In this study, numerical prediction of surges associated with a storm was made through the method of lines(MOL) in coordination with the newly proposed RKARMS(4, 4) method for the meghna estuarine region, along th...In this study, numerical prediction of surges associated with a storm was made through the method of lines(MOL) in coordination with the newly proposed RKARMS(4, 4) method for the meghna estuarine region, along the coast of Bangladesh. For this purpose, the vertically integrated shallow water equations(SWEs) in Cartesian coordinates were firstly transformed into ordinary differential equations(ODEs) of initial valued, which were then soloved using the new RKARMS(4, 4) method. Nested grid technique was employed for resolving the complexities of the region of interest with minimum cost. Fresh water discharge through the lower Meghna River was taken into account along the north east corner of the innermost child scheme. Numerical experiments were performed with the severe cyclone on April 1991 that crossed the coast over the study area. Simulated results by the study were found to be in good agreement with some reported data and were found to compare well with the results obtained by the MOL in addition with the classical 4th order Runge-Kutta(RK(4, 4)) method and the standard finite difference method(FDM).展开更多
The ultimate goal and highlight of this paper are to explore water levels along the coast of Bangladesh efficiently due to the nonlinear interaction of tide and surge by employing the method of lines(MOLs)with the aid...The ultimate goal and highlight of this paper are to explore water levels along the coast of Bangladesh efficiently due to the nonlinear interaction of tide and surge by employing the method of lines(MOLs)with the aid of newly proposed RKAHeM(4,4)technique.In this regard,the spatial derivatives of shallow water equations(SWEs)were discretized by means of a finite difference method to obtain a system of ordinary differential equations(ODEs)of initial valued with time as an independent variable.The obtained system of ODEs was solved by the RKAHeM(4,4)technique.One-way nested grid technique was exercised to incorporate coastal complexities closely with minimum computational cost.A stable tidal oscillation was produced over the region of interest by applying the most influential tidal constituent M2 along the southern open boundary of the outer scheme.The newly developed model was applied to estimate water levels due to the non-linear interaction of tide and surge associated with the catastrophic cyclone April 1991 along the coast of Bangladesh.The approach employed in the study was found to perform well and ensure conformity with real-time observations.展开更多
COVID-19 is one of themost highly infectious diseases ever emerged and caused by newly discovered severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).It has already led the entire world to health and economic ...COVID-19 is one of themost highly infectious diseases ever emerged and caused by newly discovered severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).It has already led the entire world to health and economic crisis.It has invaded the whole universe all most every way.The present study demonstrates with a nine mutually exclusive compartmental model on transmission dynamics of this pandemic disease(COVID-19),with special focus on the transmissibility of symptomatic and asymptomatic infection from susceptible individuals.Herein,the compartmental model has been investigated with mathematical analysis and computer simulations in order to understand the dynamics of COVID-19 transmission.Initially,mathematical analysis of the model has been carried out in broadly by illustrating some well-known methods including exactness,equilibrium and stability analysis in terms of basic reproduction number.We investigate the sensitivity of the model with respect to the variation of the parameters’values.Furthermore,computer simulations are performed to illustrate the results.Our analysis reveals that the death rate from coronavirus disease increases as the infection rate increases,whereas infection rate extensively decreases with the increase of quarantined individuals.The quarantined individuals also lead to increase the concentration of recovered individuals.However,the infection rate of COVID-19 increases more surprisingly as the rate of asymptomatic individuals increases than that of the symptomatic individuals.Moreover,the infection rate decreases significantly due to increase of self-immunity rate.展开更多
Option pricing has become one of the quite important parts of the financial market. As the market is always dynamic, it is really difficult to predict the option price accurately. For this reason, various machine lear...Option pricing has become one of the quite important parts of the financial market. As the market is always dynamic, it is really difficult to predict the option price accurately. For this reason, various machine learning techniques have been designed and developed to deal with the problem of predicting the future trend of option price. In this paper, we compare the effectiveness of Support Vector Machine (SVM) and Artificial Neural Network (ANN) models for the prediction of option price. Both models are tested with a benchmark publicly available dataset namely SPY option price-2015 in both testing and training phases. The converted data through Principal Component Analysis (PCA) is used in both models to achieve better prediction accuracy. On the other hand, the entire dataset is partitioned into two groups of training (70%) and test sets (30%) to avoid overfitting problem. The outcomes of the SVM model are compared with those of the ANN model based on the root mean square errors (RMSE). It is demonstrated by the experimental results that the ANN model performs better than the SVM model, and the predicted option prices are in good agreement with the corresponding actual option prices.展开更多
The study of viral dynamics of HIV/AIDS has resulted in a deep understanding of host-pathogenesis of HIV infection from which numerous mathematical modeling have been derived. Most of these models are based on nonline...The study of viral dynamics of HIV/AIDS has resulted in a deep understanding of host-pathogenesis of HIV infection from which numerous mathematical modeling have been derived. Most of these models are based on nonlinear ordinary differential equations. In Bangladesh, the rate of increase of HIV infection comparing with the other countries of the world is not so high. Bangladesh is still considered to be a low prevalent country in the region with prevalence and shown the local and global stability at disease free and chronic infected equilibrium points. Also we have shown that if the basic reproduction number , then HIV infection is cleared from T cell population and it converges to disease free equilibrium point. Whereas if , then HIV infection persists.展开更多
Unsteady electromagnetic free convection flows of two-dimensional micropolar fluid through in a porous medium parallel to a vertical porous plate have been investigated numerically. Similarity analysis has been used t...Unsteady electromagnetic free convection flows of two-dimensional micropolar fluid through in a porous medium parallel to a vertical porous plate have been investigated numerically. Similarity analysis has been used to transform the governing equations into its non-dimensional form by using the explicit finite difference method to obtain numerical solutions. Estimated results have been gained for various values of Prandtl number, Grashof number, material parameters, micropolar parameter, electric conductivity, electric permeability, thermal relaxation time and the permeability of the porous medium. The effect<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> of pertinent parameters on the velocity, electric induction, magnetic induction, microrotation and temperature distributions have been investigated briefly and illustrate</span><span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> graphically.</span>展开更多
The effects of the aspect ratio on unsteady solutions through the curved duct flow are studied numerically by a spectral based computational procedure with a temperature gradient between the vertical sidewalls for the...The effects of the aspect ratio on unsteady solutions through the curved duct flow are studied numerically by a spectral based computational procedure with a temperature gradient between the vertical sidewalls for the Grashof number 100 ≤ Gr ≤ 2 000. The outer wall of the duct is heated while the inner wall is cooled and the top and bottom walls are adiabatic. In this paper, unsteady solutions are calculated by the time history analysis of the Nusselt number for the Dean numbers Dn = 100 and Dn = 500 and the aspect ratios 1≤γ≤ 3. Water is taken as a working fluid (Pr =7.0). It is found that at Dn = 100, there appears a steady-state solution for small or large Gr. For moderate Gr, however, the steady-state solution turns into the periodic solution if γ is increased. For Dn = 500, on the other hand, it is analyzed that the steady-state solution turns into the chaotic solution for small and large Gr for any γ lying in the range. For moderate Gr at Dn = 500, however, the steady-state flow turns into the chaotic flow through the periodic oscillating flow if the aspect ratio is increased.展开更多
Viscous dissipation and radiative heat transfer in nanofluid with the influence of magnetic field over a rotating stretching surface has been investigated numerically. The steady laminar boundary layer flow is conside...Viscous dissipation and radiative heat transfer in nanofluid with the influence of magnetic field over a rotating stretching surface has been investigated numerically. The steady laminar boundary layer flow is considered in this study. The governing boundary-layer equations are formulated and transformed into nonlinear ordinary coupled differential equations by using similarity variables. The governing equations are solved numerically using the Nactsheim-Swigert Shooting iteration technique together with the Runge-Kutta six order iteration schemes with the help of a computer programming language Compaq Visual Fortran 6.6a. The simulation results are presented graphically to illustrate influence of well-known parameters on the velocity, temperature and concentration distributions as well as skin-friction coefficient, Nusselt and Sherwood number at the sheet.展开更多
This paper investigates the influence of both viscous and joules dissipation on the problem of magneto-hydrodynamic flow past a stretching porous surface embedded in a porous medium for rotating case. Using similarity...This paper investigates the influence of both viscous and joules dissipation on the problem of magneto-hydrodynamic flow past a stretching porous surface embedded in a porous medium for rotating case. Using similarity approach the system of partial differential equations is transformed into ordinary differential equations which strongly depend on the magnetic parameter, stretching parameter, rotation parameter, permeability parameter and Prandtl number. The coupled differential equations are numerically simulated using the Nactsheim-Swigert shooting technique together with Runge-Kutta six order iteration schemes. The velocity and temperature profiles are discussed and presented graphically. The comparisons for dimensionless skin friction coefficient and local Nusselt number are also taken into account and discussed and presented graphically.展开更多
The present numerically study investigates the influence of the Hall current and constant heat flux on the Magneto hydrodynamic (MHD) natural convection boundary layer viscous incompressible fluid flow in the manifest...The present numerically study investigates the influence of the Hall current and constant heat flux on the Magneto hydrodynamic (MHD) natural convection boundary layer viscous incompressible fluid flow in the manifestation of transverse magnetic field near an inclined vertical permeable flat plate. It is assumed that the induced magnetic field is negligible compared with the imposed magnetic field. The governing boundary layer equations have been transferred into non-similar model by implementing similarity approaches. The physical dimensionless parameter has been set up into the model as Prandtl number, Eckert number, Magnetic parameter, Schmidt number, local Grashof number and local modified Grashof number. The numerical method of Nactsheim-Swigert shooting iteration technique together with Runge-Kutta six order iteration scheme has been used to solve the system of governing non-similar equations. The physical effects of the various parameters on dimensionless primary velocity profile, secondary velocity profile, and temperature and concentration profile are discussed graphically. Moreover, the local skin friction coefficient, the local Nusselt number and Sherwood number are shown in tabular form for various values of the parameters.展开更多
The effects of variable electrical conductivity and radiation absorption on high-speed MHD (Magnetohydrodynamics) free convective flow past an exponential accelerated inclined plate with higher order chemical reaction...The effects of variable electrical conductivity and radiation absorption on high-speed MHD (Magnetohydrodynamics) free convective flow past an exponential accelerated inclined plate with higher order chemical reaction have been investigated. The electrical conductivity has been considered as a function of temperature. The chemical reaction has also been considered as the higher order. The usual transformations have been used to obtain the coupled dimensionless momentum, energy and concentration equations. Then the obtained non-dimensional partial differential equations have been solved numerically by explicit finite difference method. For excellent accuracy, stability and convergence test have been carried out. A computer program Compaq Visual FORTRAN 6.6a has been used to calculate the numerical results. The obtained numerical results concerned with the fluid velocity, temperature, concentration, concerned with skin friction, Nusselt number, Sherwood number, streamlines and isotherms are imprinted graphically by Tecplot and discussed in details. It is noticed that increasing of magnetic parameter increases the temperature and decreases the velocity, skin friction and Nusselt number. It is also observed that the temperature profile is increasing with the increasing values of Dufour number. However, the order of the chemical reaction increases the concentration profile.展开更多
This article is based on the impulsively started horizontal Riga plate in two dimensional unsteady Casson fluid flows with rotation. The plate starts abruptly from the rest relative to the rotating fluids moving with ...This article is based on the impulsively started horizontal Riga plate in two dimensional unsteady Casson fluid flows with rotation. The plate starts abruptly from the rest relative to the rotating fluids moving with uniform acceleration in its plane. Numerical solutions are acquired by using explicit finite difference method and estimated results have been gained for various values of the Rotational parameter, modified Hartmann number, Prandtl number, Radiative parameter, Eckert number, Heat source parameter, Schmidt number, and the Soret number. Both the Compaq visual FORTRAN 6.6a and MATLAB R2015a tools have been used to find the numerical solutions and the graphical presentation. The Skin friction, Nusselt number and Sherwood number have been computed and the effects of some pertinent parameters on various distributions are discussed briefly and presented graphically.展开更多
Analytical investigation on a combined heat and mass transfer of air flow near a continuously moving infinite plate with a constant heat sink is performed in the presence of a uniform magnetic field. To observe the th...Analytical investigation on a combined heat and mass transfer of air flow near a continuously moving infinite plate with a constant heat sink is performed in the presence of a uniform magnetic field. To observe the thermal radiation and Soret effect on the flow, thermal radiation and thermal diffusion term are added in energy and concentration equations. A flow of model is established by employing the well known boundary layer approximations. In order to obtain non-dimensional system of equations, a similarity transformation is applied on the flow model. Perturbation technique is used as main tool for the analytical approach. The numerical values of flow variables are computed by a FORTRAN program. The obtain numerical values of fluid velocity, temperature and species concentration are drawn for the different values of various parameters. To observe the effects of various parameters on the flow variables, the results are discussed in detailed with the help of graph.展开更多
Unsteady extracellular fluid (ECF) flow along with a rotating infinite vertical porous plate in the presence of a transverse magnetic field has been studied numerically. The dimensional governing equations have been n...Unsteady extracellular fluid (ECF) flow along with a rotating infinite vertical porous plate in the presence of a transverse magnetic field has been studied numerically. The dimensional governing equations have been non-dimensionalized by useful dimensionless variables. The explicit finite difference method has been used to solve dimensionless equations. The numerical results have been calculated by studio developer FORTRAN 6.6a and MATLAB 2018a. For perfect conducting case, Magnetic Diffusivity Parameter <span style="white-space:nowrap;">5 <span style="white-space:nowrap;">≤</span><em> P</em><em><sub>m</sub> </em><span style="white-space:nowrap;">≤ </span>15</span> has been taken in induction equation. For good accuracy, stability and convergence analysis have been analyzed. Mesh Sensitivity test, steady-state solution test, and code validation test have been performed. For time step<em> </em><em></em><span style="white-space:nowrap;"><em><span style="white-space:nowrap;">τ</span></em></span> <span style="white-space:nowrap;">= 1</span>, the numerical results have been found for the primary velocity, secondary velocity, angular velocity, primary induced magnetic field, secondary induced magnetic field, temperature as well as shear stresses along <em>x</em> and<em> z</em> direction, couple stress along<em> z</em> direction, current densities along <em>x</em> and <em>z</em> direction and the Nusselt number. Finally, the effects of various parameters have been separately discussed and illustrated graphically.展开更多
Emotion is such a unique power of human trial that plays a vital role in distinguishing human civilization from others. Voice is one of the most important media of expressing emotion. We can identify many types of emo...Emotion is such a unique power of human trial that plays a vital role in distinguishing human civilization from others. Voice is one of the most important media of expressing emotion. We can identify many types of emotions by talking or listening to voices. This is what we know as a voice signal. Just as the way people talk is different, so is the way they express emotions. By looking or hearing a person’s way of speaking, we can easily guess his/her personality and instantaneous emotions. People’s emotion and feelings are expressed in different ways. It is through the expression of emotions and feelings that people fully express his thoughts. Happiness, sadness, and anger are the main medium of expression way of different human emotions. To express these emotions, people use body postures, facial expressions and vocalizations. Though people use a variety of means to express emotions and feelings, the easiest and most complete way to express emotion and feelings is voice signal. The subject of our study is whether we can identify the right human emotion by examining the human voice signal. By analyzing the voice signal through wavelet, we have tried to show whether the mean frequency, maximum frequency and <em>L<sub>p</sub></em> values conform to a pattern according to its different sensory types. Moreover, the technique applied here is to develop a concept using MATLAB programming, which will compare the mean frequency, maximum frequency and <em>L<sub>p</sub></em> norm to find relation and detect emotion by analyzing different voices.展开更多
The steady magneto hydrodynamic (MHD) boundary layer flow and combined heat and mass transfer of a non-Newtonian fluid over an inclined stretching sheet have been investigated in the present analysis. The effects of t...The steady magneto hydrodynamic (MHD) boundary layer flow and combined heat and mass transfer of a non-Newtonian fluid over an inclined stretching sheet have been investigated in the present analysis. The effects of the flow parameters on the velocity, temperature, species concentration, local skin friction, local Nusselt number, and Sherwood number are computed, discussed and have been graphically represented in figures and tables for various values of different parameters. The numerical results are carried out for several values of the combined effects of magnetic parameter M, stretching parameter λ, Prandtl number Pr, Eckert number Ec, Schmidt number Sc, Soret number S0, slip parameter A and Casson parameter n on velocity, temperature and concentration profiles and also the skin-friction coefficient ?f?"(0)?local Nusselt number -θ'(0)?and local Sherwood number -ψ'(0)?are discussed and presented in tabular form. The results pertaining to the present study indicate that the velocity profiles decrease as the increase of magnetic field parameter, but reverse trend arises for the effect of Casson parameter and stretching ratio parameter for both Newtonian and non-Newtonian fluids. The temperature profiles increase forthe effect of magnetic parameter, Prandtl number and Eckert number in case of Newtonian and non-Newtonian fluids. The concentration profile increases for the effect of Soret number while concentration profile decreases for the increasing values of Schmidt number, magnetic parameter, Prandtl number and Eckert number for both Newtonian and non-Newtonian fluids. By considering the cooling plate the numerical results for the skin-friction coefficient f?"(0) , local Nusselt number?-θ'(0) and local Sherwood number ?-ψ'(0) are presented in Tables 1-3.展开更多
Because of the great importance of thermal instability in nature, in chemical processes, in separation processes, in industrial applications as well as in geophysical and astrophysical engineering, the effect of therm...Because of the great importance of thermal instability in nature, in chemical processes, in separation processes, in industrial applications as well as in geophysical and astrophysical engineering, the effect of thermal diffusion on the combined MHD heat transfer in an unsteady flow past a continuously moving semi-infinite vertical porous plate which is subjected to constant heat has been investigated numerically under the action of strong applied magnetic field taking into account the induced magnetic field. This study is performed for cooling problem with lighter and heavier particles. Numerical solutions for the velocity field, induced magnetic field as well as temperature distribution are obtained for associated parameters using the explicit finite difference method. The obtained results are also discussed with the help of graphs to observe effects of various parameters on the above mentioned quantities.展开更多
In this article, for a differentiable function , we introduce the definition of the higher-order -invexity. Three duality models for a multiobjective fractional programming problem involving nondifferentiability in te...In this article, for a differentiable function , we introduce the definition of the higher-order -invexity. Three duality models for a multiobjective fractional programming problem involving nondifferentiability in terms of support functions have been formulated and usual duality relations have been established under the higher-order -invex assumptions.展开更多
Temperature dependent viscosity and thermal conducting heat and mass transfer flow with chemical reaction and periodic magnetic field past an isothermal oscillating cylinder have been considered. The partial dimension...Temperature dependent viscosity and thermal conducting heat and mass transfer flow with chemical reaction and periodic magnetic field past an isothermal oscillating cylinder have been considered. The partial dimensionless equations governing the flow have been solved numerically by applying explicit finite difference method with the help Compaq visual 6.6a. The obtained outcome of this inquisition has been discussed for different values of well-known flow parameters with different time steps and oscillation angle. The effect of chemical reaction and periodic MHD parameters on the velocity field, temperature field and concentration field, skin-friction, Nusselt number and Sherwood number have been studied and results are presented by graphically. The novelty of the present problem is to study the streamlines by taking into account periodic magnetic field.展开更多
A numerical investigation of boundary layer mass transfer flow through an inclined plate with the effect of chemical reaction and thermal diffusion is presented in this study. The governing partial differential equati...A numerical investigation of boundary layer mass transfer flow through an inclined plate with the effect of chemical reaction and thermal diffusion is presented in this study. The governing partial differential equations (PDE) are transformed to a system of dimensionless non-similar coupled PDEs. The transformed, non-similar conservations equations (momentum balance equation, energy balance equation and concentration balance equation) are then solved using a numerical approach known as explicit finite difference method (EFDM). Basically EFDM introduced for the unsteadiness in the momentum, temperature, and concentration fluid fields is based on the time dependent fluid velocity, temperature and concentration of the boundary surface. During the course of discussion, it is found that the various parameters related to the problem influence the calculated resultant expressions. The computed numerical solution results for the velocity, temperature, and concentration distribution with the effect of various important dimensionless parameters (Grashof number, Modified Grashof number, Prandtl number, Schmidt number, Soret number, Dufour number, chemical reaction parameter and inclination parameter) entering into the problems are critically analyzed and discussed graphically. It can be seen that two physical phenomena chemical reaction and thermal diffusion can greatly effect on the boundary layer fluid flows through an inclined plate.展开更多
文摘In this study, numerical prediction of surges associated with a storm was made through the method of lines(MOL) in coordination with the newly proposed RKARMS(4, 4) method for the meghna estuarine region, along the coast of Bangladesh. For this purpose, the vertically integrated shallow water equations(SWEs) in Cartesian coordinates were firstly transformed into ordinary differential equations(ODEs) of initial valued, which were then soloved using the new RKARMS(4, 4) method. Nested grid technique was employed for resolving the complexities of the region of interest with minimum cost. Fresh water discharge through the lower Meghna River was taken into account along the north east corner of the innermost child scheme. Numerical experiments were performed with the severe cyclone on April 1991 that crossed the coast over the study area. Simulated results by the study were found to be in good agreement with some reported data and were found to compare well with the results obtained by the MOL in addition with the classical 4th order Runge-Kutta(RK(4, 4)) method and the standard finite difference method(FDM).
文摘The ultimate goal and highlight of this paper are to explore water levels along the coast of Bangladesh efficiently due to the nonlinear interaction of tide and surge by employing the method of lines(MOLs)with the aid of newly proposed RKAHeM(4,4)technique.In this regard,the spatial derivatives of shallow water equations(SWEs)were discretized by means of a finite difference method to obtain a system of ordinary differential equations(ODEs)of initial valued with time as an independent variable.The obtained system of ODEs was solved by the RKAHeM(4,4)technique.One-way nested grid technique was exercised to incorporate coastal complexities closely with minimum computational cost.A stable tidal oscillation was produced over the region of interest by applying the most influential tidal constituent M2 along the southern open boundary of the outer scheme.The newly developed model was applied to estimate water levels due to the non-linear interaction of tide and surge associated with the catastrophic cyclone April 1991 along the coast of Bangladesh.The approach employed in the study was found to perform well and ensure conformity with real-time observations.
基金The authors greatly acknowledge the partial financial support provided by the Ministry of Science and Technology,Government of the People’s Republic of Bangladesh under special allocation in 2019–2020 with the research Grant Ref.No.39.00.0000.009.06.024.19-12/410(EAS).Supports with Ref.:17-392RG/MATHS/AS_I-FR3240297753 funded by TWAS,Italy and Ref.No.6(74)UGC/ST/Physical-17/2017/3169 funded by the UGC,Bangladesh are also acknowledged.
文摘COVID-19 is one of themost highly infectious diseases ever emerged and caused by newly discovered severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).It has already led the entire world to health and economic crisis.It has invaded the whole universe all most every way.The present study demonstrates with a nine mutually exclusive compartmental model on transmission dynamics of this pandemic disease(COVID-19),with special focus on the transmissibility of symptomatic and asymptomatic infection from susceptible individuals.Herein,the compartmental model has been investigated with mathematical analysis and computer simulations in order to understand the dynamics of COVID-19 transmission.Initially,mathematical analysis of the model has been carried out in broadly by illustrating some well-known methods including exactness,equilibrium and stability analysis in terms of basic reproduction number.We investigate the sensitivity of the model with respect to the variation of the parameters’values.Furthermore,computer simulations are performed to illustrate the results.Our analysis reveals that the death rate from coronavirus disease increases as the infection rate increases,whereas infection rate extensively decreases with the increase of quarantined individuals.The quarantined individuals also lead to increase the concentration of recovered individuals.However,the infection rate of COVID-19 increases more surprisingly as the rate of asymptomatic individuals increases than that of the symptomatic individuals.Moreover,the infection rate decreases significantly due to increase of self-immunity rate.
文摘Option pricing has become one of the quite important parts of the financial market. As the market is always dynamic, it is really difficult to predict the option price accurately. For this reason, various machine learning techniques have been designed and developed to deal with the problem of predicting the future trend of option price. In this paper, we compare the effectiveness of Support Vector Machine (SVM) and Artificial Neural Network (ANN) models for the prediction of option price. Both models are tested with a benchmark publicly available dataset namely SPY option price-2015 in both testing and training phases. The converted data through Principal Component Analysis (PCA) is used in both models to achieve better prediction accuracy. On the other hand, the entire dataset is partitioned into two groups of training (70%) and test sets (30%) to avoid overfitting problem. The outcomes of the SVM model are compared with those of the ANN model based on the root mean square errors (RMSE). It is demonstrated by the experimental results that the ANN model performs better than the SVM model, and the predicted option prices are in good agreement with the corresponding actual option prices.
文摘The study of viral dynamics of HIV/AIDS has resulted in a deep understanding of host-pathogenesis of HIV infection from which numerous mathematical modeling have been derived. Most of these models are based on nonlinear ordinary differential equations. In Bangladesh, the rate of increase of HIV infection comparing with the other countries of the world is not so high. Bangladesh is still considered to be a low prevalent country in the region with prevalence and shown the local and global stability at disease free and chronic infected equilibrium points. Also we have shown that if the basic reproduction number , then HIV infection is cleared from T cell population and it converges to disease free equilibrium point. Whereas if , then HIV infection persists.
文摘Unsteady electromagnetic free convection flows of two-dimensional micropolar fluid through in a porous medium parallel to a vertical porous plate have been investigated numerically. Similarity analysis has been used to transform the governing equations into its non-dimensional form by using the explicit finite difference method to obtain numerical solutions. Estimated results have been gained for various values of Prandtl number, Grashof number, material parameters, micropolar parameter, electric conductivity, electric permeability, thermal relaxation time and the permeability of the porous medium. The effect<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> of pertinent parameters on the velocity, electric induction, magnetic induction, microrotation and temperature distributions have been investigated briefly and illustrate</span><span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> graphically.</span>
文摘The effects of the aspect ratio on unsteady solutions through the curved duct flow are studied numerically by a spectral based computational procedure with a temperature gradient between the vertical sidewalls for the Grashof number 100 ≤ Gr ≤ 2 000. The outer wall of the duct is heated while the inner wall is cooled and the top and bottom walls are adiabatic. In this paper, unsteady solutions are calculated by the time history analysis of the Nusselt number for the Dean numbers Dn = 100 and Dn = 500 and the aspect ratios 1≤γ≤ 3. Water is taken as a working fluid (Pr =7.0). It is found that at Dn = 100, there appears a steady-state solution for small or large Gr. For moderate Gr, however, the steady-state solution turns into the periodic solution if γ is increased. For Dn = 500, on the other hand, it is analyzed that the steady-state solution turns into the chaotic solution for small and large Gr for any γ lying in the range. For moderate Gr at Dn = 500, however, the steady-state flow turns into the chaotic flow through the periodic oscillating flow if the aspect ratio is increased.
文摘Viscous dissipation and radiative heat transfer in nanofluid with the influence of magnetic field over a rotating stretching surface has been investigated numerically. The steady laminar boundary layer flow is considered in this study. The governing boundary-layer equations are formulated and transformed into nonlinear ordinary coupled differential equations by using similarity variables. The governing equations are solved numerically using the Nactsheim-Swigert Shooting iteration technique together with the Runge-Kutta six order iteration schemes with the help of a computer programming language Compaq Visual Fortran 6.6a. The simulation results are presented graphically to illustrate influence of well-known parameters on the velocity, temperature and concentration distributions as well as skin-friction coefficient, Nusselt and Sherwood number at the sheet.
文摘This paper investigates the influence of both viscous and joules dissipation on the problem of magneto-hydrodynamic flow past a stretching porous surface embedded in a porous medium for rotating case. Using similarity approach the system of partial differential equations is transformed into ordinary differential equations which strongly depend on the magnetic parameter, stretching parameter, rotation parameter, permeability parameter and Prandtl number. The coupled differential equations are numerically simulated using the Nactsheim-Swigert shooting technique together with Runge-Kutta six order iteration schemes. The velocity and temperature profiles are discussed and presented graphically. The comparisons for dimensionless skin friction coefficient and local Nusselt number are also taken into account and discussed and presented graphically.
文摘The present numerically study investigates the influence of the Hall current and constant heat flux on the Magneto hydrodynamic (MHD) natural convection boundary layer viscous incompressible fluid flow in the manifestation of transverse magnetic field near an inclined vertical permeable flat plate. It is assumed that the induced magnetic field is negligible compared with the imposed magnetic field. The governing boundary layer equations have been transferred into non-similar model by implementing similarity approaches. The physical dimensionless parameter has been set up into the model as Prandtl number, Eckert number, Magnetic parameter, Schmidt number, local Grashof number and local modified Grashof number. The numerical method of Nactsheim-Swigert shooting iteration technique together with Runge-Kutta six order iteration scheme has been used to solve the system of governing non-similar equations. The physical effects of the various parameters on dimensionless primary velocity profile, secondary velocity profile, and temperature and concentration profile are discussed graphically. Moreover, the local skin friction coefficient, the local Nusselt number and Sherwood number are shown in tabular form for various values of the parameters.
文摘The effects of variable electrical conductivity and radiation absorption on high-speed MHD (Magnetohydrodynamics) free convective flow past an exponential accelerated inclined plate with higher order chemical reaction have been investigated. The electrical conductivity has been considered as a function of temperature. The chemical reaction has also been considered as the higher order. The usual transformations have been used to obtain the coupled dimensionless momentum, energy and concentration equations. Then the obtained non-dimensional partial differential equations have been solved numerically by explicit finite difference method. For excellent accuracy, stability and convergence test have been carried out. A computer program Compaq Visual FORTRAN 6.6a has been used to calculate the numerical results. The obtained numerical results concerned with the fluid velocity, temperature, concentration, concerned with skin friction, Nusselt number, Sherwood number, streamlines and isotherms are imprinted graphically by Tecplot and discussed in details. It is noticed that increasing of magnetic parameter increases the temperature and decreases the velocity, skin friction and Nusselt number. It is also observed that the temperature profile is increasing with the increasing values of Dufour number. However, the order of the chemical reaction increases the concentration profile.
文摘This article is based on the impulsively started horizontal Riga plate in two dimensional unsteady Casson fluid flows with rotation. The plate starts abruptly from the rest relative to the rotating fluids moving with uniform acceleration in its plane. Numerical solutions are acquired by using explicit finite difference method and estimated results have been gained for various values of the Rotational parameter, modified Hartmann number, Prandtl number, Radiative parameter, Eckert number, Heat source parameter, Schmidt number, and the Soret number. Both the Compaq visual FORTRAN 6.6a and MATLAB R2015a tools have been used to find the numerical solutions and the graphical presentation. The Skin friction, Nusselt number and Sherwood number have been computed and the effects of some pertinent parameters on various distributions are discussed briefly and presented graphically.
文摘Analytical investigation on a combined heat and mass transfer of air flow near a continuously moving infinite plate with a constant heat sink is performed in the presence of a uniform magnetic field. To observe the thermal radiation and Soret effect on the flow, thermal radiation and thermal diffusion term are added in energy and concentration equations. A flow of model is established by employing the well known boundary layer approximations. In order to obtain non-dimensional system of equations, a similarity transformation is applied on the flow model. Perturbation technique is used as main tool for the analytical approach. The numerical values of flow variables are computed by a FORTRAN program. The obtain numerical values of fluid velocity, temperature and species concentration are drawn for the different values of various parameters. To observe the effects of various parameters on the flow variables, the results are discussed in detailed with the help of graph.
文摘Unsteady extracellular fluid (ECF) flow along with a rotating infinite vertical porous plate in the presence of a transverse magnetic field has been studied numerically. The dimensional governing equations have been non-dimensionalized by useful dimensionless variables. The explicit finite difference method has been used to solve dimensionless equations. The numerical results have been calculated by studio developer FORTRAN 6.6a and MATLAB 2018a. For perfect conducting case, Magnetic Diffusivity Parameter <span style="white-space:nowrap;">5 <span style="white-space:nowrap;">≤</span><em> P</em><em><sub>m</sub> </em><span style="white-space:nowrap;">≤ </span>15</span> has been taken in induction equation. For good accuracy, stability and convergence analysis have been analyzed. Mesh Sensitivity test, steady-state solution test, and code validation test have been performed. For time step<em> </em><em></em><span style="white-space:nowrap;"><em><span style="white-space:nowrap;">τ</span></em></span> <span style="white-space:nowrap;">= 1</span>, the numerical results have been found for the primary velocity, secondary velocity, angular velocity, primary induced magnetic field, secondary induced magnetic field, temperature as well as shear stresses along <em>x</em> and<em> z</em> direction, couple stress along<em> z</em> direction, current densities along <em>x</em> and <em>z</em> direction and the Nusselt number. Finally, the effects of various parameters have been separately discussed and illustrated graphically.
文摘Emotion is such a unique power of human trial that plays a vital role in distinguishing human civilization from others. Voice is one of the most important media of expressing emotion. We can identify many types of emotions by talking or listening to voices. This is what we know as a voice signal. Just as the way people talk is different, so is the way they express emotions. By looking or hearing a person’s way of speaking, we can easily guess his/her personality and instantaneous emotions. People’s emotion and feelings are expressed in different ways. It is through the expression of emotions and feelings that people fully express his thoughts. Happiness, sadness, and anger are the main medium of expression way of different human emotions. To express these emotions, people use body postures, facial expressions and vocalizations. Though people use a variety of means to express emotions and feelings, the easiest and most complete way to express emotion and feelings is voice signal. The subject of our study is whether we can identify the right human emotion by examining the human voice signal. By analyzing the voice signal through wavelet, we have tried to show whether the mean frequency, maximum frequency and <em>L<sub>p</sub></em> values conform to a pattern according to its different sensory types. Moreover, the technique applied here is to develop a concept using MATLAB programming, which will compare the mean frequency, maximum frequency and <em>L<sub>p</sub></em> norm to find relation and detect emotion by analyzing different voices.
文摘The steady magneto hydrodynamic (MHD) boundary layer flow and combined heat and mass transfer of a non-Newtonian fluid over an inclined stretching sheet have been investigated in the present analysis. The effects of the flow parameters on the velocity, temperature, species concentration, local skin friction, local Nusselt number, and Sherwood number are computed, discussed and have been graphically represented in figures and tables for various values of different parameters. The numerical results are carried out for several values of the combined effects of magnetic parameter M, stretching parameter λ, Prandtl number Pr, Eckert number Ec, Schmidt number Sc, Soret number S0, slip parameter A and Casson parameter n on velocity, temperature and concentration profiles and also the skin-friction coefficient ?f?"(0)?local Nusselt number -θ'(0)?and local Sherwood number -ψ'(0)?are discussed and presented in tabular form. The results pertaining to the present study indicate that the velocity profiles decrease as the increase of magnetic field parameter, but reverse trend arises for the effect of Casson parameter and stretching ratio parameter for both Newtonian and non-Newtonian fluids. The temperature profiles increase forthe effect of magnetic parameter, Prandtl number and Eckert number in case of Newtonian and non-Newtonian fluids. The concentration profile increases for the effect of Soret number while concentration profile decreases for the increasing values of Schmidt number, magnetic parameter, Prandtl number and Eckert number for both Newtonian and non-Newtonian fluids. By considering the cooling plate the numerical results for the skin-friction coefficient f?"(0) , local Nusselt number?-θ'(0) and local Sherwood number ?-ψ'(0) are presented in Tables 1-3.
文摘Because of the great importance of thermal instability in nature, in chemical processes, in separation processes, in industrial applications as well as in geophysical and astrophysical engineering, the effect of thermal diffusion on the combined MHD heat transfer in an unsteady flow past a continuously moving semi-infinite vertical porous plate which is subjected to constant heat has been investigated numerically under the action of strong applied magnetic field taking into account the induced magnetic field. This study is performed for cooling problem with lighter and heavier particles. Numerical solutions for the velocity field, induced magnetic field as well as temperature distribution are obtained for associated parameters using the explicit finite difference method. The obtained results are also discussed with the help of graphs to observe effects of various parameters on the above mentioned quantities.
文摘In this article, for a differentiable function , we introduce the definition of the higher-order -invexity. Three duality models for a multiobjective fractional programming problem involving nondifferentiability in terms of support functions have been formulated and usual duality relations have been established under the higher-order -invex assumptions.
文摘Temperature dependent viscosity and thermal conducting heat and mass transfer flow with chemical reaction and periodic magnetic field past an isothermal oscillating cylinder have been considered. The partial dimensionless equations governing the flow have been solved numerically by applying explicit finite difference method with the help Compaq visual 6.6a. The obtained outcome of this inquisition has been discussed for different values of well-known flow parameters with different time steps and oscillation angle. The effect of chemical reaction and periodic MHD parameters on the velocity field, temperature field and concentration field, skin-friction, Nusselt number and Sherwood number have been studied and results are presented by graphically. The novelty of the present problem is to study the streamlines by taking into account periodic magnetic field.
文摘A numerical investigation of boundary layer mass transfer flow through an inclined plate with the effect of chemical reaction and thermal diffusion is presented in this study. The governing partial differential equations (PDE) are transformed to a system of dimensionless non-similar coupled PDEs. The transformed, non-similar conservations equations (momentum balance equation, energy balance equation and concentration balance equation) are then solved using a numerical approach known as explicit finite difference method (EFDM). Basically EFDM introduced for the unsteadiness in the momentum, temperature, and concentration fluid fields is based on the time dependent fluid velocity, temperature and concentration of the boundary surface. During the course of discussion, it is found that the various parameters related to the problem influence the calculated resultant expressions. The computed numerical solution results for the velocity, temperature, and concentration distribution with the effect of various important dimensionless parameters (Grashof number, Modified Grashof number, Prandtl number, Schmidt number, Soret number, Dufour number, chemical reaction parameter and inclination parameter) entering into the problems are critically analyzed and discussed graphically. It can be seen that two physical phenomena chemical reaction and thermal diffusion can greatly effect on the boundary layer fluid flows through an inclined plate.