期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Simulation of wave scattering over a floating platform in the ocean with a coupled CFD-IBM model
1
作者 Pengxuan Luo Jingxin Zhang +1 位作者 Yongyong Cao Shaohong Song 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期157-161,共5页
A numerical study of linear wave scattering over a floating platform has been simulated by an efficient numericalmodel in this letter.The non-hydrostatic model is used to simulate the free surface and the uneven botto... A numerical study of linear wave scattering over a floating platform has been simulated by an efficient numericalmodel in this letter.The non-hydrostatic model is used to simulate the free surface and the uneven bottom.For thesolid body modelling,the immersed boundary method(IBM)is implemented by introducing a virtual boundaryforce into the momentum equations to emulate the boundary conditions.This implementation enhances theability of the model to simulate interactions between waves and floating structures.A numerical case involvingwave interactions with a floating platform is studied to validate the numerical model.By simulating the wavepropagation,the numerical model captures the variation of the wave scattering very well,which verifies theperformance of the numerical model and the robust strategy of the IBM. 展开更多
关键词 Non-hydrostatic model Immersed boundary method Wave structure interaction Floating platform
下载PDF
Experimental observation on water entry of a sphere in regular wave
2
作者 Qian Wang Changze Zhao +1 位作者 Haocheng Lu Hua Liu 《Theoretical & Applied Mechanics Letters》 CSCD 2023年第5期367-374,共8页
This paper presents a novel experiment to observe the whole water entry process of a free-falling sphere into a regular wave.A time-accurate synchronizing system modulates the moment elaborately to ensure the sphere i... This paper presents a novel experiment to observe the whole water entry process of a free-falling sphere into a regular wave.A time-accurate synchronizing system modulates the moment elaborately to ensure the sphere impacting onto the water surface at the desirable wave phase.Four high-speed cameras focus locally to measure the high-precision size of the cavity evolution.Meanwhile,the aggregated field view of the camera array covers both the splash above the free surface and the entire cavity in the wave.The detailed methodologies are described and verified for the hardware set-up and the image post-processing.The theoretical maximum deviation is 1.7%on the space scale.The integral morphology of the cavity is captured precisely in the coordinate system during the sphere penetrates through the water at four representative wave phases and the still water.The result shows that the horizontal velocity of the fluid particle in the wave impels the cavity and changes the shape distinctly.Notably,the wave motion causes the cavity to pinch offearlier at the wave trough phase and later at the wave crest phase than in the still water.The wave motion influences the falling process of the sphere slightly in the present parameters. 展开更多
关键词 Physical experiment Water entry Free-falling sphere Regular wave
下载PDF
Characteristics of phosphorus adsorption by sediment mineral matrices with different particle sizes 被引量:6
3
作者 Yang XIAO Xiao-lian ZHU +3 位作者 Hao-ke CHENG Kai-jie LI Qi LU Dong-fang LIANG 《Water Science and Engineering》 EI CAS CSCD 2013年第3期262-271,共10页
The particle size of sediment is one of the main factors that influence the phosphorus physical adsorption on sediment. In order to eliminate the effect of other components of sediment on the phosphorus physical adsor... The particle size of sediment is one of the main factors that influence the phosphorus physical adsorption on sediment. In order to eliminate the effect of other components of sediment on the phosphorus physical adsorption, the sediment mineral matrices were obtained by removing inorganic matter, metal oxides, and organic matter from natural sediments, which were collected from the Nantong reach of the Yangtze River. The results show that an exponential relationship exists between the median particle size (Ds0) and specific surface area (Sg) of the sediment mineral matrices, and the fine sediment mineral matrix sample has a larger specific surface area and pore volume than the coarse sediment particles. The kinetic equations were used to describe the phosphorus adsorption process of the sediment mineral matrices, including the Elovich equation, quasi-first-order adsorption kinetic equation, and quasi-second-order adsorption kinetic equation. The results show that the quasi-second-order adsorption kinetic equation has the best fitting effect. Using the mass conservation and Langmuir adsorption kinetic equations, a formula was deduced to calculate the equilibrium adsorption capacity of the sediment mineral matrices. The results of this study show that the phosphorus adsorption capacity decreases with the increase of Ds0, indicating that the specific surface area and pore volume are the main factors in determining the phosphorus adsorption capacity of the sediment mineral matrices. This study will help understand the important role of sediment in the transformation of phosphorus in aquatic environments. 展开更多
关键词 sediment mineral matrix particle size specific surface area pore volume phosphorus adsorption
下载PDF
A Comparison of Conventional and Shear-Rate Dependent Mohr-Coulomb Models for Simulating Landslides 被引量:6
4
作者 LIANG Dong-fang HE Xu-zhen 《Journal of Mountain Science》 SCIE CSCD 2014年第6期1478-1490,共13页
Landslides may cause many fatalities and heavy economic losses,so it is vital to understand their mechanics so as to take appropriate measures to mitigate their risk.Phenomenally,the loose soil behaves like frictional... Landslides may cause many fatalities and heavy economic losses,so it is vital to understand their mechanics so as to take appropriate measures to mitigate their risk.Phenomenally,the loose soil behaves like frictional material in most circumstances,so Mohr-Coulomb type equations are often used to describe their movement.However,these models generally do not consider the influence of the shearrate on the Mohr-Coulomb friction angle,so the shear-rate dependence effect on the soil flow and landslide runout is not well understood.This paper reports on an application of the incompressible Smoothed Particle Hydrodynamics(SPH) method to the dynamics of dry granular assemblies.The traditional model with a constant friction angle is compared with the modified Mohr-Coulomb model with a variable friction angle related to the shear-rate.It is found that the shear-rate dependence effect is negligible for shallow granular flows along mild slopes.With steeper slopes of the ground and larger aspect ratios of the initial soil column,the rate-dependence effect becomes more important. 展开更多
关键词 LANDSLIDES Granular flows MohrCoulomb model Smoothed Particle Hydrodynamics
下载PDF
Scenarios of Local Tsunamis in the China Seas by Boussinesq Model 被引量:3
5
作者 赵曦 刘桦 王本龙 《China Ocean Engineering》 SCIE EI CSCD 2014年第3期303-316,共14页
The Okinawa Trench in the East China Sea and the Manila Trench in the South China Sea are considered to be the regions with high risk of potential tsunamis induced by submarine earthquakes. Tsunami waves will impact t... The Okinawa Trench in the East China Sea and the Manila Trench in the South China Sea are considered to be the regions with high risk of potential tsunamis induced by submarine earthquakes. Tsunami waves will impact the southeast coast of China if tsunamis occur in these areas. In this paper, the horizontal two-dimensional Boussinesq model is used to simulate tsunami generation, propagation, and runnp in a domain with complex geometrical boundaries. The temporary varying bottom boundary condition is adopted to describe the initial tsunami waves motivated by the submarine faults. The Indian Ocean tsunami is simulated by the numerical model as a validation case. The time series of water elevation and runup on the beach are compared with the measured data from field survey. The agreements indicate that the Boussinesq model can be used to simulate tsunamis and predict the waveform and runup. Then, the hypothetical tsunamis in the Okinawa Trench and the Manila Trench are simulated by the numerical model. The arrival time and maximum wave height near coastal cities are predicted by the model. It turns out that the leading depression N-wave occurs when the tsunami propagates in the continental shelf from the Okinawa Trench. The scenarios of the tsunami in the Manila Trench demonstrate significant effects on the coastal area around the South China Sea. 展开更多
关键词 TSUNAMI Boussinesq model Indian Ocean Okinawa Trench Manila Trench
下载PDF
Fluid-structure interaction simulation of three-dimensional flexible hydrofoil in water tunnel 被引量:6
6
作者 Shiliang HU Chuanjing LU Yousheng HE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第1期15-26,共12页
The closely coupled approach combined with the finite volume method (FVM) solver and the finite element method (FEM) solver is used to investigate the fluid-structure interaction (FSI) of a three-dimensional can... The closely coupled approach combined with the finite volume method (FVM) solver and the finite element method (FEM) solver is used to investigate the fluid-structure interaction (FSI) of a three-dimensional cantilevered hydrofoil in the water tunnel. The FVM solver and the coupled approach are verified and validated by compar- ing the numerical predictions with the experimental measurements, and good agreement is obtained concerning both the lift on the foil and the tip displacement. In the noncav- itating flow, the result indicates that the growth of the initial incidence angle and the Reynolds number improves the deformation of the foil, and the lift on the foil is increased by the twist deformation. The normalized twist angle and displacement along the span of the hydrofoil for different incidence angles and Reynolds numbers are almost uniform. For the cavitation flow, it is shown that the small amplitude vibration of the foil has limited influence on the developing process of the partial cavity, and the quasi two-dimensional cavity shedding does not change the deformation mode of the hydrofoil. However, the frequency spectrum of the lift on the foil contains the frequency which is associated with the first bend frequency of the hydrofoil. 展开更多
关键词 closely coupled approach fluid-structure interaction (FSI) hydrofoil cavitation
下载PDF
Experimental Measurements of Solitary Wave Attenuation Over Shallow and Intermediate Submerged Canopy 被引量:3
7
作者 王千 郭晓宇 +2 位作者 王本龙 房詠柳 刘桦 《China Ocean Engineering》 SCIE EI CSCD 2016年第3期375-392,共18页
Attenuations of solitary wave over a patch of submerged canopy are experimentally investigated. The submerged canopy is modeled by a group of circular cylinder array. The decay coefficients of different wave heights i... Attenuations of solitary wave over a patch of submerged canopy are experimentally investigated. The submerged canopy is modeled by a group of circular cylinder array. The decay coefficients of different wave heights in two water depths along the wave flume are measured for six canopy models, including two canopy heights and three styles of arrangements. The relationships among the decay coefficient, and the dimensionless wave height, submergence ratio, relative height and arrangement of the canopy are experimentally studied. 2D PIV technique is employed to measure the representative flow field inside the canopy. A four-deck flow structure is proposed for wave flow field over shallow submerged canopy. The characteristics of shear flow inside the aligned canopy region are discussed. 展开更多
关键词 Solitary waves submerged canopy rigid cylinders decay coefficient PIV
下载PDF
Numerical Investigation of Run-ups on Cylinder in Steep Regular Wave 被引量:2
8
作者 FAN Xiang ZHANG Jing-xin LIU Hua 《China Ocean Engineering》 SCIE EI CSCD 2019年第5期601-607,共7页
The run-up on offshore structures induced by the steep regular wave is a highly nonlinear flow with a free surface. This article focuses on the investigation of the steep regular wave run-up on a single vertical cylin... The run-up on offshore structures induced by the steep regular wave is a highly nonlinear flow with a free surface. This article focuses on the investigation of the steep regular wave run-up on a single vertical cylinder by solving the Navier-Stokes equations. A numerical wave tank is established based on the open-source package to simulate the wave scattering induced by a vertical cylinder. The VOF method is applied to capture the large deformation and breaking of the free surface. The numerical model is validated by experimental results. The relative wave run-ups on the front face and the back face along the centerline of a cylinder are analyzed. The changes of the relative run-ups with the wave steepness, the relative diameter and the relative depth are studied. It is found that the relative run-ups on the front face and the back face of the cylinder depend mainly on the wave steepness and the relative diameter, while the dependence on the relative depth is weak. The empirical formulae are proposed to calculate the relative run-ups in terms of the wave steepness of incident regular waves and the relative diameter of a cylinder. 展开更多
关键词 STEEP REGULAR wave vertical CYLINDER RUN-UP empirical FORMULA numerical experiments
下载PDF
Evolvement of tsunami waves on the continental shelves with gentle slope in the China Seas 被引量:2
9
作者 Xi Zhao Hua Liu Benlong Wang 《Theoretical & Applied Mechanics Letters》 CAS 2013年第3期35-39,共5页
Potential tsunami generated in the Okinawa Trench or the Manila Trench may attack the southeast coast of China. The continental shelves with extremely gentle slope in the China Seas affect the evolvement of tsunami wa... Potential tsunami generated in the Okinawa Trench or the Manila Trench may attack the southeast coast of China. The continental shelves with extremely gentle slope in the China Seas affect the evolvement of tsunami waves. In this paper, we carry out the simulation of tsunami propagation based on the fully nonlinear and highly dispersive Boussinesq model, which could describe the nonlinearity and dispersion of water waves quite well. So the undulation characters could be well presented. In terms of the real topographies of the East China Sea and the South China Sea, we take some typical profiles to simulate the hypothetical tsunamis generated in the Okinawa Trench and the Manila Trench. Different waveforms in the near shore regions are obtained. The N-shape tsunami waves will evolve into long wave trains, undular bores or solitons near the coastal area. The numerical results of the near shore waveform provide essential conditions for the further studies of tsunami runup and inundation. 展开更多
关键词 TSUNAMI gentle slope wave train undular bore SOLITON
下载PDF
3D numerical study of tumor blood perfusion and oxygen transport during vascular normalization 被引量:1
10
作者 Jie WU Yan CAI +5 位作者 Yi FU Zhujun TAN Ren SUN Shixiong XU Zurong DING Cheng DONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第2期153-162,共10页
The changes of blood perfusion and oxygen transport in tumors during tumor vascular normalization are studied with 3-dimensional mathematical modeling and numerical simulation. The models of tumor angiogenesis and vas... The changes of blood perfusion and oxygen transport in tumors during tumor vascular normalization are studied with 3-dimensional mathematical modeling and numerical simulation. The models of tumor angiogenesis and vascular-disrupting are used to simulate "un-normalized" and "normalized" vasculatures. A new model combining tumor hemodynamics and oxygen transport is developed. In this model, the intravasculartransvascular-interstitial flow with red blood cell(RBC) delivery is tightly coupled, and the oxygen resource is produced by heterogeneous distribution of hematocrit from the flow simulation. The results show that both tumor blood perfusion and hematocrit in the vessels increase, and the hypoxia microenvironment in the tumor center is greatly improved during vascular normalization. The total oxygen content inside the tumor tissue increases by about 67%, 51%, and 95% for the three approaches of vascular normalization,respectively. The elevation of oxygen concentration in tumors can improve its metabolic environment, and consequently reduce malignancy of tumor cells. It can also enhance radiation and chemotherapeutics to tumors. 展开更多
关键词 tumor hypoxia environment oxygen transport red blood cell(RBC) delivery vascular normalization numerical simulation
下载PDF
Effect of regularized delta function on accuracy of immersed boundary method
11
作者 宫兆新 鲁传敬 黄华雄 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第11期1453-1466,共14页
The immersed boundary method is an effective technique for modeling and simulating fluid-structure interactions especially in the area of biomechanics. The effect of the regularized delta function on the accuracy is a... The immersed boundary method is an effective technique for modeling and simulating fluid-structure interactions especially in the area of biomechanics. The effect of the regularized delta function on the accuracy is an important subject in the property study. A method of manufactured solutions is used in the research. The computational code is first verified to be mistake-free by using smooth manufactured solutions. Then, a jump in the manufactured solution for pressure is introduced to study the accuracy of the immersed boundary method. Four kinds of regularized delta functions are used to test the effect on the accuracy analysis. By analyzing the discretization errors, the accuracy of the immersed boundary method is proved to be first-order. The results show that the regularized delta function cannot improve the accuracy, but it can change the discretization errors in the entire computational domain. 展开更多
关键词 immersed boundary method method of manufactured solutions regularizeddelta function order of accuracy
下载PDF
Numerical Analysis on Motion of Multi-column Tension-Leg-Type Floating Wind Turbine Basement
12
作者 Fan Xiang Zhang Jingxin Liu Hua 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期73-79,共7页
The offshore wind energy presents a good solution for the green energy demand.The floating offshore wind turbine(FOWT)is one of the most potential choices of the basement construction for offshore wind turbines in dee... The offshore wind energy presents a good solution for the green energy demand.The floating offshore wind turbine(FOWT)is one of the most potential choices of the basement construction for offshore wind turbines in deep water.Hydrodynamic performance of multi-column tension-leg-type floating wind turbine is investigated numerically,particularly at its motion responses.Based on the Navier-Stokes equations and the volume of fluid method,a numerical wave tank(NWT)is established to simulate the floating structure system.The analytical relaxation method is adopted to generate regular waves.Dynamic mesh method is used to calculate the motion of the floating body.Hydrostatic decay of motion and hydrodynamic forces in the regular wave are provided.The computation results agree with the experimental data available.Numerical results show that the wave force on the lower pontoon of the system is the greatest while that on the center column is the smallest.Detailed information about the changes of the wave forces on different elements of the floating system is discussed. 展开更多
关键词 numerical wave tank(NWT) wave-floating body interaction fluid-solid coupling offshore wind turbine
下载PDF
A cellular scale numerical study of the effect of mechanical properties of erythrocytes on the near-wall motion of platelets
13
作者 Jing Xu Xiao-Long Wang +1 位作者 Yun-Qiao Liu Xiao-Bo Gong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第2期274-280,共7页
The effect of mechanical properties of erythrocytes on the near-wall motion of platelets was numerically studied with the immersed boundary method. Cells were modeled as viscous-fluid-filled capsules surrounded by hyp... The effect of mechanical properties of erythrocytes on the near-wall motion of platelets was numerically studied with the immersed boundary method. Cells were modeled as viscous-fluid-filled capsules surrounded by hyper-elastic membranes with negligible thickness. The numerical results show that with the increase of hematocrit, the near-wall approaching of platelets is enhanced, with which platelets exhibit larger deformation and orientation angle of its near-wall tank-treading motion, and the lateral force pushing platelets to the wall is increased with larger fluctuation amplitude. Meanwhile the near-wall approaching is reduced by increasing the stiffness of erythrocytes. 展开更多
关键词 Hemodynamics Fluid-membrane interaction Immersed boundary method Near-wall motion of platelet
下载PDF
The capillary pressure curves from upscaling interfacial and unsaturated flows in porous layers with vertical heterogeneity
14
作者 Zhong Zheng 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第4期287-290,共4页
We provide the capillary pressure curves p_(c)(s)as a function of the effective saturation s based on the theoretical framework of upscaling unsaturated flows in vertically heterogeneous porous layers proposed recentl... We provide the capillary pressure curves p_(c)(s)as a function of the effective saturation s based on the theoretical framework of upscaling unsaturated flows in vertically heterogeneous porous layers proposed recently(Z.Zheng,Journal of Fluid Mechanics,950,A17,2022).Based on the assumption of vertical gravitational-capillary equilibrium,the saturation distribution and profile shape of the invading fluid can be obtained by solving a nonlinear integral-differential equation.The capillary pressure curves p_(c)(s)can then be constructed by systematically varying the injection rate.Together with the relative permeability curves k_(rn)(s)that are already obtained.One can now provide quick estimates on the overall behaviours of interfacial and unsaturated flows in vertically-heterogeneous porous layers. 展开更多
关键词 Flow upscaling Interfacial and unsaturated flow Wetting and capillary effects Porous layer HETEROGENEITY
下载PDF
Review of dynamics and active control of large-scale space membrane antenna
15
作者 Xiang Liu Guoping Cai 《Astrodynamics》 EI CSCD 2024年第1期1-26,共26页
Large-scale space membrane antennas have significant potential in satellite communication,space-based early warning,and Earth observation.Because of their large size and high flexibility,the dynamic analysis and contr... Large-scale space membrane antennas have significant potential in satellite communication,space-based early warning,and Earth observation.Because of their large size and high flexibility,the dynamic analysis and control of membrane antenna are challenging.To maintain the working performance of the antenna,the pointing and surface accuracies must be strictly maintained.Therefore,the accurate dynamic modeling and effective active control of large-scale space membrane antennas have great theoretical significance and practical value,and have attracted considerable interest in recent years.This paper reviews the dynamics and active control of large-scale space membrane antennas.First,the development and status of large-scale space membrane antennas are summarized.Subsequently,the key problems in the dynamics and active control of large membrane antennas,including the dynamics of wrinkled membranes,large-amplitude nonlinear vibration,nonlinear model reduction,rigid-flexible-thermal coupling dynamic modeling,on-orbit modal parameter identification,active vibration control,and wave-based vibration control,are discussed in detail.Finally,the research outlook and future trends are presented. 展开更多
关键词 LARGE-SCALE space membrane ANTENNA dynamicmodeling active control
原文传递
Bionic soft robotic gripper with feedback control for adaptive grasping and capturing applications
16
作者 Tingke WU Zhuyong LIU +3 位作者 Ziqi MA Boyang WANG Daolin MA Hexi YU 《Frontiers of Mechanical Engineering》 SCIE CSCD 2024年第1期129-148,共20页
Robots are playing an increasingly important role in engineering applications.Soft robots have promising applications in several fields due to their inherent advantages of compliance,low density,and soft interactions.... Robots are playing an increasingly important role in engineering applications.Soft robots have promising applications in several fields due to their inherent advantages of compliance,low density,and soft interactions.A soft gripper based on bio-inspiration is proposed in this study.We analyze the cushioning and energy absorption mechanism of human fingertips in detail and provide insights for designing a soft gripper with a variable stiffness structure.We investigate the grasping modes through a large deformation modeling approach,which is verified through experiments.The characteristics of the three grasping modes are quantified through testing and can provide guidance for robotics manipulation.First,the adaptability of the soft gripper is verified by grasping multi-scale and extremely soft objects.Second,a cushioning model of the soft gripper is proposed,and the effectiveness of cushioning is verified by grasping extremely sharp objects and living organisms.Notably,we validate the advantages of the variable stiffness of the soft gripper,and the results show that the soft robot can robustly complete assemblies with a gap of only 0.1 mm.Owing to the unstructured nature of the engineering environment,the soft gripper can be applied in complex environments based on the abovementioned experimental analysis.Finally,we design the soft robotics system with feedback capture based on the inspiration of human catching behavior.The feasibility of engineering applications is initially verified through fast capture experiments on moving objects.The design concept of this robot can provide new insights for bionic machinery. 展开更多
关键词 soft bionic gripper variable stiffness structure large deformation modeling feedback control soft robotic system
原文传递
The three-dimensional hydrodynamics of tadpole model’s solitary swimming and parallel schooling 被引量:2
17
作者 Ting-ting Li Wen-rong Hu Xu-yang Chen 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第3期548-560,共13页
Tadpole swimming, including a solitary tadpole swimming and schooling side-by-side in an in-phase mode, is investigated numerically in the present paper. The three-dimensional Navier-Stokes equations for the unsteady ... Tadpole swimming, including a solitary tadpole swimming and schooling side-by-side in an in-phase mode, is investigated numerically in the present paper. The three-dimensional Navier-Stokes equations for the unsteady incompressible viscous flow are solved. A dynamic mesh fitting the tadpole’s deforming body surface is adopted. The results showed that for a solitary tadpole swimming, two vortex rings are shed in each undulating period. However, as the resultant force on the tadpole is drag, the vortex rings are obviously asymmetric, shaped like “C”. When the resultant force in the swimming direction approaches zero, the axes of the vortex rings are nearly vertical to the swimming direction. Distorted vortex rings are found when the resultant force on the tadpole is thrust. When the tadpole model obtains the optimum propulsive efficiency, its swimming speed and undulating frequency are close to the values observed in nature. For tadpoles swimming side-by-side in an in-phase mode, the vortex structures in the wake may merge, split and recombine. Compared with a solitary tadpole swimming, only a small hydrodynamic advantage occur with schooling in parallel, which may be one of the reasons why tadpoles rarely, if ever swim, side by side for any amount of time or distance in nature. The effect of the undulating frequency on the tadpoles schooling is similar to that on a solitary tadpole. In addition, with an increase in the Reynolds number, the thrust force and the propulsive efficiency both increase, while the power consumption decreases. We also found that the tadpole benefits from the vortex pair shedding from its blunt snout, which can strengthen the vortex intensity in the wake and improve the pressure distribution. 展开更多
关键词 3-D TADPOLE parallel schooling numerical simulation
原文传递
Scour depth beneath a pipeline undergoing forced vibration 被引量:1
18
作者 Y.Luan D.Liang R.Rana 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2015年第2期97-100,共4页
This paper studies the coupling effect of the pipeline vibration on the seabed scour. A vertical two- dimensional model is applied to numerically investigate the local scour below a vibrating pipeline with different a... This paper studies the coupling effect of the pipeline vibration on the seabed scour. A vertical two- dimensional model is applied to numerically investigate the local scour below a vibrating pipeline with different amplitudes and periods. Using the scour underneath a fixed pipeline as a reference, this paper focuses on the impact of the pipeline vibration on the equilibrium scour depth. Generic relationships are established between the non-dimensional scour depth and the non-dimensional vibrating parameters, i.e., amplitude and frequency. The normalization process takes into account the influences of such parameters as the incoming flow velocity, pipe diameter, and Shields parameter. An empirical formula is proposed to quantify these relationships. 展开更多
关键词 Offshore pipelines Scour Numerical models Vibration Sediment transport
下载PDF
Kinematic dynamo by large scale tsunami waves in open ocean
19
作者 Benlong Wang Hua Liu 《Theoretical & Applied Mechanics Letters》 CAS 2013年第3期27-31,共5页
Kinematic dynamo problem is studied with tsunami motion in open oceans. Using long wave approximation, a series solution of the dynamo problem is established with fast convergent rate based on a small parameter relati... Kinematic dynamo problem is studied with tsunami motion in open oceans. Using long wave approximation, a series solution of the dynamo problem is established with fast convergent rate based on a small parameter relating water wave dispersive effects. Taking solitary wave and single wave as typical tsunami wave models, the magnitude of tsunami induced magnetic field is estimated at the order of 10 nano Tesla (nT) just over sea level and 1 nT at altitudes of several hundreds kilometers, respectively, depending on the wave parameters as well as earth magnetic field. The space and time behavior of the magnetic field predicted by present model shows fairly similarity with the field data at Easter Island during 2010 Chile tsunami. 展开更多
关键词 kinematic dynamo problem TSUNAMI solitary wave single wave N-wave
下载PDF
A random walk simulation of scalar mixing in flows through submerged vegetations 被引量:12
20
作者 梁东方 WU Xuefei 《Journal of Hydrodynamics》 SCIE EI CSCD 2014年第3期343-350,共8页
The scalar transport phenomena in vertical two-dimensional flows are studied using the random walk method. The established Lagrangian model is first applied to study the idealized longitudinal dispersion in open chann... The scalar transport phenomena in vertical two-dimensional flows are studied using the random walk method. The established Lagrangian model is first applied to study the idealized longitudinal dispersion in open channels, before being used to investigate the scalar mixing characteristics of the flows through submerged vegetations. The longitudinal dispersion coefficients of the fully-developed boundary layer flows, with and without vegetations, are calculated based on the positions of the particles. A convenient way of incorporating the effects of vegetations is proposed, where all the flow parameters are regarded to be continually distributed over the depth. The simulation results show high accuracy of the developed random walk method, and indicate that the new method of accounting for the vegetation effects is appropriate for all the test cases considered. The predicted longitudinal dispersion coefficients agree well with the measurements. The merit of the new method is highlighted by its simplicity and efficiency in comparison with the conventional method that assumes the discontinuous distribution of the flow parameters over the depth. 展开更多
关键词 random walk longitudinal dispersion submerged vegetations scalar mixing
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部