Background:SMAD family proteins(SMADs)are crucial transcription factors downstream of transforming growth factor beta(TGF-ß)/SMAD signaling pathways that have been reported to play a pivotal role in mammalian rep...Background:SMAD family proteins(SMADs)are crucial transcription factors downstream of transforming growth factor beta(TGF-ß)/SMAD signaling pathways that have been reported to play a pivotal role in mammalian reproduction.However,the role of SMAD family member 8(SMAD8,also known as SMAD9),a member of the SMAD family,in mammalian reproduction remains unclear.Methods:We employed RNA interference techniques to knock down Smad8 expression in mouse granulosa cells(GCs)to investigate the effects of Smad8 on GC growth and steroidogenesis.Results:Our findings revealed a significant decrease in the proliferative capacity and a substantial increase in the apoptosis rate of GCs after transfection with Smad8-siRNA for 48 h.Subsequent hormone assays demonstrated a significant decrease in estradiol(E2)levels,whereas progesterone(P4)remained unchanged.Further mechanistic analysis showed that the mRNA expression of proliferating cell nuclear antigen(Pcna),Cyclin D2,cell cycle-dependent kinase 4(Cdk4),B-cell lymphoma-2(Bcl-2),estrogen receptor(Er),luteinizing hormone receptor(Lhr)and cytochrome P450 family 19 subfamily A member 1(Cyp19a1)significantly decreased.Conversely,the mRNA of cysteine aspartate proteinase 3(Caspase 3)significantly increased,wheras Bcl2-associated X(Bax),folliclestimulating hormone receptor(Fshr)and cytochrome P450 family 11 subfamily A member 1(Cyp11a1)remained unchanged compared to the controls.Conclusion:This study indicates that Smad8 knockdown inhibits cell proliferation,promotes apoptosis,reduces Er and Lhr transcription,and decreases E2 production in mouse GCs.These findings suggest that Smad8 may serve as a novel genetic marker for mammalian reproduction.展开更多
基金supported by the High-Level Talent Research Start-Up Funds of West Anhui University(No.WGKQ2021031)Key Project of Natural Science Foundation of Anhui Province of China(No.2108085QC136)+2 种基金Key Project of Quality Engineering in Higher Education Institutions of Anhui Province(No.2020jyxm2128)National College Student Innovation and Entrepreneurship Training Program(No.202110370093)Innovation and Entrepreneurship Training Program for College Students of Anhui Province(No.S202010376114).
文摘Background:SMAD family proteins(SMADs)are crucial transcription factors downstream of transforming growth factor beta(TGF-ß)/SMAD signaling pathways that have been reported to play a pivotal role in mammalian reproduction.However,the role of SMAD family member 8(SMAD8,also known as SMAD9),a member of the SMAD family,in mammalian reproduction remains unclear.Methods:We employed RNA interference techniques to knock down Smad8 expression in mouse granulosa cells(GCs)to investigate the effects of Smad8 on GC growth and steroidogenesis.Results:Our findings revealed a significant decrease in the proliferative capacity and a substantial increase in the apoptosis rate of GCs after transfection with Smad8-siRNA for 48 h.Subsequent hormone assays demonstrated a significant decrease in estradiol(E2)levels,whereas progesterone(P4)remained unchanged.Further mechanistic analysis showed that the mRNA expression of proliferating cell nuclear antigen(Pcna),Cyclin D2,cell cycle-dependent kinase 4(Cdk4),B-cell lymphoma-2(Bcl-2),estrogen receptor(Er),luteinizing hormone receptor(Lhr)and cytochrome P450 family 19 subfamily A member 1(Cyp19a1)significantly decreased.Conversely,the mRNA of cysteine aspartate proteinase 3(Caspase 3)significantly increased,wheras Bcl2-associated X(Bax),folliclestimulating hormone receptor(Fshr)and cytochrome P450 family 11 subfamily A member 1(Cyp11a1)remained unchanged compared to the controls.Conclusion:This study indicates that Smad8 knockdown inhibits cell proliferation,promotes apoptosis,reduces Er and Lhr transcription,and decreases E2 production in mouse GCs.These findings suggest that Smad8 may serve as a novel genetic marker for mammalian reproduction.