期刊文献+
共找到6,674篇文章
< 1 2 250 >
每页显示 20 50 100
Novel interface engineering of LDH-based materials on Mg alloy for efficient photocatalytic systems considering the geometrical linearity of condensed phosphates 被引量:3
1
作者 Mosab Kaseem Ananda Repycha Safira Arash Fattah-alhosseini 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期267-280,共14页
This study presents a facile and rapid method for synthesizing novel Layered Double Hydroxide(LDH)nanoflakes,exploring their application as a photocatalyst,and investigating the influence of condensed phosphates'g... This study presents a facile and rapid method for synthesizing novel Layered Double Hydroxide(LDH)nanoflakes,exploring their application as a photocatalyst,and investigating the influence of condensed phosphates'geometric linearity on their photocatalytic properties.Herein,the Mg O film,obtained by plasma electrolysis of AZ31 Mg alloys,was modified by growing an LDH film,which was further functionalized using cyclic sodium hexametaphosphate(CP)and linear sodium tripolyphosphate(LP).CP acted as an enhancer for flake spacing within the LDH structure,while LP changed flake dispersion and orientation.Consequently,CP@LDH demonstrated exceptional efficiency in heterogeneous photocatalysis,effectively degrading organic dyes like Methylene blue(MB),Congo red(CR),and Methyl orange(MO).The unique cyclic structure of CP likely enhances surface reactions and improves the catalyst's interaction with dye molecules.Furthermore,the condensed phosphate structure contributes to a higher surface area and reactivity in CP@LDH,leading to its superior photocatalytic performance compared to LP@LDH.Specifically,LP@LDH demonstrated notable degradation efficiencies of 93.02%,92.89%,and 88.81%for MB,MO,and CR respectively,over a 40 min duration.The highest degradation efficiencies were observed in the case of the CP@LDH sample,reporting 99.99%for MB,98.88%for CR,and 99.70%for MO.This underscores the potential of CP@LDH as a highly effective photocatalyst for organic dye degradation,offering promising prospects for environmental remediation and water detoxification applications. 展开更多
关键词 Plasma electrolysis Layered Double Hydroxide Condensed phosphates Adsorption capacity Photocatalytic efficiency
下载PDF
Utilizing a defective MgO layer for engineering multifunctional Co-MOF hybrid materials with tailored leaf-like and polyhedral structures for optimal electrochemical and photocatalytic activities
2
作者 Mohammad Aadil Muhammad Ali Khan +1 位作者 Safira Ananda Repycha Mosab Kaseem 《Nano Materials Science》 EI CAS CSCD 2024年第5期548-564,共17页
The hybridization of metal-organic framework(MOF)with inorganic layers would lead to the discovery of novel hybrid materials that can provide a compelling strategy for enhancing its photocatalytic and electrochemical ... The hybridization of metal-organic framework(MOF)with inorganic layers would lead to the discovery of novel hybrid materials that can provide a compelling strategy for enhancing its photocatalytic and electrochemical response.In the present study,a highly efficient multifunctional hybrid material was developed by exploiting the defective layer formed on AZ31 Mg alloy through plasma electrolytic oxidation(PEO)as a nucleation and growth site for Co-MOF.The concentrations of the organic linker 2-Methylimidazole(2,MIm)and cobalt nitrate as a source of Co^(2+) ions were varied to control the growth of the obtained Co-MOF.Lower concentrations of the 2,MIm ligand favored the formation of leaf-like MOF structures through an anisotropic,two-dimensional growth,while higher concentrations led to rapid,isotropic nucleation and the creation of polyhedral Co-MOF structures.The sample characterized by polyhedral Co-MOF structures exhibited superior electrochemical stability,with the lowest corrosion current density(3.11×10^(-9) A/cm^(2))and the highest top layer resistance(2.34×10^(6)Ωcm^(2)),and demonstrated outstanding photocatalytic efficiency,achieving a remarkable 99.98%degradation of methylene blue,an organic pollutant,in model wastewater.To assess the active adsorption sites of the Co-MOF,density functional theory(DFT)was utilized.This study explores the changes in morphologies of the coatings of Co-MOF with the change of solution concentration to form coatings with enhanced properties on the metallic substrate,which could establish the groundwork for the development of next-generation multifunctional frameworks with diverse applications. 展开更多
关键词 Multifunctional layer MOF Polyhedral structures Corrosion Photocatalytic activity
下载PDF
Editorial for Special Issue on Materials Genome Engineering 被引量:9
3
作者 Haizhou Wang Jianxin Xie 《Engineering》 SCIE EI 2020年第6期585-586,共2页
With the rapid advancement of computing and information technology at the turn of the 21st century,the power of data collection and processing has multiplied tremendously.Based on this a game-changing advancement,scie... With the rapid advancement of computing and information technology at the turn of the 21st century,the power of data collection and processing has multiplied tremendously.Based on this a game-changing advancement,science is at the advent of the “fourth paradigm”of massive data plus artificial intelligence,in which the efficiency of scientific research is continuously improved,research time is shortened,and research cost is reduced[1]. 展开更多
关键词 artificial MASSIVE shortened
下载PDF
Plasma-assisted aerogel interface engineering enables uniform Zn^(2+)flux and fast desolvation kinetics toward zinc metal batteries 被引量:1
4
作者 Zijian Xu Zhenhai Shi +7 位作者 Zhan Chang Fan Feng Zhuanyi Liu Dongkun Chu Jianguo Ren Zi-Feng Ma Suli Chen Tianxi Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期29-38,I0002,共11页
The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)... The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)interface engineering was proposed as efficient ion transport modulator that can simultaneously regulate uniform Zn^(2+)flux and desolvation behavior during battery operation.The PAG with ordered mesopores acted as an ion sieve to homogenize Zn deposition and accelerate Zn^(2+)flux,which is favorable for corrosion resistance and dendrite suppression.Importantly,the plasma-assisted aerogel with abundant hydrophilic groups can facilitate the desolvation kinetics of Zn^(2+)due to the multiple hydrogen-bonding interaction with the activated water molecules,thus accelerating the Zn^(2+)migration kinetics.Consequently,the Zn/Zn cell assembled with PAG-modified separator demonstrates stable plating and stripping behavior(over 1400 h at 1 mA cm^(-2))and high Coulombic efficiency(99.8%at1 mA cm^(-2)after 1100 cycles),and the Zn‖MnO_(2)full cell shows excellent long-term cycling stability and maintains a high capacity of 154.9 mA h g^(-1)after 1000 cycles at 1 A g^(-1).This study provides a feasible approach for the large-scale fabrication of aerogel functionalized separators to realize ultra-stable Zn metal batteries. 展开更多
关键词 Zn metal batteries Aerogel interface Plasma Zn^(2+)migration kinetics Dendrite growth
下载PDF
The Study of the Antimicrobial Properties of Selected Engineering Materials’ Surfaces
5
作者 Olawale Samuel Fatoba David Ehigie Esezobor +3 位作者 Olaitan Lukman Akanji Abiodun Joseph Fatoba Damilola Macgregor John Etubor 《Journal of Minerals and Materials Characterization and Engineering》 2014年第2期78-87,共10页
This paper studies the antimicrobial activity of selected engineering materials surfaces at room and chill temperatures. The antimicrobial effects of selected materials surfaces were evaluated by dropping the test pie... This paper studies the antimicrobial activity of selected engineering materials surfaces at room and chill temperatures. The antimicrobial effects of selected materials surfaces were evaluated by dropping the test pieces into prepared cultures of Bacillus spp, Escherichia coli, and Staphylococcus aereus isolated from fruits, animal feaces and natural environment respectively. Bacteria count obtained after 0, 30, 60, 90, 120, 180, 240 and 300 minutes at room temperature and chill condition was taken and compared with their initial count. The amount of live bacteria drops by several orders of magnitude, to zero, on metallic copper and brass within 30 to 300 minutes in both room and chill conditions. In contrast, no reduction is seen in the number of colonies of live bacteria on plastics, ceramic and stainless steel in both room and chill conditions. These results suggest that the selection of metallic copper and brass for touch surfaces in hospitals, surfaces exposed to fruit processing and household utensils can materially assist in reducing bacterial contamination, which should lead to a reduction in the transmission of infectious organisms. 展开更多
关键词 ANTIMICROBIAL MATERIAL SURFACES TEMPERATURE BACTERIA Environment
下载PDF
Dual-Defect Engineering Strategy Enables High-Durability Rechargeable Magnesium-Metal Batteries 被引量:1
6
作者 Fuyu Chen Bai‑Qing Zhao +8 位作者 Kaifeng Huang Xiu‑Fen Ma Hong‑Yi Li Xie Zhang Jiang Diao Jili Yue Guangsheng Huang Jingfeng Wang Fusheng Pan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期449-461,共13页
Rechargeable magnesium-metal batteries(RMMBs)are promising next-generation secondary batteries;however,their development is inhibited by the low capacity and short cycle lifespan of cathodes.Although various strategie... Rechargeable magnesium-metal batteries(RMMBs)are promising next-generation secondary batteries;however,their development is inhibited by the low capacity and short cycle lifespan of cathodes.Although various strategies have been devised to enhance the Mg^(2+)migration kinetics and structural stability of cathodes,they fail to improve electronic conductivity,rendering the cathodes incompatible with magnesium-metal anodes.Herein,we propose a dual-defect engineering strategy,namely,the incorporation of Mg^(2+)pre-intercalation defect(P-Mgd)and oxygen defect(Od),to simultaneously improve the Mg^(2+)migration kinetics,structural stability,and electronic conductivity of the cathodes of RMMBs.Using lamellar V_(2)O_(5)·nH_(2)O as a demo cathode material,we prepare a cathode comprising Mg_(0.07)V_(2)O_(5)·1.4H_(2)O nanobelts composited with reduced graphene oxide(MVOH/rGO)with P-Mgd and Od.The Od enlarges interlayer spacing,accelerates Mg^(2+)migration kinetics,and prevents structural collapse,while the P-Mgd stabilizes the lamellar structure and increases electronic conductivity.Consequently,the MVOH/rGO cathode exhibits a high capacity of 197 mAh g^(−1),and the developed Mg foil//MVOH/rGO full cell demonstrates an incredible lifespan of 850 cycles at 0.1 A g^(−1),capable of powering a light-emitting diode.The proposed dual-defect engineering strategy provides new insights into developing high-durability,high-capacity cathodes,advancing the practical application of RMMBs,and other new secondary batteries. 展开更多
关键词 Rechargeable magnesium-metal batteries Dual-defect engineering Vanadium-based cathode High durability Lamellar structure
下载PDF
Defect engineering in transition-metal(Fe,Co,andNi)-based electrocatalysts for water splitting 被引量:1
7
作者 Kaili Wu Chaojie Lyu +5 位作者 Jiarun Cheng Weifan Ding Jiwen Wu Qian Wang Woon-Ming Lau Jinlong Zheng 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期165-199,共35页
Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.De... Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.Designing practical electrocatalysts by introducing defect engineering,such as hybrid structure,surface vacancies,functional modification,and structural distortions,is proven to be a dependable solution for fabricating electrocatalysts with high catalytic activities,robust stability,and good practicability.This review is an overview of some relevant reports about the effects of defect engineering on the electrocatalytic water splitting performance of electrocatalysts.In detail,the types of defects,the preparation and characterization methods,and catalytic performances of electrocatalysts are presented,emphasizing the effects of the introduced defects on the electronic structures of electrocatalysts and the optimization of the intermediates'adsorption energy throughout the review.Finally,the existing challenges and personal perspectives of possible strategies for enhancing the catalytic performances of electrocatalysts are proposed.An in-depth understanding of the effects of defect engineering on the catalytic performance of electrocatalysts will light the way to design high-efficiency electrocatalysts for water splitting and other possible applications. 展开更多
关键词 defect engineering electrocatalytic water splitting element doping interfacial engineering VACANCY
下载PDF
MXenes: Versatile 2D materials with tailored surface chemistry and diverse applications
8
作者 Sunil Kumar Nitu Kumari Yongho Seo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期253-293,I0008,共42页
MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical str... MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical strength,etc.This review begins by presenting MXenes,providing insights into their structural characteristics,synthesis methods,and surface functional groups.The review covers a thorough analysis of MXene surface properties,including surface chemistry and termination group impacts.The properties of MXenes are influenced by their synthesis,which can be fluorine-based or fluorinedependent.Fluorine-based synthesis techniques involve etching with fluorine-based reagents,mainly including HF or LiF/HCl,while fluorine-free methods include electrochemical etching,chemical vapor deposition(CVD),alkaline etching,Lewis acid-based etching,etc.These techniques result in the emergence of functional groups such as-F,-O,-OH,-Cl,etc.on the MXenes surface,depending on the synthesis method used.Properties of MXenes,such as electrical conductivity,electronic properties,catalytic activity,magnetic properties,mechanical strength,and chemical and thermal stability,are examined,and the role of functional groups in determining these properties is explored.The review delves into the diverse applications of MXenes,encompassing supercapacitors,battery materials,hydrogen storage,fuel cells,electromagnetic interference(EMI) shielding,pollutant removal,water purification,flexible electronics,sensors,additive manufacturing,catalysis,biomedical and healthcare fields,etc.Finally,this article outlines the challenges and opportunities in the current and future development of MXenes research,addressing various aspects such as synthesis scalability,etching challenges,and multifunctionality,and exploring novel applications.The review concludes with future prospects and conclusions envisioning the impact of MXenes on future technologies and innovation. 展开更多
关键词 MXenes 2D materials Surface chemistry MXenes structure SYNTHESIS APPLICATIONS
下载PDF
One-pot Synthesis of Hierarchical Flower-like WS_(2) Microspheres as Anode Materials for Lithium-ion Batteries
9
作者 张向华 TAN Hen +1 位作者 WANG Ze XUE Maoquan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期1-6,共6页
3D hierarchical flowerlike WS_(2) microspheres were synthesized through a facile one-pot hydrothermal route.The as-synthesized samples were characterized by powder X-ray powder diffraction (XRD),energy-dispersive spec... 3D hierarchical flowerlike WS_(2) microspheres were synthesized through a facile one-pot hydrothermal route.The as-synthesized samples were characterized by powder X-ray powder diffraction (XRD),energy-dispersive spectroscopy (EDS),scanning electron microscopy (SEM) and Raman.SEM images of the samples reveal that the hierarchical flowerlike WS_(2) microspheres with diameters of about 3-5μm are composed of a number of curled nanosheets.Electrochemical tests such as charge/discharge,cyclic voltammetry,cycle life and rate performance were carried out on the WS_(2) sample.As an anode material for lithium-ion batteries,hierarchical flowerlike WS_(2) microspheres show excellent electrochemical performance.At a current density of100 mA·g^(-1),a high specific capacity of 647.8 mA·h·g^(-1) was achieved after 120 discharge/charge cycles.The excellent electrochemical performance of WS_(2) as an anode material for lithium-ion batteries can be attributed to its special 3D hierarchical structure. 展开更多
关键词 WS_(2) MICROSPHERES lithium-ion batteries electrochemical performance
下载PDF
3D Printing of Periodic Porous Metamaterials for Tunable Electromagnetic Shielding Across Broad Frequencies
10
作者 Qinniu Lv Zilin Peng +5 位作者 Haoran Pei Xinxing Zhang Yinghong Chen Huarong Zhang Xu Zhu Shulong Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期533-552,共20页
The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation.In addition,realizing the tunabl... The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation.In addition,realizing the tunable shielding of porous shields over a wide range of wavelengths is even more challenging.In this study,the well-prepared thermoplastic polyurethane/carbon nanotubes composites were used to fabricate the novel periodic porous flexible metamaterials using fused deposition modeling 3D printing.Particularly,the investigation focuses on optimization of pore geometry,size,dislocation configuration and material thickness,thus establishing a clear correlation between structural parameters and shielding property.Both experimental and simulation results have validated the superior shielding performance of hexagon derived honeycomb structure over other designs,and proposed the failure shielding size(D_(f)≈λ/8-λ/5)and critical inclined angle(θf≈43°-48°),which could be used as new benchmarks for tunable electromagnetic shielding.In addition,the proper regulation of the material thickness could remarkably enhance the maximum shielding capability(85-95 dB)and absorption coefficient A(over 0.83).The final innovative design of the porous shielding box also exhibits good shielding effectiveness across a broad frequency range(over 2.4 GHz),opening up novel pathways for individualized and diversified shielding solutions. 展开更多
关键词 Polymeric component 3D printing Tunable electromagnetic shielding Periodic porous metamaterials Honeycomb pore structure
下载PDF
In Situ Atomic Reconstruction Engineering Modulating Graphene-Like MXene-Based Multifunctional Electromagnetic Devices Covering Multi-Spectrum
11
作者 Ting‑Ting Liu Qi Zheng +4 位作者 Wen‑Qiang Cao Yu‑Ze Wang Min Zhang Quan‑Liang Zhao Mao‑Sheng Cao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期247-261,共15页
With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispec... With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispectral response of materials is a challenging and meaningful scientific question.In this study,MXene/TiO_(2)hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering.More importantly,MXene/TiO_(2)hybrids exhibit adjustable spectral responses in the GHz,infrared and visible spectrums,and several EM devices are constructed based on this.An antenna array provides excellent EM energy harvesting in multiple microwave bands,with|S11|up to−63.2 dB,and can be tuned by the degree of bending.An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband.An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6-14μm.This work can provide new inspiration for the design and development of multifunctional,multi-spectrum EM devices. 展开更多
关键词 Graphene-like MXene hybrids Multi-spectral response Multi-function antenna Ultra-wideband bandpass filter Electromagnetic device
下载PDF
d-d Orbital coupling induced by crystal-phase engineering assists acetonitrile electroreduction to ethylamine
12
作者 Honggang Huang Yao Chen +7 位作者 Hui Fu Cun Chen Hanjun Li Zhe Zhang Feili Lai Shuxing Bai Nan Zhang Tianxi Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期216-225,I0006,共11页
The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in ele... The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in electrochemical acetonitrile reduction reaction(ARR)to date.Herein,we successfully realize the structural transformation of Pd Cu metallic aerogels(MAs)from face-centered cubic(FCC)to body-centered cubic(BCC)through annealing treatment.Specifically,the BCC Pd Cu MAs exhibit excellent ARR performance with high ethylamine selectivity of 90.91%,Faradaic efficiency of 88.60%,yield rate of 316.0 mmol h^(-1)g^(-1)_(Pd+Cu)and long-term stability for consecutive electrolysis within 20 h at-0.55 V vs.reversible hydrogen electrode,outperforming than those of FCC Pd Cu MAs.Under the membrane electrode assembly system,BCC Pd Cu MAs also demonstrate excellent ethylamine yield rate of 389.5 mmol h^(-1)g^(-1)_(Pd+Cu).Density functional theory calculation reveals that the d-d orbital coupling in BCC Pd Cu MAs results in an evident correlation effect for the interaction of Pd and Cu sites,which boosts up the Cu sites electronic activities to enhance ARR performance.Our work opens a new route to develop efficient ARR electrocatalysts from the perspective of crystalline structure transformation. 展开更多
关键词 d-d Orbital coupling Crystal-phase engineering Metallic aerogels Acetonitrile electroreduction reaction ETHYLAMINE
下载PDF
Electron-deficient ZnO induced by heterointerface engineering as the dominant active component to boost CO_(2)-to-formate conversion
13
作者 Qing Qin Zijian Li +8 位作者 Yingzheng Zhang Haeseong Jang Li Zhai Liqiang Hou Xiaoqian Wei Zhe Wang Min Gyu Kim Shangguo Liu Xien Liu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期127-136,共10页
Electrocatalytic CO_(2)-to-formate conversion is considered an economically viable process.In general,Zn-based nanomaterials are well-known to be highly efficient electrocatalysts for the conversion of CO_(2) to CO,bu... Electrocatalytic CO_(2)-to-formate conversion is considered an economically viable process.In general,Zn-based nanomaterials are well-known to be highly efficient electrocatalysts for the conversion of CO_(2) to CO,but seldom do they exhibit excellent selectivity toward formate.In this article,we demonstrate that a heterointerface catalyst ZnO/ZnSnO3 with nanosheet morphology shows enhanced selectivity with a maximum Faradaic efficiency(FE)of 86%at−0.9 V versus reversible hydrogen electrode and larger current density for the conversion of CO_(2) to formate than pristine ZnO and ZnSnO3.In particular,the FEs of the C1 products(CO+HCOO−)exceed 98%over the potential window.The experimental measurements combined with theoretical calculations revealed that the ZnO in ZnO/ZnSnO3 heterojunction delivers the valence electron depletion and accordingly optimizes Zn d-band center,which results in moderate Zn-O hybridization of HCOO*and weakened Zn-C hybridization of competing COOH*,thus greatly boosting the HCOOH generation.Our study highlights the importance of charge redistribution in catalysts on the selectivity of electrochemical CO_(2) reduction. 展开更多
关键词 charge redistribution CO_(2)reduction reaction ELECTROCATALYST heterointerfaces SELECTIVITY
下载PDF
Highly Efficient Broadband Achromatic Microlens Design Based on Low-Dispersion Materials
14
作者 Xueqian Wang Chuanbao Liu +7 位作者 Feilou Wang Weijia Luo Chengdong Tao Yuxuan Hou Lijie Qiao Ji Zhou Jingbo Sun Yang Bai 《Engineering》 SCIE EI CAS CSCD 2024年第7期194-200,共7页
Metalenses with achromatic performance offer a new opportunity for high-quality imaging with an ultracompact configuration;however,they suffer from complex fabrication processes and low focusing efficiency.In this stu... Metalenses with achromatic performance offer a new opportunity for high-quality imaging with an ultracompact configuration;however,they suffer from complex fabrication processes and low focusing efficiency.In this study,we propose an efficient design method for achromatic microlenses on a wavelength scale using materials with low dispersion,an adequately designed convex surface,and a thickness profile distribution.By taking into account the absolute chromatic aberration,relative focal length shift(FLS),and numerical aperture(NA),microlens with a certain focal length can be realized through our realized map of geometric features.Accordingly,the designed achromatic microlenses with low-dispersion fused silica were fabricated using a focused ion beam,and precise surface profiles were obtained.The fabricated microlenses exhibited a high average focusing efficiency of 65%at visible wavelengths of 410-680 nm and excellent achromatic capability via white light imaging.Moreover,the design exhibited the advantages of being polarization-insensitive and near-diffraction-limited.These results demonstrate the effectiveness of our proposed achromatic microlens design approach,which expands the prospects of miniaturized optics such as virtual and augmented reality,ultracompact microscopes,and biological endoscopy. 展开更多
关键词 Broadband achromatic focusing Metamaterials Low dispersion materials Visible wavelength MICROLENSES
下载PDF
Grain boundary engineering for enhancing intergranular damage resistance of ferritic/martensitic steel P92
15
作者 Lei Peng Shang-Ming Chen +6 位作者 Jing-Yi Shi Yong-Jie Sun Yi-Fei Liu Yin-Zhong Shen Hong-Ya He Hui-Juan Wang Jie Tian 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期186-199,共14页
Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this s... Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance. 展开更多
关键词 Grain boundary engineering Ferritic/martensitic steel Prior austenite grain boundary character distribution Grain boundary connectivity Intergranular damage resistance
下载PDF
Interface Engineering on Constructing Physical and Chemical Stable Solid-State Electrolyte Toward Practical Lithium Batteries
16
作者 Honggang He Litong Wang +9 位作者 Malek Al-Abbasi Chunyan Cao Heng Li Zhu Xu Shi Chen Wei Zhang Ruiqing Li Yuekun Lai Yuxin Tang Mingzheng Ge 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期28-47,共20页
Solid-state lithium batteries(SSLBs)with high safety have emerged to meet the increasing energy density demands of electric vehicles,hybrid electric vehicles,and portable electronic devices.However,the dendrite format... Solid-state lithium batteries(SSLBs)with high safety have emerged to meet the increasing energy density demands of electric vehicles,hybrid electric vehicles,and portable electronic devices.However,the dendrite formation,high interfacial resistance,and deleterious interfacial reactions caused by solid-solid contact between electrode and electrolyte have hindered the commercialization of SSLBs.Thus,in this review,the state-of-the-art developments in the rational design of solid-state electrolyte and their progression toward practical applications are reviewed.First,the origin of interface instability and the sluggish charge carrier transportation in solid-solid interface are presented.Second,various strategies toward stabilizing interfacial stability(reducing interfacial resistance,suppressing lithium dendrites,and side reactions)are summarized from the physical and chemical perspective,including building protective layer,constructing 3D and gradient structures,etc.Finally,the remaining challenges and future development trends of solidstate electrolyte are prospected.This review provides a deep insight into solving the interfacial instability issues and promising solutions to enable practical high-energy-density lithium metal batteries. 展开更多
关键词 dendrite formation high energy density interface instability interfacial resistance solid-state electrolyte
下载PDF
Flame-retardant ammonium polyphosphate/MXene decorated carbon foam materials as polysulfide traps for fire-safe and stable lithium-sulfur batteries
17
作者 Yang Li Yong-Cheng Zhu +5 位作者 Sowjanya Vallem Man Li Seunghyun Song Tao Chen Long-Cheng Tang Joonho Bae 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期313-323,I0008,共12页
Lithium-sulfur(Li-S)batteries are one of the most promising modern-day energy supply systems because of their high theoretical energy density and low cost.However,the development of high-energy density Li-S batteries ... Lithium-sulfur(Li-S)batteries are one of the most promising modern-day energy supply systems because of their high theoretical energy density and low cost.However,the development of high-energy density Li-S batteries with high loading of flammable sulfur faces the challenges of electrochemical performance degradation owing to the shuttle effect and safety issues related to fire or explosion accidents.In this work,we report a three-dimensional(3D)conductive nitrogen-doped carbon foam supported electrostatic self-assembled MXene-ammonium polyphosphate(NCF-MXene-APP)layer as a heat-resistant,thermally-insulated,flame-retardant,and freestanding host for Li-S batteries with a facile and costeffective synthesis method.Consequently,through the use of NCF-MXene-APP hosts that strongly anchor polysulfides,the Li-S batteries demonstrate outstanding electrochemical properties,including a high initial discharge capacity of 1191.6 mA h g^(-1),excellent rate capacity of 755.0 mA h g^(-1)at 1 C,and long-term cycling stability with an extremely low-capacity decay rate of 0.12%per cycle at 2 C.More importantly,these batteries can continue to operate reliably under high temperature or flame attack conditions.Thus,this study provides valuable insights into the design of safe high-performance Li-S batteries. 展开更多
关键词 FLAME-RETARDANT MXene Ammonium polyphosphate Safety Lithium-sulfur battery
下载PDF
Chlorine-Substituent Regulation in Dopant-Free Small-Molecule Hole-Transport Materials Improves the Effi ciency and Stability of Inverted Perovskite Solar Cells
18
作者 Xinyi Liu Xiaoye Zhang +7 位作者 Zhanfeng Li Jinbo Chen Yanting Tian Baoyou Liu Changfeng Si Gang Yue Hua Dong Zhaoxin Wu 《Transactions of Tianjin University》 EI CAS 2024年第4期314-323,共10页
Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,spec... Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,specifi cally fl uorenone-triphenylamine(FO-TPA)-x-Cl[x=para,meta,and ortho(p,m,and o)],with diff erent chlorine-substituent positions,as dopant-free HTMs for PSCs.These chlorinated molecules feature a symmetrical donor-acceptor-donor structure and ideal intramolecular charge transfer properties,allowing for self-doping and the establishment of built-in potentials for improving charge extraction.Highly effi cient hole-transfer interfaces are constructed between perovskites and these HTMs by strategi-cally modifying the chlorine substitution.Thus,the chlorinated HTM-derived inverted PSCs exhibited superior effi ciencies and air stabilities.Importantly,the dopant-free HTM FO-TPA-o-Cl not only attains a power conversion effi ciency of 20.82% but also demonstrates exceptional stability,retaining 93.8%of its initial effi ciency even after a 30-day aging test conducted under ambient air conditions in PSCs without encapsulation.These fi ndings underscore the critical role of chlorine-substituent regulation in HTMs in ensuring the formation and maintenance of effi cient and stable PSCs. 展开更多
关键词 Hole-transport materials Inverted perovskite solar cells Chlorinated small molecules Donor–acceptor–donor structure
下载PDF
Research on Preparation and Electrochemical Performance of the High Compacted Density Ni-Co-Mn Ternary Cathode Materials
19
作者 Fupeng Zhi Juanhui Wang +1 位作者 Xiaomin Zhang Jun Zhang 《Advances in Materials Physics and Chemistry》 CAS 2024年第3期47-53,共7页
The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was syn... The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance. 展开更多
关键词 High Compacted Density Ternary Cathode Materials Electrochemical Performance
下载PDF
Realizing High Thermoelectric Performance in n-Type Se-Free Bi_(2)Te_(3)Materials by Spontaneous Incorporation of FeTe_(2)Nanoinclusions
20
作者 Jamil Ur Rahman Woo Hyun Nam +15 位作者 Yong-Jae Jung Jong Ho Won Jong-Min Oh Nguyen Van Du Gul Rahman Víctor M.García-Suárez Ran He Kornelius Nielsch Jung Young Cho Won-Seon Seo Jong Wook Roh Sang-il Kim Soonil Lee Kyu Hyoung Lee Hyun Sik Kim Weon Ho Shin 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期344-354,共11页
Bi_(2)Te_(3)-based materials have drawn much attention from the thermoelectric community due to their excellent thermoelectric performance near room temperature.However,the stability of existing n-type Bi_(2)(Te,Se)_(... Bi_(2)Te_(3)-based materials have drawn much attention from the thermoelectric community due to their excellent thermoelectric performance near room temperature.However,the stability of existing n-type Bi_(2)(Te,Se)_(3)materials is still low due to the evaporation energy of Se(37.70 kJ mol^(-1))being much lower than that of Te(52.55 kJ mol^(-1)).The evaporated Se from the material causes problems in interconnects of the module while degrading the efficiency.Here,we have developed a new approach for the high-performance and stable n-type Se-free Bi_(2)Te_(3)-based materials bymaximizing the electronic transport while suppressing the phonon transport,at the same time.Spontaneously generated FeTe_(2)nanoinclusions within the matrix during the melt-spinning and subsequent spark plasma sintering is the key to simultaneous engineering of the power factor and lattice thermal conductivity.The nanoinclusions change the fermi level of the matrix while intensifying the phonon scattering via nanoparticles.With a fine-tuning of the fermi level with Cu doping in the n-type Bi_(2)Te_(3)-0.02FeTe_(2),a high power factor of∼41×10^(-4)Wm^(-1)K^(-2)with an average zT of 1.01 at the temperature range 300-470 K are achieved,which are comparable to those obtained in n-type Bi_(2)(Te,Se)_(3)materials.The proposed approach enables the fabrication of high-performance n-type Bi_(2)Te_(3)-based materials without having to include volatile Se element,which guarantees the stability of the material.Consequently,widespread application of thermoelectric devices utilizing the n-type Bi_(2)Te_(3)-based materials will become possible. 展开更多
关键词 Bi_(2)Te_(3) energy harvesting FeTe_(2) nanoinclusion n-type materials THERMOELECTRIC
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部