dedicated to gathering the latest research work on Multiscale&Multifield Coupling in Geomechanics,where we delve into the intricate interplay of various fields and scales that govern the behavior of geomaterials.In total,30 manuscripts from USA,China,UK,Germany,Canada,India and United Arab Emirates are selected to be included in this issue.展开更多
Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi...Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi-or hyperspectral image segmentation.Our batch active learning approach selects a collection of unlabeled pixels that satisfy a graph local maximum constraint for the active learning acquisition function that determines the relative importance of each pixel to the classification.This work builds on recent advances in the design of novel active learning acquisition functions(e.g.,the Model Change approach in arXiv:2110.07739)while adding important further developments including patch-neighborhood image analysis and batch active learning methods to further increase the accuracy and greatly increase the computational efficiency of these methods.In addition to improvements in the accuracy,our approach can greatly reduce the number of labeled pixels needed to achieve the same level of the accuracy based on randomly selected labeled pixels.展开更多
文摘Polychlorinated biphenyl (PCBs) congeners were measured in (unwashed) whole-body field (deer) mice (Peromyscus maniculaltus) collected directly upgradient from a sediment retention structure (weir) within Los Alamos Canyon (LAC), Los Alamos National Laboratory (LANL), New Mexico, USA, from 2007 through 2013. Samples were also collected approximately 8 km downgradient of the retention structure in 2009 and 2013. LAC, a major drainage that crosses LANL lands, contains legacy waste, including PCBs, and occasionally discharges storm water and snowmelt flows to the Rio Grande approximately 8.8 km away from the weir. The Rio Grande is the major waterway that flows southward across the state. The weir was constructed across the channel on the northeastern boundary of LANL in late 2000 to help contain sediments mobilized by floodwaters as a result of a large wildfire in early 2000 that burned forest lands west and adjacent to LANL. Total PCBs in field mice directly upgradient of the sediment retention structure from 2007 through 2012 were significantly greater (p 0.05) than in field mice collected from background locations but decreased in concentration over time;by 2013 the levels were statistically similar (p > 0.05) to background. The highest mean total PCB concentration in field mice was below the levels that may negatively impact field mice population attributes. Total PCBs in field mice collected 8 km below the sediment retention structure in 2009 were lower than field mice collected from behind the weir and decreased over time;also by 2013, the amount of PCBs in field mice 8 km below the sediment retention structure were not significantly different (p > 0.05) from background. The rank order of concentrations of ICES 7 PCB congeners in upgradient and downgradient field mice were: No. 153 > 180 > 138 > 118 > 28 > 101 > 52 and No. 153 > 180 > 138 > 52 > 101 > 118 > 28, respectively. Based on the PCB homolog distribution, the major formulation detected in field mice was Aroclor-1260. Overall, the reduction of PCBs in whole-body field mice from both sites over time was attributed, in part, to sediment control practices.
文摘Breeding bird abundance, species richness, evenness, diversity, composition, productivity, and survivorship were determined near a high-explosive detonation site at Los Alamos National Laboratory, New Mexico, USA, during pre-operation (1997-1999) and operation (2000-2014) periods. The operation periods consisted of detonations ( 0.05) in mean avian abundance and species evenness in any of the operation periods as compared with the pre-operation period. Species richness and diversity were significantly higher (p < 0.05) during the vessel containment period (2007-2014) than the pre-operation period. The time period of this study coincided with a wildfire (2000), a bark beetle infestation (2002), and two periods of drought (Nov 1999-Mar 2004 and Dec 2005-Dec 2014) that affected the study area. Analysis of aerial photos determined that the average percent canopy cover of mature ponderosa pines (Pinus ponderosa) within 100 feet of mist net sites declined from 12% to 3% between 1991 and 2014 and the percent cover of shrubs slightly increased. The percent similarity in presence/abundance between the pre-operation avian community and avian community during the open air, foam containment, and vessel containment periods were 59%, 63% and 68% respectively. Two bird species associated with large trees became less common over the study period (capture rate dropped below 2.0 adults per 600 net-hours relative to the pre-operations period), and four bird species associated with edge and scrub habitats became more common over the study period (capture rate increased to more than 2.0 adults per 600 net-hours relative to the pre-operations period). Bird demographics (productivity and survival) were not negatively affected by the initiation of firing site operations. The increase in diversity and the change in bird species composition over time were probably related to the change in vegetation from a woodland to a more open woodland/shrub environment.
文摘Benthic macroinvertebrates (aquatic insects) were collected from the Rio Grande upstream and downstream of Los Alamos Canyon (LAC), a major drainage that crosses Los Alamos National Laboratory (LANL) lands in northern New Mexico, USA. LAC contains legacy waste, including radionuclides and polychlorinated biphenyls, and occasionally discharges storm water and snowmelt flows to the Rio Grande. The Rio Grande is the major waterway that flows southward across the state. In 2009, rock baskets were placed in waters 61- to 76-cm-deep within each reach (five per reach), and, after approximately 6 weeks of colonization, the rock baskets were retrieved. All samples were sorted completely and organisms were identified to the lowest possible taxonomic level. Both reaches in 2009 were dominated by the collector filtering net-spinning caddisfly, Hydropsyche occidentalis. In 2011, benthic macroinvertebrates were collected using D kick nets from shallow riffle locations (15- to 31-cm depth) from each reach (six per reach). These samples were collected after post- (Las Conchas) fire flooding events moved sediment and ash through the two study areas—the downstream reach, however, was affected by higher flows and greater number of flooding events than those affecting the upstream reach. Each kick net sample consisted of ten 1-m (kick) samples. The 10 subsamples were composited and organisms were picked from randomly selected cells in a sorting pan until 500 organisms had been identified to the lowest possible taxonomic level. Both reaches in 2011 were dominated by the collector-gathering mayfly, Baetis tricaudatus. A bioassessment of the downstream reach compared with the upstream (reference) reach was conducted by scoring 10 metrics related to the structure and function of the benthic macroinvertebrate community. While 2009 ranked at the highest level (nonimpaired), 2011 ranked a level lower (slightly impaired). The slightly lower bioassessment score of the downstream reach in 2011 may be a result of flooding impacts following the Las Conchas fire rather than of LANL operations. Overall, based on the similarity of benthic macroinvertebrate metrics between reaches and the composition of benthic macroinvertebrates favoring pollution intolerant taxa, LANL influences, if any, via the LAC system to the Rio Grande are not significantly impacting water quality of the Rio Grande.
文摘Los Alamos National Laboratory (LANL) was established in 1943 as part of the Manhattan Project to build nuclear weapons, and currently operates as a national research laboratory. As part of an ongoing assessment of site-related ecological risk at LANL, western bluebird (Sialia mexicana) and ash-throated flycatcher (Myiarchus cinerascens) eggs were collected from 1997 to 2012 and analyzed for 18 inorganic elements. Concentrations of many inorganic elements in eggs were below reporting limits. Between species comparisons revealed that western bluebird eggs had higher levels of barium while ash-throated flycatcher eggs had higher levels of mercury. No statistically significant differences were observed in concentrations of inorganic elements in western bluebird eggs collected from the study area (which consists of areas within the current and historic LANL boundary) and from a non-industrial reference site;nor were any statistically significant differences observed between two canyons of interest, known to have received effluents and storm water runoff from LANL facilities, and the non-industrial reference site. Inorganic element levels detected in western bluebirds were typically within the range measured in eggs of other passerine in the published literature. These data suggest that concentrations of inorganic elements in passerine eggs collected from the study area appear to be at levels causing negligible risks to local bird populations.
基金supported by the Laboratory Directed Research&Development(LDRD)program at the Los Alamos National Laboratory(LANL)(Grant No.20220019DR).
文摘Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff.
基金financial support for much of the early development of the AE analysis methods was provided by the U.S. Department of Energy (DOE) (Grant No. DE-FE0002760)
文摘Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and infor- mation concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs from several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of under- standing the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. It was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.
基金This work used resources provided by Los Alamos National Laboratory,supported by the U.S Department of Energy National Nuclear Security Administration,operated by Los Alamos National Security,LLC(Contract No.DE-AC52-06NA25396)until November 2018and currently operated by Triad National Security,LLC(Contract No.89233218CNA000001).
文摘Hydrodynamic instabilities such as the Rayleigh–Taylor(RT)and Richtmyer–Meshkov instabilities disrupt inertial confinement fusion(ICF)implosions through the growth of 3D perturbations.Growth of these 3D imperfections at the interfaces of an ICF capsule during implosion lead to mixing between materials that is detrimental to performance.These instabilities have been studied extensively in planar geometry,but such experiments lack the effects of convergence in spherical implosions.While several studies have been performed in spherical geometry,these often lack a direct means to measure perturbation growth.Experiments in cylindrical geometry include convergence effects while maintaining direct diagnostic access.Although cylinders have less compression than spheres,they do provide an excellent platform to validate modeling for convergent geometries.The problem with previous cylindrical implosion experiments was that the convergence ratios were limited to∼4.With the National Ignition Facility(NIF),larger cylindrical targets can be driven to convergences of 10–15 while maintaining a large enough final diameter to measure perturbation growth.This paper reviews the design process used to both benchmark radiation hydrodynamics codes and enable 1D post-processed simulations to explore design space to separate compression effects from acceleration/deceleration RT instability.Results from 1D simulations suggest that cylindrical implosions on the NIF can produce high-convergence experiments to validate RT instability growth for ICF implosions.
基金This material is based upon work supported by the Department of Energy,National Nuclear Security Administration under Award Nos.DE-NA0001857,DE-NA0002949,and DENA0002905.The work was also supported in part by NLUF(DE-NA0002035).H.S.was supported by a DOE NNSA SSGF Fellowship(DE-FC52-08NA28752)during this work.S.A.acknowledges Sapienza Project 2016 No.RM11615502006B04,as well as EUROfusion Project Nos.AWP17-ENR-IFE-CEA-01 and ENR-IFE19.CEA-01.A.L.acknowledges the LANL LDRD program.
文摘The impact of fuel-ion diffusion in inertial confinement fusion implosions is assessed using nuclear reaction yield ratios and reaction histories.In T3He-gas-filled(with trace D)shock-driven implosions,the observed TT/T3He yield ratio is∼23lower than expected from temperature scaling.InD3He-gas-filled(with trace T)shock-driven implosions,the timing of theD3He reaction history is∼50 ps earlier than those of the DT reaction histories,and average-ion hydrodynamic simulations cannot reconcile this timing difference.Both experimental observations are consistent with reduced T ions in the burn region as predicted by multi-ion diffusion theory and particle-in-cell simulations.
基金NIH grants RR06555 and P20-RR18754the U.S.Department of Energy under contract DE-AC52-06NA25396
文摘TO THE EDITOR We read the study by Medeiros-Filho et al with much interest. The study shed light on early HCV RNA kinetics in conjunction with liver cirrhosis, different genotypes (gen-1 vs gen-3) of HCV and sustained viral response (SVR) rates. In particular, Medeiros-Filho et al showed that the HCV RNA first phase decline, under interferon-or (IFN) and ribavirin therapy,
基金Financial support for this work from the U.S.Department of Energy(DOE)Office of Basic Energy Sciences for“Center for Coupled Chemo-Mechanics of Cementitious Composites for EGS(C4M)”,DOE’s“National Risk Assessment Partnership(NRAP)”programDOE Office of Energy Efficiency&Renewable Energy’s Geothermal Technologies Office for“Advanced Downhole Acoustic Sensing for Wellbore Integrity”is gratefully acknowledged.
文摘Debonding at the cement-casing interface is recognized as a principal failure mechanism leading to CO_(2) leakage in wells.This detachment gives rise to a microannulus,which notably possesses greater permeability than undamaged cement,undermining its sealing efficacy.Conventionally,the permeability of the microannulus is regarded as a uniform value throughout the well.However,fundamentally,a microannulus is one type of fracture,and its gap or aperture size is affected by the effective stress.In this work,we developed a unique experimental apparatus.This equipment facilitates the curing of cement inside a steel casing,the formation of a microannulus between the casing and the cement,and the investigation of the fluid flow dynamics along the microannulus under laboratory-replicated in situ conditions.The microannulus was formed by injecting fluid from one end of the setup,and receiving similar amount of fluid on the other end signified the development of the leakage channel.Additionally,strain gauges affixed to the casing’s external surface yielded key information on the microannulus’s opening and closure.We observed a noticeable decline in microannulus hydraulic aperture(or permeability)in relation to effective stress and an exponential equation fits their relationship.Our findings also indicate a distinct behavior when comparing liquid CO_(2) with water.Specifically,it is easier for liquid CO_(2) to create the microannulus.However,the hydraulic aperture range for this microannulus(0.7-6 mm)is considerably smaller than that created by water flow(2-17 mm).Finally,we integrated the stressdependent microannulus aperture size into the combined analysis of well mechanical integrity and well leakage.The outcomes consistently demonstrated that when factoring in the stress-dependent aperture sizes,the leakage rates are 3e5 times compared to a fixed aperture model.The traditional assumption of a constant aperture significantly underestimates fluid leakage risks.
基金financial support provided by the Future Energy System at University of Alberta and NSERC Discovery Grant RGPIN-2023-04084。
文摘Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations.
基金supported by the Air Force Office of Scientific Research Grant No.FA9550-17-1-0264supported by the DOE,Office of Science,Fusion Energy Sciences under Contract No.DE-SC0021125+2 种基金supported by the U.S.Department of Energy Grant No.DESC0011617.D.A.Jarozynski,E.Brunetti,B.Ersfeld,and S.Yoffe would like to acknowledge support from the U.K.EPSRC(Grant Nos.EP/J018171/1 and EP/N028694/1)the European Union’s Horizon 2020 research and innovation program under Grant Agreement No.871124 Laserlab-Europe and EuPRAXIA(Grant No.653782)funded by the N8 research partnership and EPSRC(Grant No.EP/T022167/1).
文摘An intense laser pulse focused onto a plasma can excite nonlinear plasma waves.Under appropriate conditions,electrons from the background plasma are trapped in the plasma wave and accelerated to ultra-relativistic velocities.This scheme is called a laser wakefield accelerator.In this work,we present results from a laser wakefield acceleration experiment using a petawatt-class laser to excite the wakefields as well as nanoparticles to assist the injection of electrons into the accelerating phase of the wakefields.We find that a 10-cm-long,nanoparticle-assisted laser wakefield accelerator can generate 340 pC,10±1.86 GeV electron bunches with a 3.4 GeV rms convolved energy spread and a 0.9 mrad rms divergence.It can also produce bunches with lower energies in the 4–6 GeV range.
基金supported by the National Key R&D Program of China(No.2022YFA1203400)the National Natural Science Foundation of China under Grant(Nos.62174093 and 12075307)+7 种基金the Ningbo Youth Science and Technology Innovation Leading Talent Project under Grant(No.2023QL006)the Open Research Fund of China National Key Laboratory of Materials for Integrated Circuits(No.NKLJC-K2023-01)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110628)the support by LDRD Seedling ER project at Los Alamos National Laboratory,NM,USA(No.20210867ER)partially supported by Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001)supported by Center for Computational Science and Engineering at Southern University of Science and TechnologyShanghai Rising-Star Program(No.21QA1410900)the support from the Youth Innovation Promotion Association CAS
文摘Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-step process:a high-quality graphene layer synthesis on metal substrate through chemical vapor deposition(CVD)followed by delicate layer transfer onto device-relevant substrates.Here,we report a novel synthesis approach combining ion implantation for a precise graphene layer control and dual-metal smart Janus substrate for a diffusion-limiting graphene formation to directly synthesize large area,high quality,and layer-tunable graphene films on arbitrary substrates without the post-synthesis layer transfer process.Carbon(C)ion implantation was performed on Cu-Ni film deposited on a variety of device-relevant substrates.A well-controlled number of layers of graphene,primarily monolayer and bilayer,is precisely controlled by the equivalent fluence of the implanted C-atoms(1 monolayer~4×10^(15)C-atoms/cm^(2)).Upon thermal annealing to promote Cu-Ni alloying,the pre-implanted C-atoms in the Ni layer are pushed toward the Ni/substrate interface by the top Cu layer due to the poor C-solubility in Cu.As a result,the expelled C-atoms precipitate into a graphene structure at the interface facilitated by the Cu-like alloy catalysis.After removing the alloyed Cu-like surface layer,the layer-tunable graphene on the desired substrate is directly realized.The layer-selectivity,high quality,and uniformity of the graphene films are not only confirmed with detailed characterizations using a suite of surface analysis techniques but more importantly are successfully demonstrated by the excellent properties and performance of several devices directly fabricated from these graphene films.Molecular dynamics(MD)simulations using the reactive force field(ReaxFF)were performed to elucidate the graphene formation mechanisms in this novel synthesis approach.With the wide use of ion implantation technology in the microelectronics industry,this novel graphene synthesis approach with precise layer-tunability and transfer-free processing has the promise to advance efficient graphene-device manufacturing and expedite their versatile applications in many fields.
文摘We are delighted to serve as guest editors for this special issue in the Journal of Rock Mechanics and Geotechnical Engineering.The purpose of this special issue is dedicated to gathering the latest research work on Multiscale&Multifield Coupling in Geomechanics,where we delve into the intricate interplay of various fields and scales that govern the behavior of geomaterials.In total,30 manuscripts from USA,China,UK,Germany,Canada,India and United Arab Emirates are selected to be included in this issue.
基金supported by the UC-National Lab In-Residence Graduate Fellowship Grant L21GF3606supported by a DOD National Defense Science and Engineering Graduate(NDSEG)Research Fellowship+1 种基金supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project numbers 20170668PRD1 and 20210213ERsupported by the NGA under Contract No.HM04762110003.
文摘Graph learning,when used as a semi-supervised learning(SSL)method,performs well for classification tasks with a low label rate.We provide a graph-based batch active learning pipeline for pixel/patch neighborhood multi-or hyperspectral image segmentation.Our batch active learning approach selects a collection of unlabeled pixels that satisfy a graph local maximum constraint for the active learning acquisition function that determines the relative importance of each pixel to the classification.This work builds on recent advances in the design of novel active learning acquisition functions(e.g.,the Model Change approach in arXiv:2110.07739)while adding important further developments including patch-neighborhood image analysis and batch active learning methods to further increase the accuracy and greatly increase the computational efficiency of these methods.In addition to improvements in the accuracy,our approach can greatly reduce the number of labeled pixels needed to achieve the same level of the accuracy based on randomly selected labeled pixels.