Cold-rolled 2024-T3 sheet alloy was subjected to bobbin-tool friction stir welding (BTFSW). The microstructural characteristics and mechanical properties of the nugget zone in the as-welded state were investigated. ...Cold-rolled 2024-T3 sheet alloy was subjected to bobbin-tool friction stir welding (BTFSW). The microstructural characteristics and mechanical properties of the nugget zone in the as-welded state were investigated. The results show that the equiaxed grain size of BTFSW 2024-T3 alloy decreases from 7.6 to 2.8 μm as the welding speed is increased from 80 to 120 mm/min; in addition, fine grains are generated in the nugget zone and the size distribution is non-uniform. All A12CuMg (S') precipitates dissolve into the A1 matrix, whereas Mn-rich phases confirmed as T phases (Al20CuEMn3, A16Mn, or AlaMn) remain unchanged. The optimized parameters for BTFSW are veri- fied as the rotation speed of 350 r/min and the travel speed of 100 mm/min. The variations in precipitation and dislocation play more impor- tant roles than grain size in the nugget zone with respect to influencing the mechanical properties during the BTFSW process. After the BTFSW process, the fracture mode of base material 2024-T3 alloy transforms from ductile rupture to ductile-brittle mixed fi'acture.展开更多
The Al3Ti compound has potential application in the high temperature structure materials due to its low density,high strength and stiffness.The mechanical behaviors of the material under different loading rates were s...The Al3Ti compound has potential application in the high temperature structure materials due to its low density,high strength and stiffness.The mechanical behaviors of the material under different loading rates were studied using compression tests.The results indicate that Al3Ti is a typical brittle material and its compressive strength is dependent on the strain rate.Therefore,a series of rate-dependent constitutive equations are needed to describe its mechanical behaviors accurately.However,it is still short of professional research on the material model for Al3Ti.In this study,the mate rial model was developed on the basis of JH-2 constitutive equations using the experimental data.The model was then applied in simulating the impact process of Ti/Al3Ti metal-intermetallic laminate composites so as to validate the established model.Good agreement between simulation and experiment results shows the constitutive model predict the material responses under high rate and large deformation accurately.This work provides more support for the theoretical and numerical research on the intermetallic.展开更多
Titanium cermets were successfully synthesized on the surface of biomedical grade titanium alloys by using sequential carburization method. The mechanical properties such as hardness, fracture toughness and plasticity...Titanium cermets were successfully synthesized on the surface of biomedical grade titanium alloys by using sequential carburization method. The mechanical properties such as hardness, fracture toughness and plasticity were measured to estimate the potential application of titanium cermets. The results show that after carburization the surface hardness of titanium cermets was 778 HV, with a significant improvement of 128% compared with that of titanium alloys. In addition, the fracture toughness of titanium cermets was 21.5 × 10^6 Pa.m^1/2, much higher than that of other ceramics. Furthermore, the analysis of the loading-unloading curve in the nanoindentation test also indicates that the plasticity of titanium cermet reached 32.1%, a relatively high value which illustrates the combination of the metal and ceramics properties. The results suggest that sequential carburization should be an efficient way to produce titanium cermets with hard surface, high toughness and plasticity.展开更多
Using ANSYS software, we developed a modeling program for several kinds of wire ropes with metal cores and built a geometric model for the 6×19 IWS wire rope. Through proper grid partitioning, a finite element mo...Using ANSYS software, we developed a modeling program for several kinds of wire ropes with metal cores and built a geometric model for the 6×19 IWS wire rope. Through proper grid partitioning, a finite element model for calculating the deforma-tion of wire rope was obtained. Completely constraining one end of the wire rope and applying an axial force to the other end, we established the boundary conditions for solving the model. In addition, we numerically simulated the stress and deformation of the wire, obtaining the deformation distribution of each wire within the wire rope under different laying directions. At the end, a tensile test of the 6×19 IWS wire rope was carried out and the results of simulation and experiment compared.展开更多
The progressive cutting based on auxiliary paths is an effective machining method for the material accumulating region inside the mould pocket. But the method is commonly based on the radial depth of cut as the contro...The progressive cutting based on auxiliary paths is an effective machining method for the material accumulating region inside the mould pocket. But the method is commonly based on the radial depth of cut as the control parameter, further more there is no more appropriate adjustment and control approach. The end-users often fall to set the parameter correctly, which leads to excessive tool load in the process of actual machining. In order to make more reasonable control of the machining load and toolpath, an engagement angle modeling method for multiplecircle continuous machining is presented. The distribution mode of multiple circles, dynamic changing process of engagement angle, extreme and average value of engage- ment angle are carefully considered. Based on the engagement angle model, numerous application techniques for mould pocket machining are presented, involving the calculation of the milling force in multiple-circle continuous machining, and rough and finish machining path planning and load control for the material accumulating region inside the pocket, and other aspects. Simulation and actual machining experiments show that the engagement angle modeling method for multiple-circle continuous machining is correct and reliable, and the related numerous application techniques for pocket machining are feasible and effective. The proposed research contributes to the analysis and control tool load effectively and tool-path planning reasonably for the material accumulating region inside the mould pocket.展开更多
It is illustrated that there exists an inflection circle on the linkage rigid body by the principle of relative motion. Confirmed methods of the inflection circle, curvature radius and curvature center of the point tr...It is illustrated that there exists an inflection circle on the linkage rigid body by the principle of relative motion. Confirmed methods of the inflection circle, curvature radius and curvature center of the point track on the linkage rigid body are given in the case of the different contact type of move instantaneous center line and static instantaneous center line. The regularity of distribution of curvature radius and curvature center of the point track is researched. The identification methods called determination parameters and auxiliary vertical line of the diameter and direction of the inflection circle in the four bar mechanism are pointed out. A design method of the crane hoisting mechanism is discussed in the end of this paper.展开更多
The microstructure distribution rule of semi-solid AZ91D alloy treated by ultrasonic was researched, and mechanical properies of specimens before and after ultrasonic treatment were investigated further.Semi-solid AZ9...The microstructure distribution rule of semi-solid AZ91D alloy treated by ultrasonic was researched, and mechanical properies of specimens before and after ultrasonic treatment were investigated further.Semi-solid AZ91D melt specimens were processed by ultrasonic under different powers, and its microstructures and mechanical properties at different sampling points in specimens were obtained. The experimental results show that the microstructure of AZ91D alloy at different sampling points under the same ultrasonic power is different in grain size and shape, and there is also great difference among their microstructures at the same sampling point under different ultrasonic powers. AZ91D alloy treated by ultrasonic can obtain increment in both tensile strength and plasticity. Under same ultrasonic power, mechanical properties of specimen at different sampling points have obvious difference, and regularity for change of mechanical properties everywhere is similar to regularity for change of grain size and shape everywhere.展开更多
Aiming at the geometrical features of different containment relationships in Rapid Prototyping (RP), a general method of achieving the RP layer's cusp distribution of the positive, negative and mixed tolerance is p...Aiming at the geometrical features of different containment relationships in Rapid Prototyping (RP), a general method of achieving the RP layer's cusp distribution of the positive, negative and mixed tolerance is proposed to meet the part's different applications. The procedure is executed by projecting the current and the next section of the CAD model onto a horizontal plane, computing the union and the intersection of the sections to get the outer and the inner boundary, and then blending the boundaries using a rotary vector through a proper inner point in the intersection to achieve the current layer's scanning contour. The method can realize the layer's cusp distribution of the mixed tolerance with unequal cusp height, expanding the connotation of the mixed tolerance.展开更多
Multi-layer pressure vessels are widely used in every field of high pressure technology.For the purpose of enhancing a vessels' load bearing capacity,a beneficial process like shrink-fit is usually employed.However,f...Multi-layer pressure vessels are widely used in every field of high pressure technology.For the purpose of enhancing a vessels' load bearing capacity,a beneficial process like shrink-fit is usually employed.However,few documents on optimum design for multi-layer shrink-fit vessels made of different strength materials can be found,available data are mainly on two-layer vessels.In this paper,an optimum design approach is developed for shrink-fit multi-layer vessels under ultrahigh pressure by using different materials.Maximum shear stress theory is applied as design criteria.The inner and outer radii of a multi-layer vessel,as well as the material of each layer,are assumed to be known.The optimization mathematical model is,thereby,built.Lagrange multipliers method is required to obtain the optimal design formula of wall ratio(ratio of outer to inner radii) of each layer,from which the optimum formulas of shrinkage pressure and radial interference are derived with the superposition principle employed.These formulas are applicable for the optimization design of all multi-layer vessels made of different materials,or same materials.The formulas of the limit working pressure and the contact pressure show that the optimum wall ratio of each layer and limit working pressure are only related to all selected material strength and unrelated to the position of the layer placement in the vessel.However,shrinkage pressure is related to the position of the layer placement in the vessel.Optimization design of an open ended shrink-fit three-layer vessel using different materials and comparisons proved that the optimized multi-layer vessels have outstanding characteristics of small radial interference and are easier for assembly.When the stress of each layer is distributed more evenly and appropriately,the load bearing capability and safety of vessels are enhanced.Therefore,this design is material-saving and cost-effective,and has prospect of engineering application.展开更多
Existing errors in the structure and kinematic parameters of multi-legged walking robots,the motion trajectory of robot will diverge from the ideal sports requirements in movement.Since the existing error compensation...Existing errors in the structure and kinematic parameters of multi-legged walking robots,the motion trajectory of robot will diverge from the ideal sports requirements in movement.Since the existing error compensation is usually used for control compensation of manipulator arm,the error compensation of multi-legged robots has seldom been explored.In order to reduce the kinematic error of robots,a motion error compensation method based on the feedforward for multi-legged mobile robots is proposed to improve motion precision of a mobile robot.The locus error of a robot body is measured,when robot moves along a given track.Error of driven joint variables is obtained by error calculation model in terms of the locus error of robot body.Error value is used to compensate driven joint variables and modify control model of robot,which can drive the robots following control model modified.The model of the relation between robot's locus errors and kinematic variables errors is set up to achieve the kinematic error compensation.On the basis of the inverse kinematics of a multi-legged walking robot,the relation between error of the motion trajectory and driven joint variables of robots is discussed.Moreover,the equation set is obtained,which expresses relation among error of driven joint variables,structure parameters and error of robot's locus.Take MiniQuad as an example,when the robot MiniQuad moves following beeline tread,motion error compensation is studied.The actual locus errors of the robot body are measured before and after compensation in the test.According to the test,variations of the actual coordinate value of the robot centroid in x-direction and z-direction are reduced more than one time.The kinematic errors of robot body are reduced effectively by the use of the motion error compensation method based on the feedforward.展开更多
Metal/intermetallic laminate composites can improve the mechanical properties of intermetallic materials using metal layers. In recent years, titanium aluminide intermetallics have received increasing attention due to...Metal/intermetallic laminate composites can improve the mechanical properties of intermetallic materials using metal layers. In recent years, titanium aluminide intermetallics have received increasing attention due to their excellent performance properties, such as high melting point, high specific strength and stiffness, and good corrosion resistance. However, the low fracture toughness of Al3Ti alloys at room temperature has greatly limited their application, and fiber or particle reinforcement has not shown a significant toughening effect. Research into the reinforcing effects of the interface and near-interface zone on the fracture behavior of Al3Ti is lacking. Ti/Al3Ti metal/intermetallic laminate composite was synthesized from titanium and aluminum foils using vacuum hot-pressed sintering technology. The microstructure of the prepared material was analyzed by scanning electron microscope and electron backscattered diffraction. Results illustrate that both Ti and Al3Ti were single-phase and there was a noticeable stress concentration on the interface. To obtain indentation and cracks, loads were applied to different locations of the composite by a microhardness tester. The growth path of the cracks was then observed under microscope, showing that crack propagation was prevented by the interface between the Ti and Al3Ti layers, and the cracks that propagated parallel to the laminate shifted to the interface. Fracture toughness of the different areas, including Al3Ti layers, interface, and near-interface zone, were measured by the indentation fracture method. The fracture toughness at and near the interface was 1.7 and 2 times that of the Al3Ti layers, respectively. Results indicate that crack blunting and crack front convolution by the laminate structure was primarily responsible for increased toughness.展开更多
This paper presents a new blind separation approach of the low order cyclostationary signals based on the cyclic periodicity of the cyclostationary signal.The goal of the method is extracting the hidden periodicity an...This paper presents a new blind separation approach of the low order cyclostationary signals based on the cyclic periodicity of the cyclostationary signal.The goal of the method is extracting the hidden periodicity and reducing the randomicity of cyclostationary signal and it is particularly applicable to the separation of low order cyclostationary signals.The method also demonstrates the importance of extraction of cyclostationary signals from low order to high order in turn.The effectiveness of the proposed method is finally demonstrated by computer simulation and experiment.展开更多
A Passive Acoustic Radar is presented as a necessary complement to electromagnetic wave radar, which will be expected to be an effective means for detecting cruise missiles. Acoustic characteristics of supersonic flyi...A Passive Acoustic Radar is presented as a necessary complement to electromagnetic wave radar, which will be expected to be an effective means for detecting cruise missiles. Acoustic characteristics of supersonic flying projectiles with diverse shapes are expounded via experiment. It is pointed out that simulation experiment could be implemented using bullet or shell instead of cruise missile. Based on theoretical analysis and experiment, the "acoustic fingerprint" character of cruise missile is illustrated to identify it in a strong noise environment. After establishing a locating mathematical model,the technique of acoustic embattling is utilized to resolve a problem of confirming the time of early-warning, considering the fact that velocity of sound is much slower than that of light. Thereby, a whole system of passive acoustic radar for detecting supersonic cruise missile is formed.展开更多
A layered simulation model with stairstep contour is built from AutoCAD through extruding each successive section contour having been compensated in dimensions to meet the application requirements of the RP part. In s...A layered simulation model with stairstep contour is built from AutoCAD through extruding each successive section contour having been compensated in dimensions to meet the application requirements of the RP part. In such a way the shape and size tolerance of the RP product could be verified beforehand promptly and precisely.展开更多
Two-dimensional(2D)mesoporous pseudocapacitive polymer/graphene heterostructures combine the advanced merits of 2D materials and mesoporous materials,possessing unique nanosheet structure,large specific surface area(S...Two-dimensional(2D)mesoporous pseudocapacitive polymer/graphene heterostructures combine the advanced merits of 2D materials and mesoporous materials,possessing unique nanosheet structure,large specific surface area(SSA),abundant oxygen/nitrogen-containing groups,desirable electrical conductivity and admirable electrochemical redox activity,and hold great potential for constructing high-performance planar micro-supercapacitors(MSCs).Herein,we demonstrate the interfacial assembly of 2D mesoporous polydopamine/graphene(mPDG)heterostructures with well-defined mesopore structure(12 nm)and adjustable thickness(7.5–14.1 nm)for planar high-energy pseudocapacitive MSCs.Attributed to medium thickness,exposed mesopore of 12 nm and large SSA of 108 m^(2)/g,the m PDG with 10.8 nm thickness reveals prominent mass capacitance of 419 F/g and impressive cycling stability with~96%capacitance retention after 5000 cycles.Furthermore,the symmetric mPDG-based MSCs with“water-in-salt”gel electrolyte present wide voltage window of 1.6 V,superior volumetric energy density of 11.5 mWh/cm^(3),outstanding flexibility and self-integration ability.Therefore,this work offers a new platform of controllably synthesizing 2D mesoporous heterostructures for high-performance MSCs.展开更多
This study focuses on establishing nonconforming crack front elements of quadrilateral and triangular types for 3D crack problems when the dual boundary element method is applied. The asymptotic behavior of the physic...This study focuses on establishing nonconforming crack front elements of quadrilateral and triangular types for 3D crack problems when the dual boundary element method is applied. The asymptotic behavior of the physical variables in the area near the crack front is fully considered in the construction of the shape function. In the developed quadrilateral and triangular crack front elements, the asymptotic term, which captures the asymptotic behavior of the physical variable, is multiplied directly by the conventional Lagrange shape function to form a new crack front shape function. Several benchmark numerical examples that consider pennyshaped cracks and straight-edge crack problems are presented to illustrate the validity and efficiency of the developed crack front elements.展开更多
Based on the optical properties of rare earth fluorescence materials, a set of fluorescence optical fiber systems was designed. The system selects the emitting LED, which is economical and practical as a light source....Based on the optical properties of rare earth fluorescence materials, a set of fluorescence optical fiber systems was designed. The system selects the emitting LED, which is economical and practical as a light source. The experiment of the emission and excitation optical spectrum, decay curve of fluorescence and residuals for several sensitive materials confirms the match of Y2O2S:Eu using the light source and the feasibility of the system. The rare earth material Y2O2S:Eu is selected as the material candidate for being the most sensitive.展开更多
文摘Cold-rolled 2024-T3 sheet alloy was subjected to bobbin-tool friction stir welding (BTFSW). The microstructural characteristics and mechanical properties of the nugget zone in the as-welded state were investigated. The results show that the equiaxed grain size of BTFSW 2024-T3 alloy decreases from 7.6 to 2.8 μm as the welding speed is increased from 80 to 120 mm/min; in addition, fine grains are generated in the nugget zone and the size distribution is non-uniform. All A12CuMg (S') precipitates dissolve into the A1 matrix, whereas Mn-rich phases confirmed as T phases (Al20CuEMn3, A16Mn, or AlaMn) remain unchanged. The optimized parameters for BTFSW are veri- fied as the rotation speed of 350 r/min and the travel speed of 100 mm/min. The variations in precipitation and dislocation play more impor- tant roles than grain size in the nugget zone with respect to influencing the mechanical properties during the BTFSW process. After the BTFSW process, the fracture mode of base material 2024-T3 alloy transforms from ductile rupture to ductile-brittle mixed fi'acture.
基金The authors gratefully acknowledge the financial support from National Natural Science Foundation of China(No.11602230)the Program for Innovative Research Team in Science and Technology in the University of Henan Province(No.18IRTSTHN015)Key Scientific Projects of University in Henan Province(20B430021).
文摘The Al3Ti compound has potential application in the high temperature structure materials due to its low density,high strength and stiffness.The mechanical behaviors of the material under different loading rates were studied using compression tests.The results indicate that Al3Ti is a typical brittle material and its compressive strength is dependent on the strain rate.Therefore,a series of rate-dependent constitutive equations are needed to describe its mechanical behaviors accurately.However,it is still short of professional research on the material model for Al3Ti.In this study,the mate rial model was developed on the basis of JH-2 constitutive equations using the experimental data.The model was then applied in simulating the impact process of Ti/Al3Ti metal-intermetallic laminate composites so as to validate the established model.Good agreement between simulation and experiment results shows the constitutive model predict the material responses under high rate and large deformation accurately.This work provides more support for the theoretical and numerical research on the intermetallic.
基金Acknowledgments The authors wish to thank the National Natural Science Foundation of China (Grant No. 51005234 and 50905180), the Foundation of China University of Mining and Technology (Grant No. 2009A056) and the Natural Science Foundation of Jiangsu Province (Grant No. BK2008005).
文摘Titanium cermets were successfully synthesized on the surface of biomedical grade titanium alloys by using sequential carburization method. The mechanical properties such as hardness, fracture toughness and plasticity were measured to estimate the potential application of titanium cermets. The results show that after carburization the surface hardness of titanium cermets was 778 HV, with a significant improvement of 128% compared with that of titanium alloys. In addition, the fracture toughness of titanium cermets was 21.5 × 10^6 Pa.m^1/2, much higher than that of other ceramics. Furthermore, the analysis of the loading-unloading curve in the nanoindentation test also indicates that the plasticity of titanium cermet reached 32.1%, a relatively high value which illustrates the combination of the metal and ceramics properties. The results suggest that sequential carburization should be an efficient way to produce titanium cermets with hard surface, high toughness and plasticity.
基金Project 07KJB430116 supported by the Natural Science Foundation of High University in Jiangsu Province
文摘Using ANSYS software, we developed a modeling program for several kinds of wire ropes with metal cores and built a geometric model for the 6×19 IWS wire rope. Through proper grid partitioning, a finite element model for calculating the deforma-tion of wire rope was obtained. Completely constraining one end of the wire rope and applying an axial force to the other end, we established the boundary conditions for solving the model. In addition, we numerically simulated the stress and deformation of the wire, obtaining the deformation distribution of each wire within the wire rope under different laying directions. At the end, a tensile test of the 6×19 IWS wire rope was carried out and the results of simulation and experiment compared.
基金Supported by National Natural Science Foundation-Guangdong Collaborative Fund Key Program(Grant No.U12012081)
文摘The progressive cutting based on auxiliary paths is an effective machining method for the material accumulating region inside the mould pocket. But the method is commonly based on the radial depth of cut as the control parameter, further more there is no more appropriate adjustment and control approach. The end-users often fall to set the parameter correctly, which leads to excessive tool load in the process of actual machining. In order to make more reasonable control of the machining load and toolpath, an engagement angle modeling method for multiplecircle continuous machining is presented. The distribution mode of multiple circles, dynamic changing process of engagement angle, extreme and average value of engage- ment angle are carefully considered. Based on the engagement angle model, numerous application techniques for mould pocket machining are presented, involving the calculation of the milling force in multiple-circle continuous machining, and rough and finish machining path planning and load control for the material accumulating region inside the pocket, and other aspects. Simulation and actual machining experiments show that the engagement angle modeling method for multiple-circle continuous machining is correct and reliable, and the related numerous application techniques for pocket machining are feasible and effective. The proposed research contributes to the analysis and control tool load effectively and tool-path planning reasonably for the material accumulating region inside the mould pocket.
文摘It is illustrated that there exists an inflection circle on the linkage rigid body by the principle of relative motion. Confirmed methods of the inflection circle, curvature radius and curvature center of the point track on the linkage rigid body are given in the case of the different contact type of move instantaneous center line and static instantaneous center line. The regularity of distribution of curvature radius and curvature center of the point track is researched. The identification methods called determination parameters and auxiliary vertical line of the diameter and direction of the inflection circle in the four bar mechanism are pointed out. A design method of the crane hoisting mechanism is discussed in the end of this paper.
基金Funded by the National Science Foundation of China(50465003)the Project Funded by Science and Technology Department of Jiangxi Province,China(20061B0102200)
文摘The microstructure distribution rule of semi-solid AZ91D alloy treated by ultrasonic was researched, and mechanical properies of specimens before and after ultrasonic treatment were investigated further.Semi-solid AZ91D melt specimens were processed by ultrasonic under different powers, and its microstructures and mechanical properties at different sampling points in specimens were obtained. The experimental results show that the microstructure of AZ91D alloy at different sampling points under the same ultrasonic power is different in grain size and shape, and there is also great difference among their microstructures at the same sampling point under different ultrasonic powers. AZ91D alloy treated by ultrasonic can obtain increment in both tensile strength and plasticity. Under same ultrasonic power, mechanical properties of specimen at different sampling points have obvious difference, and regularity for change of mechanical properties everywhere is similar to regularity for change of grain size and shape everywhere.
基金Supported by College Science Foundation of Jiangsu (08KJB460006)
文摘Aiming at the geometrical features of different containment relationships in Rapid Prototyping (RP), a general method of achieving the RP layer's cusp distribution of the positive, negative and mixed tolerance is proposed to meet the part's different applications. The procedure is executed by projecting the current and the next section of the CAD model onto a horizontal plane, computing the union and the intersection of the sections to get the outer and the inner boundary, and then blending the boundaries using a rotary vector through a proper inner point in the intersection to achieve the current layer's scanning contour. The method can realize the layer's cusp distribution of the mixed tolerance with unequal cusp height, expanding the connotation of the mixed tolerance.
基金supported by Key Scientific Research Project of Baoji University of Arts and Sciences of China (Grant No.ZK0727)Shanxi Provincial Special Foundation Project of Key Discipline Construction of China
文摘Multi-layer pressure vessels are widely used in every field of high pressure technology.For the purpose of enhancing a vessels' load bearing capacity,a beneficial process like shrink-fit is usually employed.However,few documents on optimum design for multi-layer shrink-fit vessels made of different strength materials can be found,available data are mainly on two-layer vessels.In this paper,an optimum design approach is developed for shrink-fit multi-layer vessels under ultrahigh pressure by using different materials.Maximum shear stress theory is applied as design criteria.The inner and outer radii of a multi-layer vessel,as well as the material of each layer,are assumed to be known.The optimization mathematical model is,thereby,built.Lagrange multipliers method is required to obtain the optimal design formula of wall ratio(ratio of outer to inner radii) of each layer,from which the optimum formulas of shrinkage pressure and radial interference are derived with the superposition principle employed.These formulas are applicable for the optimization design of all multi-layer vessels made of different materials,or same materials.The formulas of the limit working pressure and the contact pressure show that the optimum wall ratio of each layer and limit working pressure are only related to all selected material strength and unrelated to the position of the layer placement in the vessel.However,shrinkage pressure is related to the position of the layer placement in the vessel.Optimization design of an open ended shrink-fit three-layer vessel using different materials and comparisons proved that the optimized multi-layer vessels have outstanding characteristics of small radial interference and are easier for assembly.When the stress of each layer is distributed more evenly and appropriately,the load bearing capability and safety of vessels are enhanced.Therefore,this design is material-saving and cost-effective,and has prospect of engineering application.
基金supported by National Natural Science Foundation of China (Grant Nos. 50675079,50875246)Program for Innovative Research Team (in Science and Technology) in University of Henan Province,China
文摘Existing errors in the structure and kinematic parameters of multi-legged walking robots,the motion trajectory of robot will diverge from the ideal sports requirements in movement.Since the existing error compensation is usually used for control compensation of manipulator arm,the error compensation of multi-legged robots has seldom been explored.In order to reduce the kinematic error of robots,a motion error compensation method based on the feedforward for multi-legged mobile robots is proposed to improve motion precision of a mobile robot.The locus error of a robot body is measured,when robot moves along a given track.Error of driven joint variables is obtained by error calculation model in terms of the locus error of robot body.Error value is used to compensate driven joint variables and modify control model of robot,which can drive the robots following control model modified.The model of the relation between robot's locus errors and kinematic variables errors is set up to achieve the kinematic error compensation.On the basis of the inverse kinematics of a multi-legged walking robot,the relation between error of the motion trajectory and driven joint variables of robots is discussed.Moreover,the equation set is obtained,which expresses relation among error of driven joint variables,structure parameters and error of robot's locus.Take MiniQuad as an example,when the robot MiniQuad moves following beeline tread,motion error compensation is studied.The actual locus errors of the robot body are measured before and after compensation in the test.According to the test,variations of the actual coordinate value of the robot centroid in x-direction and z-direction are reduced more than one time.The kinematic errors of robot body are reduced effectively by the use of the motion error compensation method based on the feedforward.
基金This work was financially supported by the National Natural Science Foundation of China(No.11602230)the Program for Innovative Research Team in Science and Technology in University of Henan Province(No.18IRTSTHN015)+1 种基金the Key Scientific Projects of University in Henan Province(No.20B430021)the Young talent promotion project of Henan Province(No.2019HYTP002).
文摘Metal/intermetallic laminate composites can improve the mechanical properties of intermetallic materials using metal layers. In recent years, titanium aluminide intermetallics have received increasing attention due to their excellent performance properties, such as high melting point, high specific strength and stiffness, and good corrosion resistance. However, the low fracture toughness of Al3Ti alloys at room temperature has greatly limited their application, and fiber or particle reinforcement has not shown a significant toughening effect. Research into the reinforcing effects of the interface and near-interface zone on the fracture behavior of Al3Ti is lacking. Ti/Al3Ti metal/intermetallic laminate composite was synthesized from titanium and aluminum foils using vacuum hot-pressed sintering technology. The microstructure of the prepared material was analyzed by scanning electron microscope and electron backscattered diffraction. Results illustrate that both Ti and Al3Ti were single-phase and there was a noticeable stress concentration on the interface. To obtain indentation and cracks, loads were applied to different locations of the composite by a microhardness tester. The growth path of the cracks was then observed under microscope, showing that crack propagation was prevented by the interface between the Ti and Al3Ti layers, and the cracks that propagated parallel to the laminate shifted to the interface. Fracture toughness of the different areas, including Al3Ti layers, interface, and near-interface zone, were measured by the indentation fracture method. The fracture toughness at and near the interface was 1.7 and 2 times that of the Al3Ti layers, respectively. Results indicate that crack blunting and crack front convolution by the laminate structure was primarily responsible for increased toughness.
基金Doctor Foundations of Henan polytechnic university(648391)NSFC(U1304523,51205371)
文摘This paper presents a new blind separation approach of the low order cyclostationary signals based on the cyclic periodicity of the cyclostationary signal.The goal of the method is extracting the hidden periodicity and reducing the randomicity of cyclostationary signal and it is particularly applicable to the separation of low order cyclostationary signals.The method also demonstrates the importance of extraction of cyclostationary signals from low order to high order in turn.The effectiveness of the proposed method is finally demonstrated by computer simulation and experiment.
文摘A Passive Acoustic Radar is presented as a necessary complement to electromagnetic wave radar, which will be expected to be an effective means for detecting cruise missiles. Acoustic characteristics of supersonic flying projectiles with diverse shapes are expounded via experiment. It is pointed out that simulation experiment could be implemented using bullet or shell instead of cruise missile. Based on theoretical analysis and experiment, the "acoustic fingerprint" character of cruise missile is illustrated to identify it in a strong noise environment. After establishing a locating mathematical model,the technique of acoustic embattling is utilized to resolve a problem of confirming the time of early-warning, considering the fact that velocity of sound is much slower than that of light. Thereby, a whole system of passive acoustic radar for detecting supersonic cruise missile is formed.
基金Supported by College Science Foundation of Jiangsu(07KJB460113)
文摘A layered simulation model with stairstep contour is built from AutoCAD through extruding each successive section contour having been compensated in dimensions to meet the application requirements of the RP part. In such a way the shape and size tolerance of the RP product could be verified beforehand promptly and precisely.
基金supported by the National Natural Science Foundation of China(Nos.22109040,22125903,22279137)Top-Notch Talent Program of Henan Agricultural University(No.30500947)+5 种基金the“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA21000000)DICP(No.DICP I202032)Dalian National Laboratory for Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(Nos.DNL202016,DNL202019)International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program)(No.YJ20210311)China Postdoctoral Science Foundation(No.2021M703145)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(Nos.YLU-DNL Fund 2021002,YLU-DNL Fund 2021009)。
文摘Two-dimensional(2D)mesoporous pseudocapacitive polymer/graphene heterostructures combine the advanced merits of 2D materials and mesoporous materials,possessing unique nanosheet structure,large specific surface area(SSA),abundant oxygen/nitrogen-containing groups,desirable electrical conductivity and admirable electrochemical redox activity,and hold great potential for constructing high-performance planar micro-supercapacitors(MSCs).Herein,we demonstrate the interfacial assembly of 2D mesoporous polydopamine/graphene(mPDG)heterostructures with well-defined mesopore structure(12 nm)and adjustable thickness(7.5–14.1 nm)for planar high-energy pseudocapacitive MSCs.Attributed to medium thickness,exposed mesopore of 12 nm and large SSA of 108 m^(2)/g,the m PDG with 10.8 nm thickness reveals prominent mass capacitance of 419 F/g and impressive cycling stability with~96%capacitance retention after 5000 cycles.Furthermore,the symmetric mPDG-based MSCs with“water-in-salt”gel electrolyte present wide voltage window of 1.6 V,superior volumetric energy density of 11.5 mWh/cm^(3),outstanding flexibility and self-integration ability.Therefore,this work offers a new platform of controllably synthesizing 2D mesoporous heterostructures for high-performance MSCs.
基金the National Natural Science Foundation of China (Grant Nos. 11602229 and 11602082)Hunan Provincial Natural Science Foundation of China (Grant No. 2017JJ3061)Key Scientific and Technological Project of Henan Province (Grant No. 192102210227).
文摘This study focuses on establishing nonconforming crack front elements of quadrilateral and triangular types for 3D crack problems when the dual boundary element method is applied. The asymptotic behavior of the physical variables in the area near the crack front is fully considered in the construction of the shape function. In the developed quadrilateral and triangular crack front elements, the asymptotic term, which captures the asymptotic behavior of the physical variable, is multiplied directly by the conventional Lagrange shape function to form a new crack front shape function. Several benchmark numerical examples that consider pennyshaped cracks and straight-edge crack problems are presented to illustrate the validity and efficiency of the developed crack front elements.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50775198, 60102002, 60974115 and 60977061)the Youth Foundation of Education Bureau of Hebei Province (Grant No.2011225)
文摘Based on the optical properties of rare earth fluorescence materials, a set of fluorescence optical fiber systems was designed. The system selects the emitting LED, which is economical and practical as a light source. The experiment of the emission and excitation optical spectrum, decay curve of fluorescence and residuals for several sensitive materials confirms the match of Y2O2S:Eu using the light source and the feasibility of the system. The rare earth material Y2O2S:Eu is selected as the material candidate for being the most sensitive.