A three-year aeropalynological study was carried out in the month of August for each of the three years 2005, 2006 and 2007 in the Beijing Olympic Park. A total of 19550 pollen grains were counted (15057 grains in 20...A three-year aeropalynological study was carried out in the month of August for each of the three years 2005, 2006 and 2007 in the Beijing Olympic Park. A total of 19550 pollen grains were counted (15057 grains in 2005, 2717 in 2006 and 1776 in 2007) for the following taxa: Gramineae, Chenopodiaceae, Humulus L., Artemisia L., Ambrosia L. and Pinus L. The analysis indicated that in the three consecutive years of 2005-007, airborne pollen types and daily number of pollen in August in the Beijing Olympic Park were closely related to environmental change and vegetation composition. The daily variations of airborne pollen displayed similar patterns in August in each of the three years, which were affected positively by periods of daily sunshine, negatively by daily relative humidity and daily precipitation. Continuously high daily temperatures and stable daily wind speeds seemed to have little effect on the fluctuation of airborne pollen.展开更多
[Objective] The study aimed to discuss the relationship of cardiovascular and cerebrovascular diseases to meteorological conditions and forecast method in Nanjing City. [Method] Based on daily cases of cardiovascular ...[Objective] The study aimed to discuss the relationship of cardiovascular and cerebrovascular diseases to meteorological conditions and forecast method in Nanjing City. [Method] Based on daily cases of cardiovascular and cerebrovascular diseases from a hospital in Nanjing City as well as daily meteorological data from Nanjing Meteorological Station from January 2003 to July 2008, the monthly and seasonal variations in quantity of patients suffedng from cardiovascular and cerebrovascular diseases in Nanjing City were analyzed firstly, and then the relationship between mete- orological elements and incidence of the diseases was discussed, finally the forecast model for the incidence of the diseases was established using the stepwise regression method. [Result] Cardiovascular and cerebrovascular diseases in Nanjing City happened all the year round, and the inci- dance was high in the seasonal transition phase from autumn to winter. Daily incidence of the diseases in Nanjing City correlated negatively with dai- ly maximum, minimum and average vapor pressure, daily minimum relative humidity and so forth, but their incidence had positive correlations with diumal range of daily temperature, daily maximum, minimum and average pressure. Daily average number of patients suffering from the diseases obviously correlated with daily average temperature, daily maximum vapor pressure and daily average relative humidity. [ Conclusion] The research could provide scientific references for the prevention and forecast of cardiovascular and cerebrovascular diseases in future.展开更多
1 INTRODUCTION Meteorological factors, especially precipitation, have close links with geological calamities. According to the statistics, more than 70% of the geological calamities in China occur in rainy seasons. Ma...1 INTRODUCTION Meteorological factors, especially precipitation, have close links with geological calamities. According to the statistics, more than 70% of the geological calamities in China occur in rainy seasons. Many researchers are thus motivated to study extensively to determine their relationship in the prediction of geological calamltles . They either rely on single measurements of rainfall to seek basis for widespread occurrence of geological calamities or treat antecedent diurnal rainfall with equal importance, though with account of the accumulated effect of preceding rainfall. Furthermore, it is common for quite a number of models to use the rainfall recorded at hydrological or meteorological rain gauges as the one for the interested day, reducing the time validity of the prediction. In our analysis, it is found that the landslides and debris flows in Zhejiang province are related with the antecedent precipitation (but not by a simple accumulation). Critical amounts of accumulated and effective rainfall are used in this work to tell whether there will be geological calamities. Moreover, MM5 is used to forecast rainfall, taking account in equations of the predictand for landslides and debris flows, in attempts to predict the appearance of meteorological condition for geological calamities and improve the rationality of forecasting procedures and time validity of forecasts.展开更多
Based on the meteorological and geological disaster data, ground observation data set, CLDAS grid point data set, and EC, BJ and other model product data during 2008-2020, the temporal and spatial distribution charact...Based on the meteorological and geological disaster data, ground observation data set, CLDAS grid point data set, and EC, BJ and other model product data during 2008-2020, the temporal and spatial distribution characteristics of meteorological and geological disasters and precipitation were analyzed, and the causes of the occurrence of meteorological geological disasters and the deviation of model precipitation forecast were revealed. Besides, an objective precipitation forecast system and a forecast and early warning system of meteorological and geological disasters were established. The results show that meteorological and geological disasters and precipitation were mainly concentrated from May to October, of which continuous precipitation appeared frequently in June and September, and convective precipitation was mainly distributed in July-August;the occurrence frequency of meteorological and geological disasters was basically consistent with the distribution of accumulated precipitation and short-term heavy precipitation, and they were mainly concentrated in the southern and eastern parts of Qinghai. Meteorological and geological disasters were basically caused by heavy rain and above, and meteorological and geological disasters were divided into three types: continuous precipitation(type I), short-term heavy precipitation(type II) and mixed precipitation(type III). For type I, the early warning conditions of meteorological and geological disasters in Qinghai are as follows: if the soil volumetric water content difference between 0-10 and 10-40 cm is ≤0.03 mm^(3)/mm^(3), or the soil volumetric water content at one of the depths is ≥0.25 mm^(3)/mm^(3), the future effective precipitation reaches 8.4 mm in 1 h, 10.2 mm in 2 h, 11.5 mm in 3 h, 14.2 mm in 6 h, 17.7 mm in 12 h, and 18.2 mm in 24 h, and such warning conditions are mainly used in Yushu, Guoluo, southern Hainan, southern Huangnan and other places. For type II, when the future effective precipitation is up to 11.5 mm in 1 h, 14.9 mm in 2 h, 16.2 mm in 3 h, 19.9 mm in 6 h, 25.3 mm in 12 h, and 26.3 mm in 24 h, such precipitation thresholds are mainly used in Hainan, Huangnan, and eastern Guoluo;as it is up to 13.3 mm in 1 h, 15.5 mm in 2 h, 16.6 mm in 3 h, 19.9 mm in 6 h, 31.1 mm in 12 h, and 34.0 mm in 24 h, such precipitation thresholds are mainly used in Hehuang valley. The precipitation thresholds of type III are between type I and type II, and closer to that of type II;such precipitation thresholds are mainly used in Hainan, Huangnan, and northern Guoluo. The forecasting ability of global models for heavy rain and above was not as good as that of mesoscale numerical prediction model, and global models had a wet bias for small-scale precipitation and a dry bias for large-scale precipitation;meso-scale models had a significantly larger precipitation bias. The forecast ability of precipitation objective forecast system constructed by frequency matching and multi-model integration has improved. At the same time, the constructed grid forecast and early warning system of meteorological and geological disasters is more precise and accurate, and is of instructive significance for the forecast and early warning of meteorological and geological disasters.展开更多
The visibility characteristics and meteorological conditions of a sea fog process on 27</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-fa...The visibility characteristics and meteorological conditions of a sea fog process on 27</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> February, 2016 are analyzed and the heavy fog process is simulated by the Weather Research and Forecasting (WRF) model in this paper. The forecast results show that the visibility in Qingdao coastal area is light fog on the night of the 26</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;">. In the WRF simulation, it can be observed from the sea-level pressure that the wind direction of Qingdao and the coastal area turned southerly with the eastward movement of the low pressure system on surface from 1200 UTC to 1800 UTC on the 26</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;">. A large amount of water vapor brought by easterly and southerly wind provides sufficient water vapor conditions for the formation and development of the sea fog. At 975 hPa, there is a strong warm tongue over Shandong Peninsula at 0600 UTC on the 26</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;">, w</span><span><span style="font-family:Verdana;">hile the offshore is affected by the cold tongue, where the horizontal temperature gradient is large and there is a strong baroclinicity. At 850 hPa, there is a weak warm ridge over Qingdao at 1200 UTC on the 26</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;">, which means that it is an inversion layer, which is conducive to the maintenance of fog.展开更多
The air pollution in Urumqi which is located on the northern slope of the Tianshan Mountains in northwestern China,is very serious in winter.Of particular importance is the influence of terrain-induced shallow foehn,k...The air pollution in Urumqi which is located on the northern slope of the Tianshan Mountains in northwestern China,is very serious in winter.Of particular importance is the influence of terrain-induced shallow foehn,known locally as elevated southeasterly gale(ESEG).It usually modulates atmospheric boundary layer structure and wind field patterns and produces favorable meteorological conditions conducive to hazardous air pollution.During 2013-17,Urumqi had an average of 50 d yr-1 of heavy pollution(daily average PM2.5 concentration>150μg m-3),of which 41 days were in winter.The majority(71.4%)of heavy pollution processes were associated with the shallow foehn.Based on microwave radiometer,wind profiler,and surface observations,the surface meteorological fields and boundary layer evolution during the worst pollution episode in Urumqi during 16-23 February 2013 are investigated.The results illustrate the significant role of shallow foehn in the building,strengthening,and collapsing of temperature inversions.There were four wind field patterns corresponding to four different phases during the whole pollution event.The most serious pollution phase featured shallow foehn activity in the south of Urumqi city and the appearance of an intense inversion layer below 600 m.Intense convergence caused by foehn and mountain-valley winds was sustained during most of the phase,resulting in pollutants sinking downward to the lower boundary layer and accumulating around urban area.The key indicators of such events identified in this study are highly correlated to particulate matter concentrations and could be used to predict heavy pollution episodes in the feature.展开更多
[ Objective] The study aimed to discuss effects of major meteorological disasters on national economic construction as well as people's lives and property in Ningxia. [Method] Based on data about meteorological disas...[ Objective] The study aimed to discuss effects of major meteorological disasters on national economic construction as well as people's lives and property in Ningxia. [Method] Based on data about meteorological disasters over the past 50 years and their direct economic losses dur- ing 2003-2011 in Ningxia, effects of major meteorological disasters on national economic construction as well as people's lives and property were discussed, and some defense countermeasures of meteorological disasters were put forward. [ Result] In Ningxia, drought, rainstorm and flood, gale and dust, hail and thunderstorm had done considerable harm to national economic construction as well as people's lives and property. Since 2003, total direct economic losses caused by all meteorological disasters in Ningxia changed from 1.28 billion to 1.97 billion yuan and accounted for 0.8% -3.1% of GDP of Ningxia. Among them, the direct economic losses caused by drought were the highest and annual average value during 2003 -2011 reached 1.22 billion yuan, accounting for 77.6% of total direct economic losses caused by all meteorological disasters in Ningxia. The direct economic losses caused by rainstorm, flood and hail ranked second, and their annual average values were 0.11 billion and 0.12 billion yuan, accounting for 7.4% and 7.6% of total direct economic losses. Meanwhile, annual average direct economic losses caused by thunderstorm in Ningxia reached 1.18 million yuan. In addition, annual average value of the direct economic losses caused by gale and dust totaled 0.01 billion yuan, with a proportion of 1.0%. [ Conclusion] The research could provide scientific references for the defense of meteorological disasters in future.展开更多
The overall design and system functions of the meteorological service integrated service system of the Yangtze River Basin are introduced. The system is based on CIMISS (National Integrated Meteorological Information ...The overall design and system functions of the meteorological service integrated service system of the Yangtze River Basin are introduced. The system is based on CIMISS (National Integrated Meteorological Information Sharing Platform) for expansion and construction, integrating key correction forecasts, weather model comparisons, flood predictions, etc. The forecasting technology, starting from the flood control and drought relief of the service basin and the comprehensive dispatch of the reservoir, has realized the monitoring of water and rain conditions, the production of key business products, the production and distribution of integrated service products, and the quality tracking assessment. The application shows that the system can make the forecaster effectively grasp the service focus, improve the timeliness and pertinence of the service, and have a good promotion and application prospect in the basin meteorological service.展开更多
In China, decision-making meteorological services provide meteorological information for the production organization, disaster prevention and mitigation by the CPC committee, government, military leaders and decision-...In China, decision-making meteorological services provide meteorological information for the production organization, disaster prevention and mitigation by the CPC committee, government, military leaders and decision-making departments at all levels, as well as scientific decision-making in the areas of rational development and utilization of climate resources and environmental protection. In order to understand the user’s satisfaction with the decision-making meteorological service, the Shaanxi Provincial Meteorological Bureau conducted a statistical survey, and the results showed that: 1) In 2017, the satisfaction level of provincial-level decision-making meteorological services in Shaanxi, China was 92.77%. Among them, the satisfaction index of “Ministry Department Service Personnel Professional Image and Service Awareness” was 94.12%, and the “Weather Forecast Warning Accuracy” satisfaction index was 90.18%. 2) Decision-making users have become an important channel for obtaining meteorological information through meteorological websites, televisions, mobile phone text messages, APP mobile applications, broadcasting, and Meteorological Information Express. Rainstorms, floods, high temperature heat, cold winds, hail, precipitation, and lightning are still the main concerns of decision-makers. 3) The focus on haze and UV intensity is 15% and 8% higher than that of 2016. The next 1 - 3 days weather forecast and 0 - 6 hours short-term forecast are still the most valuable forecast products for decision-making users. Compared with 2016, the next 1 - 3 days weather forecast, future 0 - 6 hours forecast, traffic meteorology, precipitation probability, and air quality forecast increase by 1% to 14% in the year of 2017.展开更多
On January 1,2021,the newly revised Archives Law of the People's Republic of China(hereinafter referred to as the new Archives Law)was officially implemented,providing legal protection for archive management,archi...On January 1,2021,the newly revised Archives Law of the People's Republic of China(hereinafter referred to as the new Archives Law)was officially implemented,providing legal protection for archive management,archive work and archive undertaking in the new era.Starting from the relevant provisions of the new Archives Law,the collection of precious meteorological archives was discussed,and it is believed that only on the basis of clarifying the definition,collection responsibility subject,collection scope,ways and methods of precious meteorological archives can the relevant units be convenient to practice and obtain substantive collection effect.展开更多
Based on the comprehensive ground observation and the remote sensing data of Fengyun-4 satellite of a typical sand-dust weather process in the eastern part of the Qinghai-Tibet Plateau from November 26 to 27,2018,the ...Based on the comprehensive ground observation and the remote sensing data of Fengyun-4 satellite of a typical sand-dust weather process in the eastern part of the Qinghai-Tibet Plateau from November 26 to 27,2018,the weather situation,air mass trajectory,meteorological conditions,and pollution characteristics of this process were analyzed.The results show that the floating dust process was caused by the transmission of the northwest cold air flow in the Tarim Desert area,which caused dust and sand mixed with the Qaidam Desert particles to be transported to Xining.The wind field change caused by the difference of ground heat in the eastern plateau was a potential factor for dust transmission,and tropospheric subsidence,temperature inversion conditions,and the decrease in wind speed over Xining Station were the direct factors leading to the daily change of pollutant concentration in this process.展开更多
Recent studies have shown that deep learning(DL)models can skillfully forecast El Niño–Southern Oscillation(ENSO)events more than 1.5 years in advance.However,concerns regarding the reliability of predictions ma...Recent studies have shown that deep learning(DL)models can skillfully forecast El Niño–Southern Oscillation(ENSO)events more than 1.5 years in advance.However,concerns regarding the reliability of predictions made by DL methods persist,including potential overfitting issues and lack of interpretability.Here,we propose ResoNet,a DL model that combines CNN(convolutional neural network)and transformer architectures.This hybrid architecture enables our model to adequately capture local sea surface temperature anomalies as well as long-range inter-basin interactions across oceans.We show that ResoNet can robustly predict ENSO at lead times of 19 months,thus outperforming existing approaches in terms of the forecast horizon.According to an explainability method applied to ResoNet predictions of El Niño and La Niña from 1-to 18-month leads,we find that it predicts the Niño-3.4 index based on multiple physically reasonable mechanisms,such as the recharge oscillator concept,seasonal footprint mechanism,and Indian Ocean capacitor effect.Moreover,we demonstrate for the first time that the asymmetry between El Niño and La Niña development can be captured by ResoNet.Our results could help to alleviate skepticism about applying DL models for ENSO prediction and encourage more attempts to discover and predict climate phenomena using AI methods.展开更多
The Pearl River Delta(PRD),a tornado hotspot,forms a distinct trumpet-shaped coastline that concaves toward the South China Sea.During the summer monsoon season,low-level southwesterlies over the PRD’s sea surface te...The Pearl River Delta(PRD),a tornado hotspot,forms a distinct trumpet-shaped coastline that concaves toward the South China Sea.During the summer monsoon season,low-level southwesterlies over the PRD’s sea surface tend to be turned toward the west coast,constituting a convergent wind field along with the landward-side southwesterlies,which influences regional convective weather.This two-part study explores the roles of this unique land–sea contrast of the trumpet-shaped coastline in the formation of a tornadic mesovortex within monsoonal flows in this region.Part I primarily presents observational analyses of pre-storm environments and storm evolutions.The rotating storm developed in a lowshear environment(not ideal for a supercell)under the interactions of three air masses under the influence of the land–sea contrast,monsoon,and storm cold outflows.This intersection zone(or“triple point”)is typically characterized by local enhancements of ambient vertical vorticity and convergence.Based on a rapid-scan X-band phased-array radar,finger-like echoes were recognized shortly after the gust front intruded on the triple point.Developed over the triple point,they rapidly wrapped up with a well-defined low-level mesovortex.It is thus presumed that the triple point may have played roles in the mesovortex genesis,which will be demonstrated in Part II with multiple sensitivity numerical simulations.The findings also suggest that when storms pass over the boundary intersection zone in the PRD,the expected possibility of a rotating storm occurring is relatively high,even in a low-shear environment.Improved knowledge of such environments provides additional guidance to assess the regional tornado risk.展开更多
Accurate radar quantitative precipitation estimation(QPE)plays an essential role in disaster prevention and mitigation.In this paper,two deep learning-based QPE networks including a single-parameter network and a mult...Accurate radar quantitative precipitation estimation(QPE)plays an essential role in disaster prevention and mitigation.In this paper,two deep learning-based QPE networks including a single-parameter network and a multi-parameter network are designed.Meanwhile,a self-defined loss function(SLF)is proposed during modeling.The dataset includes Shijiazhuang S-band dual polarimetric radar(CINRAD/SAD)data and rain gauge data within the radar’s 100-km detection range during the flood season of 2021 in North China.Considering that the specific propagation phase shift(KDP)has a roughly linear relationship with the precipitation intensity,KDP is set to 0.5°km^(-1 )as a threshold value to divide all the rain data(AR)into a heavy rain(HR)and light rain(LR)dataset.Subsequently,12 deep learning-based QPE models are trained according to the input radar parameters,the precipitation datasets,and whether an SLF was adopted,respectively.The results suggest that the effects of QPE after distinguishing rainfall intensity are better than those without distinguishing,and the effects of using SLF are better than those that used MSE as a loss function.A Z-R relationship and a ZH-KDP-R synthesis method are compared with deep learning-based QPE.The mean relative errors(MRE)of AR models using SLF are improved by 61.90%,51.21%,and 56.34%compared with the Z-R relational method,and by 38.63%,42.55%,and 47.49%compared with the synthesis method.Finally,the models are further evaluated in three precipitation processes,which manifest that the deep learning-based models have significant advantages over the traditional empirical formula methods.展开更多
Evaluating long-term changes in precipitation resources is important for accurate hydrological evaluation and forecasting,water security and rational allocation of water resources.For this purpose in the Xinjiang Haba...Evaluating long-term changes in precipitation resources is important for accurate hydrological evaluation and forecasting,water security and rational allocation of water resources.For this purpose in the Xinjiang Habahe area,tree-ring specimens were collected from Picea obo-vata,Larix sibirica,and Betula platyphylla to establish a tree-ring width chronology,which was used to analyse a correlation with the average temperature and precipitation per month for 1958-2016.Based on correlation coefficients for monthly temperature and precipitation with the chro-nology of tree-ring widths,radial tree growth was mainly restricted by precipitation,and tree-ring width chronology was significantly correlated with overall precipitation from the previous July to the next June(r=0.641,P<0.01).The above results were used to establish a transformation equa-tion,and the overall precipitation from the previous July to the following June from 1800 to 2016 in Habahe was reconstructed after adjusted degrees of freedom,and obtain an explanatory rate of the variation up to 41.1%(40.0%).In addition to the reliability of the reconstructed values,the stability of the conversion function was determined via the“leave-one-out”method,which is commonly used in research on tree rings,and by cross-checking the conversion function with the reduced error value(RE),product mean test(t),with a sign test(ST).During the last 217 years,there were nine dry periods:1803-1829,1861-1865,1872-1885,1892-1905,1916-1923,1943-1954,1961-1966,1973-1981,and 2005-2011;and 12 wet periods:1830-1834,1836-1860,1866-1871,1886-1891,1906-1915,1925-1930,1934-1942,1955-1960,1967-1972,1982-1996,2000-2004,and 2012-2016.Comparisons of the reconstruc-tions for neighboring regions and a spatial correlation analy-sis showed that the reconstructed sequence of the present precipitation data better represented the changes in precipi-tation in Habahe.Additionally,a power spectrum analysis revealed that precipitation over the past 217 years in Habahe Province exhibited 2-5 years of quasiperiodic variation.A power spectrum analysis and wavelet analysis indicated that El Niño-Southern Oscillation influenced the precipitation cycles.This reconstruction provides more information on high-frequency precipitation,which is an important supple-ment to the existing tree-ring reconstruction of precipitation in the study area.The reconstruction of regional high-resolu-tion precipitation changes over the last several hundred years provides unique,important data for understanding regional differences in climate at the decadal-centennial scale.展开更多
Based on eddy covariance(EC) measurements during 2016–20, the effects of sky conditions on the net ecosystem productivity(NEP) over a subtropical “floating blanket ” wetland were investigated. Sky conditions were d...Based on eddy covariance(EC) measurements during 2016–20, the effects of sky conditions on the net ecosystem productivity(NEP) over a subtropical “floating blanket ” wetland were investigated. Sky conditions were divided into overcast, cloudy, and sunny conditions. On the half-hourly timescale, the daytime NEP responded more rapidly to the changes in the total photosynthetic active radiation(PARt) under overcast and cloudy skies than that under sunny skies. The increase in the apparent quantum yield under overcast and cloudy conditions was the greatest in spring and the least in summer. Additionally, lower atmospheric vapor pressure deficit(VPD) and moderate air temperature were more conducive to enhancing the apparent quantum yield under cloudy skies. On the daily timescale, NEP and the gross primary production(GPP) were higher under cloudy or sunny conditions than those under overcast conditions across seasons. The daily NEP and GPP during the wet season peaked under cloudy skies. The daily ecosystem light use efficiency(LUE) and water use efficiency(WUE) during the wet season also changed with sky conditions and reached their maximum under overcast and cloudy skies, respectively. The diffuse photosynthetic active radiation(PAR_d) and air temperature were primarily responsible for the variation of daily NEP from half-hourly to monthly timescales, and the direct photosynthetic active radiation(PAR_b) had a secondary effect on NEP. Under sunny conditions, PAR_b and air temperature were the dominant factors controlling daily NEP. While daily NEP was mainly controlled by PAR_d under cloudy and overcast conditions.展开更多
This study evaluates the performance of 16 models sourced from the coupled model intercomparison project phase 6(CMIP6)in simulating marine heatwaves(MHWs)in the South China Sea(SCS)during the historical period(1982−2...This study evaluates the performance of 16 models sourced from the coupled model intercomparison project phase 6(CMIP6)in simulating marine heatwaves(MHWs)in the South China Sea(SCS)during the historical period(1982−2014),and also investigates future changes in SCS MHWs based on simulations from three shared socioeconomic pathway(SSP)scenarios(SSP126,SSP245,and SSP585)using CMIP6 models.Results demonstrate that the CMIP6 models perform well in simulating the spatial-temporal distribution and intensity of SCS MHWs,with their multi-model ensemble(MME)results showing the best performance.The reasonable agreement between the observations and CMIP6 MME reveals that the increasing trends of SCS MHWs are attributed to the warming sea surface temperature trend.Under various SSP scenarios,the year 2040 emerges as pivotal juncture for future shifts in SCS MHWs,marked by distinct variations in changing rate and amplitudes.This is characterized by an accelerated decrease in MHWs frequency and a notably heightened increase in mean intensity,duration,and total days after 2040.Furthermore,the projection results for SCS MHWs suggest that the spatial pattern of MHWs remains consistent across future periods.However,the intensity shows higher consistency only during the near-term period(2021−2050),while notable inconsistencies are observed during the medium-term(2041−2070)and long-term(2071−2100)periods under the three SSP scenarios.During the nearterm period,the SCS MHWs are characterized by moderate and strong events with high frequencies and relatively shorter durations.In contrast,during the medium-term period,MHWs are also characterized by moderate and strong events,but with longer-lasting and more intense events under the SSP245 and SSP585 scenarios.However,in the long-term period,extreme MHWs become the dominant feature under the SSP585 scenario,indicating a substantial intensification of SCS MHWs,effectively establishing a near-permanent state.展开更多
A second rain belt sometimes occurs ahead of a frontal rain belt in the warm sector over coastal South China,leading to heavy precipitation.We examined the differences in the mesoscale characteristics and microphysics...A second rain belt sometimes occurs ahead of a frontal rain belt in the warm sector over coastal South China,leading to heavy precipitation.We examined the differences in the mesoscale characteristics and microphysics of the frontal and warm sector rain belts that occurred in South China on May 10–13,2022.The southern rain belt occurred in an environment with favorable mesoscale conditions but weak large-scale forcing.In contrast,the northern rain belt was related to low-level horizontal shear and the surface-level front.The interaction between the enhanced southeasterly winds and the rainfall-induced cold pool promoted the persistent growth of convection along the southern rain belt.The convective cell propagated east over the coastal area,where there was a large temperature gradient.The bow-shaped echo in this region may be closely related to the rear-inflow jet.By contrast,the initial convection of the northern rain belt was triggered along the front and the region of low-level horizontal shear,with mesoscale interactions between the enhanced warm-moist southeasterly airflow and the cold dome associated with the earlier rain.The terrain blocked the movement of the cold pool,resulting in the stagnation of the frontal convective cell at an early stage.Subsequently,a meso-γ-scale vortex formed during the rapid movement of the convective cell,corresponding to an enhancement of precipitation.The representative raindrop spectra for the southern rain belt were characterized by a greater number and higher density of raindrops than the northern rain belt,even though both resulted in comparable hourly rainfalls.These results help us better understand the characteristics of double rain belts over South China.展开更多
Ensemble prediction is widely used to represent the uncertainty of single deterministic Numerical Weather Prediction(NWP) caused by errors in initial conditions(ICs). The traditional Singular Vector(SV) initial pertur...Ensemble prediction is widely used to represent the uncertainty of single deterministic Numerical Weather Prediction(NWP) caused by errors in initial conditions(ICs). The traditional Singular Vector(SV) initial perturbation method tends only to capture synoptic scale initial uncertainty rather than mesoscale uncertainty in global ensemble prediction. To address this issue, a multiscale SV initial perturbation method based on the China Meteorological Administration Global Ensemble Prediction System(CMA-GEPS) is proposed to quantify multiscale initial uncertainty. The multiscale SV initial perturbation approach entails calculating multiscale SVs at different resolutions with multiple linearized physical processes to capture fast-growing perturbations from mesoscale to synoptic scale in target areas and combining these SVs by using a Gaussian sampling method with amplitude coefficients to generate initial perturbations. Following that, the energy norm,energy spectrum, and structure of multiscale SVs and their impact on GEPS are analyzed based on a batch experiment in different seasons. The results show that the multiscale SV initial perturbations can possess more energy and capture more mesoscale uncertainties than the traditional single-SV method. Meanwhile, multiscale SV initial perturbations can reflect the strongest dynamical instability in target areas. Their performances in global ensemble prediction when compared to single-scale SVs are shown to(i) improve the relationship between the ensemble spread and the root-mean-square error and(ii) provide a better probability forecast skill for atmospheric circulation during the late forecast period and for short-to medium-range precipitation. This study provides scientific evidence and application foundations for the design and development of a multiscale SV initial perturbation method for the GEPS.展开更多
As demonstrated in the first part of this study(Part I),wind-shift boundaries routinely form along the west coast of the Pearl River Delta due to the land-sea contrast of a“trumpet”shape coastline in the summer mons...As demonstrated in the first part of this study(Part I),wind-shift boundaries routinely form along the west coast of the Pearl River Delta due to the land-sea contrast of a“trumpet”shape coastline in the summer monsoon season.Through multiple numerical simulations,this article(Part II)aims to examine the roles of the trumpet-shaped coastline in the mesovortex genesis during the 1 June 2020 tornadic event.The modeling reproduced two mesovortices that are in close proximity in time and space to the realistic mesovortices.In addition to the modeled mesovortex over the triple point where strong ambient vertical vorticity was located,another mesovortex originated from an enhanced discrete vortex along an airmass boundary via shear instability.On the fine-scale storm morphology,finger-like echoes preceding hook echoes were also reproduced around the triple point.Results from sensitivity experiments suggest that the unique topography plays an essential role in modifying the vorticity budget during the mesovortex formation.While there is a high likelihood of an upcoming storm evolving into a rotating storm over the triple point,the simulation's accuracy is sensitive to the local environmental details and storm dynamics.The strengths of cold pool surges from upstream storms may influence the stretching of low-level vertically oriented vortex and thus the wrap-up of finger-like echoes.These findings suggest that the trumpet-shaped coastline is an important component of mesovortex production during the active monsoon season.It is hoped that this study will increase the situational awareness for forecasters regarding regional non-mesocyclone tornadic environments.展开更多
基金supported by the Beijing NOVA Program (No. 2005A41)the Mengya Project of the Beijing Academy of Science and Technology (No. MY2008)
文摘A three-year aeropalynological study was carried out in the month of August for each of the three years 2005, 2006 and 2007 in the Beijing Olympic Park. A total of 19550 pollen grains were counted (15057 grains in 2005, 2717 in 2006 and 1776 in 2007) for the following taxa: Gramineae, Chenopodiaceae, Humulus L., Artemisia L., Ambrosia L. and Pinus L. The analysis indicated that in the three consecutive years of 2005-007, airborne pollen types and daily number of pollen in August in the Beijing Olympic Park were closely related to environmental change and vegetation composition. The daily variations of airborne pollen displayed similar patterns in August in each of the three years, which were affected positively by periods of daily sunshine, negatively by daily relative humidity and daily precipitation. Continuously high daily temperatures and stable daily wind speeds seemed to have little effect on the fluctuation of airborne pollen.
基金Supported by the"Meteorology and Health"Subject of Shanghai Science and Technology Committee(QXJK201214)
文摘[Objective] The study aimed to discuss the relationship of cardiovascular and cerebrovascular diseases to meteorological conditions and forecast method in Nanjing City. [Method] Based on daily cases of cardiovascular and cerebrovascular diseases from a hospital in Nanjing City as well as daily meteorological data from Nanjing Meteorological Station from January 2003 to July 2008, the monthly and seasonal variations in quantity of patients suffedng from cardiovascular and cerebrovascular diseases in Nanjing City were analyzed firstly, and then the relationship between mete- orological elements and incidence of the diseases was discussed, finally the forecast model for the incidence of the diseases was established using the stepwise regression method. [Result] Cardiovascular and cerebrovascular diseases in Nanjing City happened all the year round, and the inci- dance was high in the seasonal transition phase from autumn to winter. Daily incidence of the diseases in Nanjing City correlated negatively with dai- ly maximum, minimum and average vapor pressure, daily minimum relative humidity and so forth, but their incidence had positive correlations with diumal range of daily temperature, daily maximum, minimum and average pressure. Daily average number of patients suffering from the diseases obviously correlated with daily average temperature, daily maximum vapor pressure and daily average relative humidity. [ Conclusion] The research could provide scientific references for the prevention and forecast of cardiovascular and cerebrovascular diseases in future.
基金"The pre-warning and prediction system for unexpected geological calamities in Zhejiangprovince and demonstration of its application - A "provincial key project from the science and technologybureau of Zhejianga key project "the study on forecasting system for heavy rains in Zhejiang province"
文摘1 INTRODUCTION Meteorological factors, especially precipitation, have close links with geological calamities. According to the statistics, more than 70% of the geological calamities in China occur in rainy seasons. Many researchers are thus motivated to study extensively to determine their relationship in the prediction of geological calamltles . They either rely on single measurements of rainfall to seek basis for widespread occurrence of geological calamities or treat antecedent diurnal rainfall with equal importance, though with account of the accumulated effect of preceding rainfall. Furthermore, it is common for quite a number of models to use the rainfall recorded at hydrological or meteorological rain gauges as the one for the interested day, reducing the time validity of the prediction. In our analysis, it is found that the landslides and debris flows in Zhejiang province are related with the antecedent precipitation (but not by a simple accumulation). Critical amounts of accumulated and effective rainfall are used in this work to tell whether there will be geological calamities. Moreover, MM5 is used to forecast rainfall, taking account in equations of the predictand for landslides and debris flows, in attempts to predict the appearance of meteorological condition for geological calamities and improve the rationality of forecasting procedures and time validity of forecasts.
基金Supported by the Project of Key Laboratory for Disaster Prevention and Mitigation of Qinghai Province (QFZ-2021-Z04)Project of Qinghai Science and Technology Department (2020-ZJ-739)Key Project of Qinghai Provincial Meteorological Bureau (QXZ2020-03)。
文摘Based on the meteorological and geological disaster data, ground observation data set, CLDAS grid point data set, and EC, BJ and other model product data during 2008-2020, the temporal and spatial distribution characteristics of meteorological and geological disasters and precipitation were analyzed, and the causes of the occurrence of meteorological geological disasters and the deviation of model precipitation forecast were revealed. Besides, an objective precipitation forecast system and a forecast and early warning system of meteorological and geological disasters were established. The results show that meteorological and geological disasters and precipitation were mainly concentrated from May to October, of which continuous precipitation appeared frequently in June and September, and convective precipitation was mainly distributed in July-August;the occurrence frequency of meteorological and geological disasters was basically consistent with the distribution of accumulated precipitation and short-term heavy precipitation, and they were mainly concentrated in the southern and eastern parts of Qinghai. Meteorological and geological disasters were basically caused by heavy rain and above, and meteorological and geological disasters were divided into three types: continuous precipitation(type I), short-term heavy precipitation(type II) and mixed precipitation(type III). For type I, the early warning conditions of meteorological and geological disasters in Qinghai are as follows: if the soil volumetric water content difference between 0-10 and 10-40 cm is ≤0.03 mm^(3)/mm^(3), or the soil volumetric water content at one of the depths is ≥0.25 mm^(3)/mm^(3), the future effective precipitation reaches 8.4 mm in 1 h, 10.2 mm in 2 h, 11.5 mm in 3 h, 14.2 mm in 6 h, 17.7 mm in 12 h, and 18.2 mm in 24 h, and such warning conditions are mainly used in Yushu, Guoluo, southern Hainan, southern Huangnan and other places. For type II, when the future effective precipitation is up to 11.5 mm in 1 h, 14.9 mm in 2 h, 16.2 mm in 3 h, 19.9 mm in 6 h, 25.3 mm in 12 h, and 26.3 mm in 24 h, such precipitation thresholds are mainly used in Hainan, Huangnan, and eastern Guoluo;as it is up to 13.3 mm in 1 h, 15.5 mm in 2 h, 16.6 mm in 3 h, 19.9 mm in 6 h, 31.1 mm in 12 h, and 34.0 mm in 24 h, such precipitation thresholds are mainly used in Hehuang valley. The precipitation thresholds of type III are between type I and type II, and closer to that of type II;such precipitation thresholds are mainly used in Hainan, Huangnan, and northern Guoluo. The forecasting ability of global models for heavy rain and above was not as good as that of mesoscale numerical prediction model, and global models had a wet bias for small-scale precipitation and a dry bias for large-scale precipitation;meso-scale models had a significantly larger precipitation bias. The forecast ability of precipitation objective forecast system constructed by frequency matching and multi-model integration has improved. At the same time, the constructed grid forecast and early warning system of meteorological and geological disasters is more precise and accurate, and is of instructive significance for the forecast and early warning of meteorological and geological disasters.
文摘The visibility characteristics and meteorological conditions of a sea fog process on 27</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> February, 2016 are analyzed and the heavy fog process is simulated by the Weather Research and Forecasting (WRF) model in this paper. The forecast results show that the visibility in Qingdao coastal area is light fog on the night of the 26</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;">. In the WRF simulation, it can be observed from the sea-level pressure that the wind direction of Qingdao and the coastal area turned southerly with the eastward movement of the low pressure system on surface from 1200 UTC to 1800 UTC on the 26</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;">. A large amount of water vapor brought by easterly and southerly wind provides sufficient water vapor conditions for the formation and development of the sea fog. At 975 hPa, there is a strong warm tongue over Shandong Peninsula at 0600 UTC on the 26</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;">, w</span><span><span style="font-family:Verdana;">hile the offshore is affected by the cold tongue, where the horizontal temperature gradient is large and there is a strong baroclinicity. At 850 hPa, there is a weak warm ridge over Qingdao at 1200 UTC on the 26</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;">, which means that it is an inversion layer, which is conducive to the maintenance of fog.
基金supported by Central Scientific Research and Operational Project (IDM2020001)National Natural Science Foundation of China (Grant No. 41575011)China Desert Funds (Sqj2017013, Sqj2019004)
文摘The air pollution in Urumqi which is located on the northern slope of the Tianshan Mountains in northwestern China,is very serious in winter.Of particular importance is the influence of terrain-induced shallow foehn,known locally as elevated southeasterly gale(ESEG).It usually modulates atmospheric boundary layer structure and wind field patterns and produces favorable meteorological conditions conducive to hazardous air pollution.During 2013-17,Urumqi had an average of 50 d yr-1 of heavy pollution(daily average PM2.5 concentration>150μg m-3),of which 41 days were in winter.The majority(71.4%)of heavy pollution processes were associated with the shallow foehn.Based on microwave radiometer,wind profiler,and surface observations,the surface meteorological fields and boundary layer evolution during the worst pollution episode in Urumqi during 16-23 February 2013 are investigated.The results illustrate the significant role of shallow foehn in the building,strengthening,and collapsing of temperature inversions.There were four wind field patterns corresponding to four different phases during the whole pollution event.The most serious pollution phase featured shallow foehn activity in the south of Urumqi city and the appearance of an intense inversion layer below 600 m.Intense convergence caused by foehn and mountain-valley winds was sustained during most of the phase,resulting in pollutants sinking downward to the lower boundary layer and accumulating around urban area.The key indicators of such events identified in this study are highly correlated to particulate matter concentrations and could be used to predict heavy pollution episodes in the feature.
文摘[ Objective] The study aimed to discuss effects of major meteorological disasters on national economic construction as well as people's lives and property in Ningxia. [Method] Based on data about meteorological disasters over the past 50 years and their direct economic losses dur- ing 2003-2011 in Ningxia, effects of major meteorological disasters on national economic construction as well as people's lives and property were discussed, and some defense countermeasures of meteorological disasters were put forward. [ Result] In Ningxia, drought, rainstorm and flood, gale and dust, hail and thunderstorm had done considerable harm to national economic construction as well as people's lives and property. Since 2003, total direct economic losses caused by all meteorological disasters in Ningxia changed from 1.28 billion to 1.97 billion yuan and accounted for 0.8% -3.1% of GDP of Ningxia. Among them, the direct economic losses caused by drought were the highest and annual average value during 2003 -2011 reached 1.22 billion yuan, accounting for 77.6% of total direct economic losses caused by all meteorological disasters in Ningxia. The direct economic losses caused by rainstorm, flood and hail ranked second, and their annual average values were 0.11 billion and 0.12 billion yuan, accounting for 7.4% and 7.6% of total direct economic losses. Meanwhile, annual average direct economic losses caused by thunderstorm in Ningxia reached 1.18 million yuan. In addition, annual average value of the direct economic losses caused by gale and dust totaled 0.01 billion yuan, with a proportion of 1.0%. [ Conclusion] The research could provide scientific references for the defense of meteorological disasters in future.
文摘The overall design and system functions of the meteorological service integrated service system of the Yangtze River Basin are introduced. The system is based on CIMISS (National Integrated Meteorological Information Sharing Platform) for expansion and construction, integrating key correction forecasts, weather model comparisons, flood predictions, etc. The forecasting technology, starting from the flood control and drought relief of the service basin and the comprehensive dispatch of the reservoir, has realized the monitoring of water and rain conditions, the production of key business products, the production and distribution of integrated service products, and the quality tracking assessment. The application shows that the system can make the forecaster effectively grasp the service focus, improve the timeliness and pertinence of the service, and have a good promotion and application prospect in the basin meteorological service.
文摘In China, decision-making meteorological services provide meteorological information for the production organization, disaster prevention and mitigation by the CPC committee, government, military leaders and decision-making departments at all levels, as well as scientific decision-making in the areas of rational development and utilization of climate resources and environmental protection. In order to understand the user’s satisfaction with the decision-making meteorological service, the Shaanxi Provincial Meteorological Bureau conducted a statistical survey, and the results showed that: 1) In 2017, the satisfaction level of provincial-level decision-making meteorological services in Shaanxi, China was 92.77%. Among them, the satisfaction index of “Ministry Department Service Personnel Professional Image and Service Awareness” was 94.12%, and the “Weather Forecast Warning Accuracy” satisfaction index was 90.18%. 2) Decision-making users have become an important channel for obtaining meteorological information through meteorological websites, televisions, mobile phone text messages, APP mobile applications, broadcasting, and Meteorological Information Express. Rainstorms, floods, high temperature heat, cold winds, hail, precipitation, and lightning are still the main concerns of decision-makers. 3) The focus on haze and UV intensity is 15% and 8% higher than that of 2016. The next 1 - 3 days weather forecast and 0 - 6 hours short-term forecast are still the most valuable forecast products for decision-making users. Compared with 2016, the next 1 - 3 days weather forecast, future 0 - 6 hours forecast, traffic meteorology, precipitation probability, and air quality forecast increase by 1% to 14% in the year of 2017.
基金Supported by the Key Research and Development Planning Project of Anhui Province(2022h11020002).
文摘On January 1,2021,the newly revised Archives Law of the People's Republic of China(hereinafter referred to as the new Archives Law)was officially implemented,providing legal protection for archive management,archive work and archive undertaking in the new era.Starting from the relevant provisions of the new Archives Law,the collection of precious meteorological archives was discussed,and it is believed that only on the basis of clarifying the definition,collection responsibility subject,collection scope,ways and methods of precious meteorological archives can the relevant units be convenient to practice and obtain substantive collection effect.
基金the Applied Basic Research Project of Department of Science and Technology of Qinghai Province"Formation Mechanism of Salt Dust Storm in Qaidam Basin"(2018-ZJ-723).
文摘Based on the comprehensive ground observation and the remote sensing data of Fengyun-4 satellite of a typical sand-dust weather process in the eastern part of the Qinghai-Tibet Plateau from November 26 to 27,2018,the weather situation,air mass trajectory,meteorological conditions,and pollution characteristics of this process were analyzed.The results show that the floating dust process was caused by the transmission of the northwest cold air flow in the Tarim Desert area,which caused dust and sand mixed with the Qaidam Desert particles to be transported to Xining.The wind field change caused by the difference of ground heat in the eastern plateau was a potential factor for dust transmission,and tropospheric subsidence,temperature inversion conditions,and the decrease in wind speed over Xining Station were the direct factors leading to the daily change of pollutant concentration in this process.
基金supported by the Shanghai Artificial Intelligence Laboratory and National Natural Science Foundation of China(Grant No.42088101 and 42030605).
文摘Recent studies have shown that deep learning(DL)models can skillfully forecast El Niño–Southern Oscillation(ENSO)events more than 1.5 years in advance.However,concerns regarding the reliability of predictions made by DL methods persist,including potential overfitting issues and lack of interpretability.Here,we propose ResoNet,a DL model that combines CNN(convolutional neural network)and transformer architectures.This hybrid architecture enables our model to adequately capture local sea surface temperature anomalies as well as long-range inter-basin interactions across oceans.We show that ResoNet can robustly predict ENSO at lead times of 19 months,thus outperforming existing approaches in terms of the forecast horizon.According to an explainability method applied to ResoNet predictions of El Niño and La Niña from 1-to 18-month leads,we find that it predicts the Niño-3.4 index based on multiple physically reasonable mechanisms,such as the recharge oscillator concept,seasonal footprint mechanism,and Indian Ocean capacitor effect.Moreover,we demonstrate for the first time that the asymmetry between El Niño and La Niña development can be captured by ResoNet.Our results could help to alleviate skepticism about applying DL models for ENSO prediction and encourage more attempts to discover and predict climate phenomena using AI methods.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030004)the National Natural Science Foundation of China(Grant Nos.42275006 and 42030604)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515011705)the Science and Technology Research Project for Society of Foshan(Grant No.2120001008761).
文摘The Pearl River Delta(PRD),a tornado hotspot,forms a distinct trumpet-shaped coastline that concaves toward the South China Sea.During the summer monsoon season,low-level southwesterlies over the PRD’s sea surface tend to be turned toward the west coast,constituting a convergent wind field along with the landward-side southwesterlies,which influences regional convective weather.This two-part study explores the roles of this unique land–sea contrast of the trumpet-shaped coastline in the formation of a tornadic mesovortex within monsoonal flows in this region.Part I primarily presents observational analyses of pre-storm environments and storm evolutions.The rotating storm developed in a lowshear environment(not ideal for a supercell)under the interactions of three air masses under the influence of the land–sea contrast,monsoon,and storm cold outflows.This intersection zone(or“triple point”)is typically characterized by local enhancements of ambient vertical vorticity and convergence.Based on a rapid-scan X-band phased-array radar,finger-like echoes were recognized shortly after the gust front intruded on the triple point.Developed over the triple point,they rapidly wrapped up with a well-defined low-level mesovortex.It is thus presumed that the triple point may have played roles in the mesovortex genesis,which will be demonstrated in Part II with multiple sensitivity numerical simulations.The findings also suggest that when storms pass over the boundary intersection zone in the PRD,the expected possibility of a rotating storm occurring is relatively high,even in a low-shear environment.Improved knowledge of such environments provides additional guidance to assess the regional tornado risk.
基金supported by National Key R&D Program of China(Grant No.2022YFC3003903)the S&T Program of Hebei(Grant No.19275408D),the Key-Area Research and Development Program of Guangdong Province(Grant No.2020B1111200001)+1 种基金the Key Project of Monitoring,Early Warning and Prevention of Major Natural Disasters of China(Grant No.2019YFC1510304)the Joint Fund of Key Laboratory of Atmosphere Sounding,CMA,and the Research Centre on Meteorological Observation Engineering Technology,CMA(Grant No.U2021Z05).
文摘Accurate radar quantitative precipitation estimation(QPE)plays an essential role in disaster prevention and mitigation.In this paper,two deep learning-based QPE networks including a single-parameter network and a multi-parameter network are designed.Meanwhile,a self-defined loss function(SLF)is proposed during modeling.The dataset includes Shijiazhuang S-band dual polarimetric radar(CINRAD/SAD)data and rain gauge data within the radar’s 100-km detection range during the flood season of 2021 in North China.Considering that the specific propagation phase shift(KDP)has a roughly linear relationship with the precipitation intensity,KDP is set to 0.5°km^(-1 )as a threshold value to divide all the rain data(AR)into a heavy rain(HR)and light rain(LR)dataset.Subsequently,12 deep learning-based QPE models are trained according to the input radar parameters,the precipitation datasets,and whether an SLF was adopted,respectively.The results suggest that the effects of QPE after distinguishing rainfall intensity are better than those without distinguishing,and the effects of using SLF are better than those that used MSE as a loss function.A Z-R relationship and a ZH-KDP-R synthesis method are compared with deep learning-based QPE.The mean relative errors(MRE)of AR models using SLF are improved by 61.90%,51.21%,and 56.34%compared with the Z-R relational method,and by 38.63%,42.55%,and 47.49%compared with the synthesis method.Finally,the models are further evaluated in three precipitation processes,which manifest that the deep learning-based models have significant advantages over the traditional empirical formula methods.
基金supported by the Natural Science Foundation of China(No.32061123008)Key Laboratory of Xinjiang Province of China(No.2022D04005)+2 种基金China Desert Weather Scientific Research Fund(Sqj2019002)Natural Science Foundation of Xinjiang Province of China(No.2021D01B118,2021D01B116)the Yunnan University Research Innovation Fund for Graduate Students(KC-22222199).
文摘Evaluating long-term changes in precipitation resources is important for accurate hydrological evaluation and forecasting,water security and rational allocation of water resources.For this purpose in the Xinjiang Habahe area,tree-ring specimens were collected from Picea obo-vata,Larix sibirica,and Betula platyphylla to establish a tree-ring width chronology,which was used to analyse a correlation with the average temperature and precipitation per month for 1958-2016.Based on correlation coefficients for monthly temperature and precipitation with the chro-nology of tree-ring widths,radial tree growth was mainly restricted by precipitation,and tree-ring width chronology was significantly correlated with overall precipitation from the previous July to the next June(r=0.641,P<0.01).The above results were used to establish a transformation equa-tion,and the overall precipitation from the previous July to the following June from 1800 to 2016 in Habahe was reconstructed after adjusted degrees of freedom,and obtain an explanatory rate of the variation up to 41.1%(40.0%).In addition to the reliability of the reconstructed values,the stability of the conversion function was determined via the“leave-one-out”method,which is commonly used in research on tree rings,and by cross-checking the conversion function with the reduced error value(RE),product mean test(t),with a sign test(ST).During the last 217 years,there were nine dry periods:1803-1829,1861-1865,1872-1885,1892-1905,1916-1923,1943-1954,1961-1966,1973-1981,and 2005-2011;and 12 wet periods:1830-1834,1836-1860,1866-1871,1886-1891,1906-1915,1925-1930,1934-1942,1955-1960,1967-1972,1982-1996,2000-2004,and 2012-2016.Comparisons of the reconstruc-tions for neighboring regions and a spatial correlation analy-sis showed that the reconstructed sequence of the present precipitation data better represented the changes in precipi-tation in Habahe.Additionally,a power spectrum analysis revealed that precipitation over the past 217 years in Habahe Province exhibited 2-5 years of quasiperiodic variation.A power spectrum analysis and wavelet analysis indicated that El Niño-Southern Oscillation influenced the precipitation cycles.This reconstruction provides more information on high-frequency precipitation,which is an important supple-ment to the existing tree-ring reconstruction of precipitation in the study area.The reconstruction of regional high-resolu-tion precipitation changes over the last several hundred years provides unique,important data for understanding regional differences in climate at the decadal-centennial scale.
基金funded by the National Natural Science Foundation of China (Grant No. 91937301)the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (Grant No. 2019QZKK0105)the National Natural Science Foundation of China (Grant Nos. 41975017, 41905010)。
文摘Based on eddy covariance(EC) measurements during 2016–20, the effects of sky conditions on the net ecosystem productivity(NEP) over a subtropical “floating blanket ” wetland were investigated. Sky conditions were divided into overcast, cloudy, and sunny conditions. On the half-hourly timescale, the daytime NEP responded more rapidly to the changes in the total photosynthetic active radiation(PARt) under overcast and cloudy skies than that under sunny skies. The increase in the apparent quantum yield under overcast and cloudy conditions was the greatest in spring and the least in summer. Additionally, lower atmospheric vapor pressure deficit(VPD) and moderate air temperature were more conducive to enhancing the apparent quantum yield under cloudy skies. On the daily timescale, NEP and the gross primary production(GPP) were higher under cloudy or sunny conditions than those under overcast conditions across seasons. The daily NEP and GPP during the wet season peaked under cloudy skies. The daily ecosystem light use efficiency(LUE) and water use efficiency(WUE) during the wet season also changed with sky conditions and reached their maximum under overcast and cloudy skies, respectively. The diffuse photosynthetic active radiation(PAR_d) and air temperature were primarily responsible for the variation of daily NEP from half-hourly to monthly timescales, and the direct photosynthetic active radiation(PAR_b) had a secondary effect on NEP. Under sunny conditions, PAR_b and air temperature were the dominant factors controlling daily NEP. While daily NEP was mainly controlled by PAR_d under cloudy and overcast conditions.
基金The National Natural Science Foundation of China under contract Nos 42275024 and 42105040the Key R&D Program of China under contract No.2022YFE0203500+3 种基金the Guangdong Basic and Applied Basic Research Foundation under contract Nos 2023B1515020009 and 2024B1515040024the Youth Innovation Promotion Association CAS under contract No.2020340the Special Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences under contract No.SCSIO2023QY01the Science and Technology Planning Project of Guangzhou under contract No.2024A04J6275.
文摘This study evaluates the performance of 16 models sourced from the coupled model intercomparison project phase 6(CMIP6)in simulating marine heatwaves(MHWs)in the South China Sea(SCS)during the historical period(1982−2014),and also investigates future changes in SCS MHWs based on simulations from three shared socioeconomic pathway(SSP)scenarios(SSP126,SSP245,and SSP585)using CMIP6 models.Results demonstrate that the CMIP6 models perform well in simulating the spatial-temporal distribution and intensity of SCS MHWs,with their multi-model ensemble(MME)results showing the best performance.The reasonable agreement between the observations and CMIP6 MME reveals that the increasing trends of SCS MHWs are attributed to the warming sea surface temperature trend.Under various SSP scenarios,the year 2040 emerges as pivotal juncture for future shifts in SCS MHWs,marked by distinct variations in changing rate and amplitudes.This is characterized by an accelerated decrease in MHWs frequency and a notably heightened increase in mean intensity,duration,and total days after 2040.Furthermore,the projection results for SCS MHWs suggest that the spatial pattern of MHWs remains consistent across future periods.However,the intensity shows higher consistency only during the near-term period(2021−2050),while notable inconsistencies are observed during the medium-term(2041−2070)and long-term(2071−2100)periods under the three SSP scenarios.During the nearterm period,the SCS MHWs are characterized by moderate and strong events with high frequencies and relatively shorter durations.In contrast,during the medium-term period,MHWs are also characterized by moderate and strong events,but with longer-lasting and more intense events under the SSP245 and SSP585 scenarios.However,in the long-term period,extreme MHWs become the dominant feature under the SSP585 scenario,indicating a substantial intensification of SCS MHWs,effectively establishing a near-permanent state.
基金National Natural Science Foundation of China(41930972,52239006,41975001)。
文摘A second rain belt sometimes occurs ahead of a frontal rain belt in the warm sector over coastal South China,leading to heavy precipitation.We examined the differences in the mesoscale characteristics and microphysics of the frontal and warm sector rain belts that occurred in South China on May 10–13,2022.The southern rain belt occurred in an environment with favorable mesoscale conditions but weak large-scale forcing.In contrast,the northern rain belt was related to low-level horizontal shear and the surface-level front.The interaction between the enhanced southeasterly winds and the rainfall-induced cold pool promoted the persistent growth of convection along the southern rain belt.The convective cell propagated east over the coastal area,where there was a large temperature gradient.The bow-shaped echo in this region may be closely related to the rear-inflow jet.By contrast,the initial convection of the northern rain belt was triggered along the front and the region of low-level horizontal shear,with mesoscale interactions between the enhanced warm-moist southeasterly airflow and the cold dome associated with the earlier rain.The terrain blocked the movement of the cold pool,resulting in the stagnation of the frontal convective cell at an early stage.Subsequently,a meso-γ-scale vortex formed during the rapid movement of the convective cell,corresponding to an enhancement of precipitation.The representative raindrop spectra for the southern rain belt were characterized by a greater number and higher density of raindrops than the northern rain belt,even though both resulted in comparable hourly rainfalls.These results help us better understand the characteristics of double rain belts over South China.
基金supported by the Joint Funds of the Chinese National Natural Science Foundation (NSFC)(Grant No.U2242213)the National Key Research and Development (R&D)Program of the Ministry of Science and Technology of China(Grant No. 2021YFC3000902)the National Science Foundation for Young Scholars (Grant No. 42205166)。
文摘Ensemble prediction is widely used to represent the uncertainty of single deterministic Numerical Weather Prediction(NWP) caused by errors in initial conditions(ICs). The traditional Singular Vector(SV) initial perturbation method tends only to capture synoptic scale initial uncertainty rather than mesoscale uncertainty in global ensemble prediction. To address this issue, a multiscale SV initial perturbation method based on the China Meteorological Administration Global Ensemble Prediction System(CMA-GEPS) is proposed to quantify multiscale initial uncertainty. The multiscale SV initial perturbation approach entails calculating multiscale SVs at different resolutions with multiple linearized physical processes to capture fast-growing perturbations from mesoscale to synoptic scale in target areas and combining these SVs by using a Gaussian sampling method with amplitude coefficients to generate initial perturbations. Following that, the energy norm,energy spectrum, and structure of multiscale SVs and their impact on GEPS are analyzed based on a batch experiment in different seasons. The results show that the multiscale SV initial perturbations can possess more energy and capture more mesoscale uncertainties than the traditional single-SV method. Meanwhile, multiscale SV initial perturbations can reflect the strongest dynamical instability in target areas. Their performances in global ensemble prediction when compared to single-scale SVs are shown to(i) improve the relationship between the ensemble spread and the root-mean-square error and(ii) provide a better probability forecast skill for atmospheric circulation during the late forecast period and for short-to medium-range precipitation. This study provides scientific evidence and application foundations for the design and development of a multiscale SV initial perturbation method for the GEPS.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2242203,42275006,and 42030604)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011705)the Science and Technology Research Project for Society of Foshan(2120001008761).
文摘As demonstrated in the first part of this study(Part I),wind-shift boundaries routinely form along the west coast of the Pearl River Delta due to the land-sea contrast of a“trumpet”shape coastline in the summer monsoon season.Through multiple numerical simulations,this article(Part II)aims to examine the roles of the trumpet-shaped coastline in the mesovortex genesis during the 1 June 2020 tornadic event.The modeling reproduced two mesovortices that are in close proximity in time and space to the realistic mesovortices.In addition to the modeled mesovortex over the triple point where strong ambient vertical vorticity was located,another mesovortex originated from an enhanced discrete vortex along an airmass boundary via shear instability.On the fine-scale storm morphology,finger-like echoes preceding hook echoes were also reproduced around the triple point.Results from sensitivity experiments suggest that the unique topography plays an essential role in modifying the vorticity budget during the mesovortex formation.While there is a high likelihood of an upcoming storm evolving into a rotating storm over the triple point,the simulation's accuracy is sensitive to the local environmental details and storm dynamics.The strengths of cold pool surges from upstream storms may influence the stretching of low-level vertically oriented vortex and thus the wrap-up of finger-like echoes.These findings suggest that the trumpet-shaped coastline is an important component of mesovortex production during the active monsoon season.It is hoped that this study will increase the situational awareness for forecasters regarding regional non-mesocyclone tornadic environments.