This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double...This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner.展开更多
PCrNi3MoV steel is a medium-carbon,low-alloy quenched and tempered steel that finds its applications in military gun barrels due to the high wear resistance and ablation resistance.To study the penetration and failure...PCrNi3MoV steel is a medium-carbon,low-alloy quenched and tempered steel that finds its applications in military gun barrels due to the high wear resistance and ablation resistance.To study the penetration and failure modes of PCrNi3MoV plates impacted by tungsten spheres,tungsten spheres of various diameters(5 mm,8 mm,and 10 mm)were used to impact PCrNi3MoV steel plates with thicknesses of 6 mm,9 mm,and 14 mm.The penetration performance of the spheres was analyzed for different velocities,and the ultimate penetration velocity of the plate was obtained.It was found that the primary failure modes of the PCrNi3MoV plate were compression pitting failure and shear failure.Using the dimensional analysis method,a relationship between the bulge height of the steel plate and the fragment velocity,an equation for the ultimate penetration velocity,and a relationship between the target penetration energy and the fragment velocity were obtained.Then,a projectile-target action index was proposed to describe the process of tungsten spheres with different velocities impacting target plates.The results suggested that under the same thickness of the target plate,a larger-diameter fragment required more kinetic energy to obtain the same ultimate penetration effect as a smaller-diameter fragment.The equations obtained through dimensional analysis predicted values that agreed well with experimental values,indicating that these equations can be applied to engineering applications.展开更多
In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volu...In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volume specific heat,are tested.Via the split Hopkinson pressure bar(SHPB)and flyerplate impact experiments,the relationship between equivalent stress and equivalent plastic strain of the material is studied at temperatures of 298-823 K and under strain rates of 1×10^(-3)-5.2×10^(3)s^(-1),and the Hugoniot relationship at impact pressures of 1.46-17.25 GPa and impact velocities of 108-942 m/s is obtained.Evolution of the Cu-10Ta microstructure that occurs during high-strain-rate impact is analyzed.Results indicate that the Cu-10Ta alloy possesses good thermal stability,and at ambient temperatures of up to 50%its melting point,stress softening of less than 15%of the initial strength is observed.A modified J-C constitutive model is employed to accurately predict the variation of yield strength with strain rate.Under strong impact,the copper phase is identified as the primary source of plastic deformation in the Cu-10Ta alloy,while significant deformation of the high-strength tantalum particles is less pronounced.Furthermore,the longitudinal wave speed D is found to correlate linearly with the particle velocity u upon strong impact.Analysis reveals that the sound speed and spallation strength of the alloy increase with increasing impact pressure.展开更多
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
In order to analysis the distribution characteristics of in-bore magnetic field for C-shaped armature electromagnetic railgun, a computational model considering dynamic contact pressure is established. By solving the ...In order to analysis the distribution characteristics of in-bore magnetic field for C-shaped armature electromagnetic railgun, a computational model considering dynamic contact pressure is established. By solving the dynamic equation, the in-bore motion characteristics of the armature are obtained. The distribution of current in the rail and armature is analyzed based on the magnetic diffusion equation and Ampere’s law. On this basis, three simulation models are proposed, which correspond to static state,motion state and motion state considering the velocity skin effect. The magnetic field of the investigated points along the central axes of the armature front end are obtained. The results show that, in static state,the peak magnetic flux density of each investigated point is greater than the other two states. Velocity skin effect leads to a decrease in peak magnetic flux density. The change of motion state has little influence on the peak magnetic flux density of the investigated point that far away from the armature. The calculated results can be used in the electromagnetic shielding design of intelligent ammunition.展开更多
The wind effects on steady-state scan characteristics and hit probability of terminal-sensitive projectile were discussed in this paper. Considering wind as the constitutions of the average wind and the impulsive wind...The wind effects on steady-state scan characteristics and hit probability of terminal-sensitive projectile were discussed in this paper. Considering wind as the constitutions of the average wind and the impulsive wind, a simplified wind field model was established for the ballistic calculation of the steady-state scan phase; under the windy condition, the effects of the range wind and the beam wind on the steady-state scan characteristics of the terminal-sensitive projectile were analyzed in detail and its hit probabilities for a certain armored target were calculated. The calculated results show that, when the wind speed exceeds a certain value, the hit probabilities of terminal-sensitive projectile drop rapidly; the wind effects must be considered in the application of the terminal-sensitive projectiles. This paper provides some theoretical references for the fire wind speed correction and the global structure optimization of the terminal-sensitive projectile.展开更多
The influence of concrete components on projectile penetration is significant.To study the relationship between the equivalent mechanical properties and components of concrete under a penetration load,concrete is simp...The influence of concrete components on projectile penetration is significant.To study the relationship between the equivalent mechanical properties and components of concrete under a penetration load,concrete is simplified as a two-phase composite of coarse aggregate and mortar,and a meso-mechanical model is established,including the equivalent equation of state model,the equivalent confining pressure strength model and the equivalent dynamic tensile strength model,considering shear stress,large deformation and pore compression.Tests of the mechanical properties of mortar,concrete and limestone were conducted;the results show that the equivalent mechanical properties of concrete calculated by the meso-mechanical model are consistent with the test results,and the equivalent mechanical properties of concrete with different volume fractions of coarse aggregate are obtained.Meso-scale and macro-scale numerical simulations of a projectile penetrating into concrete are carried out,the penetration depths obtained by meso-scale and macro-scale numerical simulations are consistent for different volume fractions of coarse aggregate and different velocities of the projectile,which verifies the rationality of the meso-mechanical model.展开更多
This paper considers the simultaneous attack problem of multiple missiles against a maneuvering target. Different from most of the existing literature in which the simultaneous attack problem is formulated as a consen...This paper considers the simultaneous attack problem of multiple missiles against a maneuvering target. Different from most of the existing literature in which the simultaneous attack problem is formulated as a consensus problem of missiles' time-to-go estimates, this paper formulates it as the consensus problem of missiles' ranges-to-go. Based on this strategy, novel distributed guidance laws are proposed to solve the simultaneous attack problem with the target of unknown maneuverability.Adaptive control method is introduced to estimate the upper bound of the target's acceleration. The effectiveness of the proposed guidance laws is verified both theoretically and numerically.展开更多
基金funded by the China Postdoctoral Science Foundation(Grant No.2022M721614)the opening project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(Grant No.KFJJ23-07M)。
文摘This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner.
文摘PCrNi3MoV steel is a medium-carbon,low-alloy quenched and tempered steel that finds its applications in military gun barrels due to the high wear resistance and ablation resistance.To study the penetration and failure modes of PCrNi3MoV plates impacted by tungsten spheres,tungsten spheres of various diameters(5 mm,8 mm,and 10 mm)were used to impact PCrNi3MoV steel plates with thicknesses of 6 mm,9 mm,and 14 mm.The penetration performance of the spheres was analyzed for different velocities,and the ultimate penetration velocity of the plate was obtained.It was found that the primary failure modes of the PCrNi3MoV plate were compression pitting failure and shear failure.Using the dimensional analysis method,a relationship between the bulge height of the steel plate and the fragment velocity,an equation for the ultimate penetration velocity,and a relationship between the target penetration energy and the fragment velocity were obtained.Then,a projectile-target action index was proposed to describe the process of tungsten spheres with different velocities impacting target plates.The results suggested that under the same thickness of the target plate,a larger-diameter fragment required more kinetic energy to obtain the same ultimate penetration effect as a smaller-diameter fragment.The equations obtained through dimensional analysis predicted values that agreed well with experimental values,indicating that these equations can be applied to engineering applications.
文摘In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volume specific heat,are tested.Via the split Hopkinson pressure bar(SHPB)and flyerplate impact experiments,the relationship between equivalent stress and equivalent plastic strain of the material is studied at temperatures of 298-823 K and under strain rates of 1×10^(-3)-5.2×10^(3)s^(-1),and the Hugoniot relationship at impact pressures of 1.46-17.25 GPa and impact velocities of 108-942 m/s is obtained.Evolution of the Cu-10Ta microstructure that occurs during high-strain-rate impact is analyzed.Results indicate that the Cu-10Ta alloy possesses good thermal stability,and at ambient temperatures of up to 50%its melting point,stress softening of less than 15%of the initial strength is observed.A modified J-C constitutive model is employed to accurately predict the variation of yield strength with strain rate.Under strong impact,the copper phase is identified as the primary source of plastic deformation in the Cu-10Ta alloy,while significant deformation of the high-strength tantalum particles is less pronounced.Furthermore,the longitudinal wave speed D is found to correlate linearly with the particle velocity u upon strong impact.Analysis reveals that the sound speed and spallation strength of the alloy increase with increasing impact pressure.
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
基金supported by the Key Basic Research Projects of Basic Strengthening Plan under Grants 2017-JCJQ-ZD-004
文摘In order to analysis the distribution characteristics of in-bore magnetic field for C-shaped armature electromagnetic railgun, a computational model considering dynamic contact pressure is established. By solving the dynamic equation, the in-bore motion characteristics of the armature are obtained. The distribution of current in the rail and armature is analyzed based on the magnetic diffusion equation and Ampere’s law. On this basis, three simulation models are proposed, which correspond to static state,motion state and motion state considering the velocity skin effect. The magnetic field of the investigated points along the central axes of the armature front end are obtained. The results show that, in static state,the peak magnetic flux density of each investigated point is greater than the other two states. Velocity skin effect leads to a decrease in peak magnetic flux density. The change of motion state has little influence on the peak magnetic flux density of the investigated point that far away from the armature. The calculated results can be used in the electromagnetic shielding design of intelligent ammunition.
基金Sponsored by Doctoral Foundation of Ministry of Education of China (20093219120006)
文摘The wind effects on steady-state scan characteristics and hit probability of terminal-sensitive projectile were discussed in this paper. Considering wind as the constitutions of the average wind and the impulsive wind, a simplified wind field model was established for the ballistic calculation of the steady-state scan phase; under the windy condition, the effects of the range wind and the beam wind on the steady-state scan characteristics of the terminal-sensitive projectile were analyzed in detail and its hit probabilities for a certain armored target were calculated. The calculated results show that, when the wind speed exceeds a certain value, the hit probabilities of terminal-sensitive projectile drop rapidly; the wind effects must be considered in the application of the terminal-sensitive projectiles. This paper provides some theoretical references for the fire wind speed correction and the global structure optimization of the terminal-sensitive projectile.
基金supported by the National Natural Science Foundation of China [grant number 51278250]
文摘The influence of concrete components on projectile penetration is significant.To study the relationship between the equivalent mechanical properties and components of concrete under a penetration load,concrete is simplified as a two-phase composite of coarse aggregate and mortar,and a meso-mechanical model is established,including the equivalent equation of state model,the equivalent confining pressure strength model and the equivalent dynamic tensile strength model,considering shear stress,large deformation and pore compression.Tests of the mechanical properties of mortar,concrete and limestone were conducted;the results show that the equivalent mechanical properties of concrete calculated by the meso-mechanical model are consistent with the test results,and the equivalent mechanical properties of concrete with different volume fractions of coarse aggregate are obtained.Meso-scale and macro-scale numerical simulations of a projectile penetrating into concrete are carried out,the penetration depths obtained by meso-scale and macro-scale numerical simulations are consistent for different volume fractions of coarse aggregate and different velocities of the projectile,which verifies the rationality of the meso-mechanical model.
基金supported by the National Natural Science Foundation of China under Grant Nos.61473005,11332001,and 61471242the Research Project Fund under Grant No.17-163-11-ZT-003-018-01+2 种基金the Air Force Advance Research Fund under Grant No.303020503the Joint Fund of Equipment development and Aerospace Science and Technology under Grant No.6141B0624050101the National Defense Basic Scientific Research Program(Major)of China
文摘This paper considers the simultaneous attack problem of multiple missiles against a maneuvering target. Different from most of the existing literature in which the simultaneous attack problem is formulated as a consensus problem of missiles' time-to-go estimates, this paper formulates it as the consensus problem of missiles' ranges-to-go. Based on this strategy, novel distributed guidance laws are proposed to solve the simultaneous attack problem with the target of unknown maneuverability.Adaptive control method is introduced to estimate the upper bound of the target's acceleration. The effectiveness of the proposed guidance laws is verified both theoretically and numerically.