期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Simulation Study of Diesel Spray Tilt Angle and Ammonia Energy Ratio Effect on Ammonia-Diesel Dual-Fuel Engine Performance
1
作者 Zhifeng Zhao Xuelong Miao +4 位作者 Xu Chen Jinbao Zheng Yage Di Zhenjie Bao Zhuo Yang 《Energy Engineering》 EI 2024年第9期2603-2620,共18页
Ammonia-diesel dual fuel(ADDF)engines for transportation applications are an important way to reduce carbon emissions.In order to achieve better combustion of ammonia in diesel engines.A small-bore single-cylinder eng... Ammonia-diesel dual fuel(ADDF)engines for transportation applications are an important way to reduce carbon emissions.In order to achieve better combustion of ammonia in diesel engines.A small-bore single-cylinder engine was converted into an ADDF engine with the help of mature computational fluid dynamics(CFD)simulation software to investigate the performance of an engine with a high ammonia energy ratio(AER),and to study the effect of spray tilt angle on ADDF engine.The results showed that the increase in AER reduced nitric oxide(NO)and nitrogen dioxide(NO2)emissions but increased nitrous oxide(N2O)and unburned ammonia emissions.AER in the range of 50%-70%achieved lower greenhouse gases(GHG)emissions than the pure diesel mode.Relative to the pure diesel mode,when the AER was 60%,the indicated thermal efficiency(ITE)was increased by 0.2%and the GHG emissions were decreased by 22.3%,but carbon monoxide(CO)and Hydrocarbon(HC)emissions were increased.Increasing the in-cylinder combustion temperature or high-temperature region range of the ADDF engine could reduce GHG emissions.At an AER of 60%,an increase in the spray tilt angle helped the ammonia combustion in the residual gap to reduce the unburned ammonia emissions.Compared to the pure diesel mode with a spray tilt angle of 75°,an AER of 60%with a spray tilt angle of 77.5°improved the ITE by 1.5%,and reduced theGHGemissions by 25.7%.Adjusting the spray tilt angle of theADDFengine also reducedCOandHCemissions.This is an effective way to improve ADDF engine performance by adjusting the spray tilt angle. 展开更多
关键词 Ammonia-diesel engine ammonia energy ratio greenhouse gases carbon-free fuel
下载PDF
A Study of the Effect of the Miller Cycle on the Combustion of a Supercharged Marine Diesel Engine
2
作者 Lingjie Zhao Cong Li 《Energy Engineering》 EI 2024年第5期1363-1380,共18页
The Miller cycle is a program that effectively reduces NOx emissions from marine diesel engines by lowering the maximum combustion temperature in the cylinder,thereby reducing NOx emissions.To effectively investigate ... The Miller cycle is a program that effectively reduces NOx emissions from marine diesel engines by lowering the maximum combustion temperature in the cylinder,thereby reducing NOx emissions.To effectively investigate the impact of Miller cycle optimum combustion performance and emission capability under high load conditions,this study will perform a one-dimensional simulation of the performance of a marine diesel engine,as well as a threedimensional simulation of the combustion in the cylinder.A 6-cylinder four-stroke single-stage supercharged diesel engine is taken as the research object.The chassis dynamometer and other related equipment are used to build the test system,carry out the diesel engine bench test,and collect experimental data.The simulation results are compared with the test results,and the error is less than 5%.In this study,the authors will use simulation software to simulate several Miller cycle scenarios designed for early inlet valve closure and analyze the impact of the Miller cycle on combustion and emissions at 100%load conditions.By comparing the flow field distribution of the engine at 1500 r/min condition,it was found that proper EIVC can prolong the ignition latency period and homogeneous fuel-air mixture combustion acceleration,but it can reduce pressure and temperature within the piston chamber and NOx emission.However,the Miller cycle reduces end-of-compression temperatures,which increases combustion duration and exhaust temperatures,making it difficult to improve fuel economy at the optimum fuel consumption point,and closing the intake valves prematurely leads to excessive fuel expenditure.Furthermore,temperature and heat release rate within the piston chamber,NOx,and SOOT generation were significantly enhanced. 展开更多
关键词 Miller cycle EIVC COMBUSTION NOx emissions marine diesel
下载PDF
Current scenario and challenges of plastic pollution in Bangladesh:a focus on farmlands and terrestrial ecosystems 被引量:1
3
作者 MdRaihanul Islam Sumaiya Akter Ruponti +2 位作者 MdAbdur Rakib Huy Quoc Nguyen Monjur Mourshed 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第6期1-22,共22页
Plastic is considered one of the most indispensable commodities in our daily life.At the end of life,the huge ever-growing pile of plastic waste(PW)causes serious concerns for our environment,including agricultural fa... Plastic is considered one of the most indispensable commodities in our daily life.At the end of life,the huge ever-growing pile of plastic waste(PW)causes serious concerns for our environment,including agricultural farmlands,groundwater quality,marine and land ecosystems,food toxicity and human health hazards.Lack of proper infrastructure,financial backup,and technological advancement turn this hazardous waste plastic management into a serious threat to developing countries,especially for Bangladesh.A comprehensive review of PW generation and its consequences on environment in both global and Bangladesh contexts is presented.The dispersion routes of PW from different sources in different forms(microplastic,macroplastic,nanoplastic)and its adverse effect on agriculture,marine life and terrestrial ecosystems are illustrated in this work.The key challenges to mitigate PW pollution and tackle down the climate change issue is discussed in this work.Moreover,way forward toward the design and implementation of proper PW management strategies are highlighted in this study. 展开更多
关键词 Plastic waste Farmlands Terrestrial ecosystem Marine life
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部