The brown planthopper, Nilaparvata lugens St?l, has become a major threat in tropical Asian and China since the rice green revolution of the 1960 s. Currently, insecticide application remains the primary choice for co...The brown planthopper, Nilaparvata lugens St?l, has become a major threat in tropical Asian and China since the rice green revolution of the 1960 s. Currently, insecticide application remains the primary choice for controlling this rice insect pest, but heavy use of insecticides poses dangerous risks to beneficial natural enemies and pollinators, and stimulates N. lugens reproductivity, and has caused a resurgence of the pest in the major rice-planting regions throughout Asia. Achieving the long-lasting goal of sustainable management of N. lugens requires understanding of the molecular basis of outbreaks of the pest and the development of environment-friendly pest-control strategies. Here, we review the recent molecular advances in N. lugens research on the aspects of its endosymbionts, virus transmission, insecticide resistance, and interaction between N. lugens and rice plants. We also put forward further research directions that may shed some lights on management of the rice pest.展开更多
Objective:To present an integrated molecular biology dedicated system for tuberculosis diagnosis.Methods:One hundred and five sputum specimens from patients strongly suspected by clinical parameters of tuberculosis we...Objective:To present an integrated molecular biology dedicated system for tuberculosis diagnosis.Methods:One hundred and five sputum specimens from patients strongly suspected by clinical parameters of tuberculosis were studied by Ziehl-Neelsen staining,by cultivation on solid medium and by a balanced hemincsted fluorometric PCR system(Orange C3TB) that could preserve worker safety and produce a rather pure material free of potential inhibitors. DNA amplification was performed in a low cost tuberculosis termocycler-fluorotneter.Produced double stranded DNA was flurometrically detected.The whole reaction was conducted in one single tube which would not be opened after adding the processed sample in order to minimize the risk of cross contamination with amplicons.Results:The assay was able to delect 30 bacillus per sample mL with 99.8%interassay variation coefficient.PCR was positive in 23(21.9%) tested samples(21 of them were smear negative).In our study it showed a preliminary sensitivity of 94.5%for sputum and an overall specificity of 98.7%.Conclusions:Total run time of the test is 4 h with 2.5 real working time.All PCR positive samples are also positive by microbiological culture and clinical criteria.Results show that it could be a very useful tool to increase detection efficiency of tuberculosis disease in low bacilus load samples.Furthermore,its low cost and friendly using make it feasible to run in poor regions.展开更多
New technologies are constantly being introduced into the medical and surgical fields. These technologies come in the form of newer medicines, imaging methods and prognostic tools, among others, and allow clinicians t...New technologies are constantly being introduced into the medical and surgical fields. These technologies come in the form of newer medicines, imaging methods and prognostic tools, among others, and allow clinicians to make more rational and informed decisions on the care of their patients. Many of these technologies utilize advanced techniques which are at the forefront of many research fields and represent a transition of bench advances into the clinical realm. This review will highlight four technologies that are at the forefront in the treatment of oncology patients treated by surgeons on a daily basis. Circulating tumor cells, microarray analysis, proteomic studies and rapid sequencing technologies will be highlighted. These technologies will be reviewed and their potential use in the care o surgical patients will be discussed.展开更多
Alzheimer’s disease(AD)is the most prevalent form of dementia,i.e.,progressive memory loss and profound cognitive dysfunction,resulting in a considerable societal burden.At the neuropathological level,the brains of A...Alzheimer’s disease(AD)is the most prevalent form of dementia,i.e.,progressive memory loss and profound cognitive dysfunction,resulting in a considerable societal burden.At the neuropathological level,the brains of AD patients exhibit amyloid-β(Aβ)plaques,neurofibrillary tangles,and neuroinflammation(Sala Frigerio and De Strooper,2016).展开更多
Background:In this study,we used network pharmacology and molecular docking combined with vitro experiments to explore the potential mechanism of action of Gualou Qumai pill(GLQMP)against DKD.Methods:We screened effec...Background:In this study,we used network pharmacology and molecular docking combined with vitro experiments to explore the potential mechanism of action of Gualou Qumai pill(GLQMP)against DKD.Methods:We screened effective compounds and drug targets using Chinese medicine systemic pharmacology database and analysis platform and Chinese medicine molecular mechanism bioinformatics analysis tools;and searched for DKD targets using human online Mendelian genetics and gene cards.The potential targets of GLQMP for DKD were obtained through the intersection of drug targets and disease targets.Cytoscape software was applied to build herbal medicine-active compound-target-disease networks and analyze them;protein-protein interaction networks were analyzed using the STRING database platform;gene ontology and Kyoto Encyclopedia of Genes and Genomes were used for gene ontology and gene and genome encyclopedia to enrich potential targets using the DAVID database;and the AutoDock Vina 1.1.2 software for molecular docking of key targets with corresponding key components.In vitro experiments were validated by CCK8,oil red O staining,TC,TG,RT-qPCR,and Western blot.Results:Through network pharmacology analysis,a total of 99 potential therapeutic targets of GLQMP for DKD and the corresponding 38 active compounds were obtained,and 5 core compounds were identified.By constructing the protein-protein interaction network and performing network topology analysis,we found that PPARA and PPARG were the key targets,and then we molecularly docked these two key targets with the 38 active compounds,especially the 5 core compounds,and found that PPARA and PPARG had good binding ability with a variety of compounds.In vitro experiments showed that GLQMP was able to ameliorate HK-2 cell injury under high glucose stress,improve cell viability,reduce TC and TG levels as well as decrease the accumulation of lipid droplets,and RT-qPCR and Western blot confirmed that GLQMP was able to promote the expression levels of PPARA and PPARG.Conclusion:Overall,this study revealed the active compounds,important targets and possible mechanisms of GLQMP treatment for DKD,and conducted preliminary verification experiments on its correctness,provided novel insights into the treatment of DKD by GLQMP.展开更多
Anthropogenic methane emissions are a leading cause of the increase in global averagetemperatures,often referred to as global warming.Flooded soils play a significant role in methaneproduction,where the anaerobic cond...Anthropogenic methane emissions are a leading cause of the increase in global averagetemperatures,often referred to as global warming.Flooded soils play a significant role in methaneproduction,where the anaerobic conditions promote the production of methane by methanogenicmicroorganisms.Rice fields contribute a considerable portion of agricultural methane emissions,as riceplants provide both factors that enhance and limit methane production.Rice plants harbor both methaneproducingand methane-oxidizing microorganisms.Exudates from rice roots provide source for methaneproduction,while oxygen delivered from the root aerenchyma enhances methane oxidation.Studies haveshown that the diversity of these microorganisms depends on rice cultivars with some genes characterizedas harboring specific groups of microorganisms related to methane emissions.However,there is still aneed for research to determine the balance between methane production and oxidation,as rice plantspossess the ability to regulate net methane production.Various agronomical practices,such as fertilizerand water management,have been employed to mitigate methane emissions.Nevertheless,studiescorrelating agronomic and chemical management of methane with productivity are limited.Moreover,evidences for breeding low-methane-emitting rice varieties are scattered largely due to the absence ofcoordinated breeding programs.Research has indicated that phenotypic characteristics,such as rootbiomass,shoot architecture,and aerenchyma,are highly correlated with methane emissions.This reviewdiscusses available studies that involve the correlation between plant characteristics and methaneemissions.It emphasizes the necessity and importance of breeding low-methane-emitting rice varieties inaddition to existing agronomic,biological,and chemical practices.The review also delves into the idealphenotypic and physiological characteristics of low-methane-emitting rice and potential breeding techniques,drawing from studies conducted with diverse varieties,mutants,and transgenic plants.展开更多
Background:Diabetic kidney disease(DKD)is a microvascular complication of diabetes mellitus and is the main cause of end-stage renal failure.Suoquan pills(SQP)has a variety of pharmacological activities and multiple t...Background:Diabetic kidney disease(DKD)is a microvascular complication of diabetes mellitus and is the main cause of end-stage renal failure.Suoquan pills(SQP)has a variety of pharmacological activities and multiple therapeutic effects,and it is used clinically as a basic formula for the treatment of DKD.Methods:Public databases were used to identify SQP compounds and the potential targets of SQP and DKD.A drug-component-therapeutic target network was constructed.Protein-protein interaction network analysis,Gene Ontology functional analysis,and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were used to analyse the potential molecular mechanisms of SQP based on common targets of drugs and diseases.Molecular docking simulations were conducted to confirm the binding abity of the core compounds to key targets.The efficacy and predicted molecular mechanisms of SQP were validated using cell counting kit-8 assay,flow cytometry,and western blotting with HK-2 cells as a model.Results:Network pharmacology analysis showed that 26 compounds and 207 potential targets of SQP were involved in the treatment of DKD;boldine,denudatin B,pinocembrin,kaempferoid,and quercetin were considered core compounds,and epidermal growth factor receptor(EGFR)and proto-oncogene,non-receptor tyrosine kinase(SRC)were considered key targets.Gene Ontology enrichment analysis indicated that protein phosphorylation and negative regulation of apoptotic processes are important biological processes in the treatment of DKD by SQP.Molecular docking confirmed the excellent binding abilities of boldine,denudatin B,kaempferide,and quercetin to EGFR and SRC.The results of in vitro experiments showed that treatment with an ethanolic extract of SQP significantly protected HK-2 cells from high glucose-induced cell damage.In addition,the SQP ethanol extract inhibited the phosphorylation of EGFR and SRC,suppressed the apoptosis rate,and regulated apoptosis-related proteins in HK-2 cells under high glucose stress.Conclusion:This study systematically and intuitively illustrated the possible pharmacological mechanisms of SQP against DKD through multiple components,targets,and signalling pathways,especially the inhibition of EGFR and SRC phosphorylation and apoptosis.展开更多
A sudden and unprecedented outbreak of molluscan Philine kinglipini occurred in summer 2022 in Jiaozhou Bay,Shandong,China,causing substantial damage to local mariculture industry of the Manila clam Ruditapes philippi...A sudden and unprecedented outbreak of molluscan Philine kinglipini occurred in summer 2022 in Jiaozhou Bay,Shandong,China,causing substantial damage to local mariculture industry of the Manila clam Ruditapes philippinarum.Although P.kinglipini has been found in many coastal regions of China,the molecular research of P.kinglipini has not been extensively studied,making it difficult to accurately identify and track P.kinglipini samples in field using molecular methods.Samples were collected during the outbreak and their morphological features and molecular sequences were analyzed.Results show that the causative species of the outbreak was P.kinglipini.The mitochondrial genome(mt DNA)of P.kinglipini was constructed for the first time,based on which phylogenetic analysis of the mt DNAs of P.kinglipini and related species in the order Cephalaspidea was carried out.As revealed by metabarcoding analysis of 18S rDNA V4,the seasonal change of P.kinglipini and closely related Philine species was striking with peaks between April and August.Therefore,metabarcoding analysis is applicable tool for monitoring the bloom development of P.kinglipini and related species.This study generated for the first time essential molecular marker sequences and mtDNA of P.kinglipini,which provided a reference for future characterization and monitoring of its outbreaks and for phylogenetic analysis of Philine species.展开更多
Rice is one of the most widely cultivated cereals in the world, and its aroma is increasingly in demand. With the advancement of research, a major rice flavor gene has been identified on rice chromosome 8. It encodes ...Rice is one of the most widely cultivated cereals in the world, and its aroma is increasingly in demand. With the advancement of research, a major rice flavor gene has been identified on rice chromosome 8. It encodes non-functional betaine aldehyde dehydrogenase leading to the accumulation of 2-acetyl-1-pyrroline which is the major olfactory compound that confers the fragrant character to rice. The aroma of rice is considered a special trait of enormous economic importance that determines the prime price in world trade. To satisfy the needs of the population and reduce rice imports into Benin, we conducted this study to identify aromatic rice accessions grown in Benin. Seventy-two rice accessions collected across Benin were PCR amplified with three SSR markers RM 7049, Aro 7, and RM 223, linked to the fgr (fragrance of rice) aroma gene. Molecular analysis revealed that 12 of the 72 accessions, namely Bagou 19, Bagou 22, Tchaka 34, Foun 15, Tchaka 41, Nana 32, Kan 61, Kung 69, Kung 67, Bagou 20, Agbab 101 and Koum 55 possess the fgr gene and can be considered as aromatic rice accessions. A sensory phenotypic test using KOH was carried out on rice accessions carrying fgr gene. Of the twelve positives, only one had the smell of aromatic rice, like the Azucena control. These results show that Benin also has aromatic rice varieties that can be sold on national and international markets.展开更多
Resistance to pentavalent antimonial drugs and the lack of vaccines make it urgent to find novel therapeutic options to treat Leishmaniasis, a tropical disease caused by the Leishmania protozoan parasite. The study re...Resistance to pentavalent antimonial drugs and the lack of vaccines make it urgent to find novel therapeutic options to treat Leishmaniasis, a tropical disease caused by the Leishmania protozoan parasite. The study reported here is to investigate if Streptomycin, an aminoglycoside, and Amphotericin B, the second-line treatment drug, exhibit antileishmanial activity through a similar mechanism. By using MOE (Molecular Operating Environment), we performed molecular docking studies on these drugs binding to a range of targets including ribosome targets in Leishmania and H. sapiens. Our study shows that the two drugs do not bind to the same pockets in Leishmania targets but to the same pockets in the human ribosome, with some differences in interactions. Moreover, our 2D maps indicated that Amphotericin B binds to the A-site in the human cytoplasmic ribosome, whereas streptomycin does not.展开更多
Introduction: The differentiation of digestive tumors very often requires the use of techniques currently not widely in use in the Democratic Republic of Congo (DRC), such as immunohistochemistry. This is perfectly ve...Introduction: The differentiation of digestive tumors very often requires the use of techniques currently not widely in use in the Democratic Republic of Congo (DRC), such as immunohistochemistry. This is perfectly verified for GISTs whose precise, or at least highly certain, diagnosis can only be made using immunohistochemical markers. This underuse of these techniques due to lack of equipment and human skills explains the limited epidemiological data available to date, thus leading to untargeted and too often late treatment of patients. Research question: What contribution can immunohistochemical markers make to the diagnosis of digestive tract tumours? Objective: Discuss the contribution of immunohistochemical markers in the diagnosis of GIST and provide basic data on the epidemiology of these nosological entities in Kinshasa. Methodology: This was a retrospective study carried out at the LEBOMA private anatomy and pathological cytology centre. The main inclusion criterion was any digestive tract block or slide whose diagnosis of GIST had been requalified after review by at least 2 pathologists. An immuhistochemical study was performed using an automated technique (with a Ventana XT machine) using a panel of antibodies: CD-117 and DOG-1 which are listed in the literature as strongly correlated with the occurrence of GIST, all slides were made at Hj Hospital using an OLYMPUS BX41 co-observation microscope. Results: Of 601 cases of digestive tumors recorded during the concerned period, 32 (5.32%) concerned GIST. This prevalence was confirmed by our immunohistochemical results where the expression of CD117 and that of DOG-1 were positive in 90.6% and 100% of cases which prevalence is high compared with the worldwide prevalence according to the literature, respectively. The distribution of the patients concerned was made with a sex ratio of 1.6 women/men with a median age of 53 years. Most cases (81%) had a gastric location and were fusiform GISTs. Conclusion: Gastrointestinal stromal tumours, although rare and underestimated, account for 5.32% of cases in the DRC. This is a considerable and high prevalence compared with the world average. To the best of our knowledge, no studies have been carried out on these aspects in the DRC, which explains the importance of this study. The results of this research demonstrated the contribution of these 2 markers as specific and effective biomarkers for optimal and differential diagnosis in GIST. In view of the above, it is therefore more than necessary to popularise the use of these biomarkers in order to contribute effectively to improving the overall management of gastrointestinal tumours by improving their identification.展开更多
Zika virus (ZIKV), a mosquito-borne flavivirus, has been associated with benign infections for decades. However, it has become a public health concern due to its association with severe fetal and neurological complica...Zika virus (ZIKV), a mosquito-borne flavivirus, has been associated with benign infections for decades. However, it has become a public health concern due to its association with severe fetal and neurological complications. Although many efforts have been made to control ZIKV infection, approved vaccines or antiviral drugs are still lacking. Consequently, the development of new effective anti-ZIKV agents is urgently needed. In this context, we investigated the antiviral potential of pyrazolone derivatives against ZIKV replication using in silico and in vitro methods. The four pyrazolone derivatives evaluated (1a, 1b, 1c, and 1d) inhibited over 50% of ZIKV replication with low cytotoxicity. Among them, compound 1b exhibited the most potent activity (EC50 = 4.3 μM) and the highest selectivity (SI = 342). Mechanism of action studies indicated that these compounds act at early stages of virus replication, and compound 1b can also directly inactivate ZIKV particles. Molecular docking studies suggested that these compounds can bind to and block the activity of ZIKV NS5 methyltransferase. Finally, pharmacokinetic and toxicological predictions have reinforced the safety and drug-like profiles of these derivatives. In conclusion, the pyrazolone scaffold proved to be valuable for anti-ZIKV drug development, and the derivatives studied deserve further investigation.展开更多
Type 2 diabetes(T2D)is a multifaceted and heterogeneous syndrome associated with complications such as hypertension,coronary artery disease,and notably,breast cancer(BC).The connection between T2D and BC is establishe...Type 2 diabetes(T2D)is a multifaceted and heterogeneous syndrome associated with complications such as hypertension,coronary artery disease,and notably,breast cancer(BC).The connection between T2D and BC is established through processes that involve insulin resistance,inflammation and other factors.Despite this comprehension the specific cellular and molecular mechanisms linking T2D to BC,especially through microRNAs(miRNAs),remain elusive.miRNAs are regulators of gene expression at the post-transcriptional level and have the function of regulating target genes by modulating various signaling pathways and biological processes.However,the signaling pathways and biological processes regulated by miRNAs that are associated with T2D and BC have not yet been elucidated.This review aims to identify dysregulated miRNAs in both T2D and BC,exploring potential signaling pathways and biological processes that collectively contribute to the development of BC.展开更多
Introduction: The Six Sigma methodology is an opportunity for a better understanding of the performance of analytical methods and for a better adaptation of the quality control management policy of the medical biology...Introduction: The Six Sigma methodology is an opportunity for a better understanding of the performance of analytical methods and for a better adaptation of the quality control management policy of the medical biology laboratory. Using the sigma metric, this study assessed the performance of the Biochemistry analytical system of a medical biology laboratory in Côte d'Ivoire. Methods: Six Sigma methodology was applied to 3 analytes (alanine aminotransferase, glucose and creatinine). Performance indicators such as measurement imprecision and bias were determined based on the results of internal and external quality controls. The sigma number was calculated using the total allowable error values proposed by Ricos et al. Results: For both control levels, ALT had a sigma number greater than 6 (7.6 for normal control and 7.9 for pathological control). However, low sigma numbers, less than or equal to 2 for creatinine (1.4 for normal control and 2 for pathological control) and less than 1 for glucose were found. Conclusion: This study revealed good analytical performance of ALT from the point of view of 6 sigma analysis. However, modifications to the overall quality control procedure for glucose and creatinine are needed to improve their analytical performance. The study should be extended to the entire laboratory’s analytes in order to modify the strategies of quality control procedures based on metric analysis for an overall improvement in analytical performance.展开更多
Glioblastoma multiforme(GBM)is the most aggressive and common malig-nant primary brain tumor.Patients with GBM often have poor prognoses,with a median survival of∼15 months.Enhanced understanding of the molecular bio...Glioblastoma multiforme(GBM)is the most aggressive and common malig-nant primary brain tumor.Patients with GBM often have poor prognoses,with a median survival of∼15 months.Enhanced understanding of the molecular biology of central nervous system tumors has led to modifications in their classifications,the most recent of which classified these tumors into new categories and made some changes in their nomenclature and grading system.This review aims to give a panoramic view of the last 3 years’findings in glioblastoma characterization,its heterogeneity,and current advances in its treatment.Several molecular parameters have been used to achieve an accurate and personalized characterization of glioblastoma in patients,including epigenetic,genetic,transcriptomic and metabolic features,as well as age-and sex-related patterns and the involvement of several noncoding RNAs in glioblastoma progression.Astrocyte-like neural stem cells and outer radial glial-like cells from the subven-tricular zone have been proposed as agents involved in GBM of IDH-wildtype origin,but this remains controversial.Glioblastoma metabolism is characterized by upregulation of the PI3K/Akt/mTOR signaling pathway,promotion of the gly-colytic flux,maintenance of lipid storage,and other features.This metabolism also contributes to glioblastoma’s resistance to conventional therapies.Tumor heterogeneity,a hallmark of GBM,has been shown to affect the genetic expresion,modulation of metabolic pathways,and immune system evasion.GBM’s aggressive invasion potential is modulated by cell-to-cell crosstalk within the tumor microenvironment and altered expressions of specific genes,such as ANXA2,GBP2,FN1,PHIP,and GLUT3.Nevertheless,the rising number of active clinical trials illustrates the efforts to identify new targets and drugs to treat this malignancy.Immunotherapy is still relevant for research purposes,given the amount of ongoing clinical trials based on this strategy to treat GBM,and neoantigen and nucleic acid-based vaccines are gaining importance due to their antitumoral activity by inducing the immune response.Furthermore,there are clinical trials focused on the PI3K/Akt/mTOR axis,angiogenesis,and tumor heterogeneity for developing molecular-targeted therapies against GBM.Other strategies,such as nanodelivery and computational models,may improve the drug pharmacokinetics and the prognosis of patients with GBM.展开更多
As obligate intracellular parasites,viruses need a host cell to provide a milieu favorable to viral replication.Consequently,viruses often adopt mechanisms to subvert host cellular signaling processes.While beneficial...As obligate intracellular parasites,viruses need a host cell to provide a milieu favorable to viral replication.Consequently,viruses often adopt mechanisms to subvert host cellular signaling processes.While beneficial for the viral replication cycle,virus-induced deregulation of host cellular signaling processes can be detrimental to host cell physiology and can lead to virus-associated pathogenesis,including,for oncogenic viruses,cell transformation and cancer progression.Included among these oncogenic viruses is the hepatitis B virus(HBV).Despite the availability of an HBV vaccine,350-500 million people worldwide are chronically infected with HBV,and a significant number of these chronically infected individuals will develop hepatocellular carcinoma(HCC).Epidemiological studies indicate that chronic infection with HBV is the leading risk factor for the development of HCC.Globally,HCC is the second highest cause of cancer-associated deaths,underscoring the need for understanding mechanisms that regulate HBV replication and the development of HBV-associated HCC.HBV is the prototype member of the Hepadnaviridae family;members of this family of viruses have a narrow host range and predominately infect hepatocytes in their respective hosts.The extremely small and compact hepadnaviral genome,the unique arrangement of open reading frames,and a replication strategy utilizing reverse transcription of an RNA intermediate to generate the DNA genome are distinguishing features of the Hepadnaviridae.In this review,the authors provide a comprehensive description of HBV biology,summarize the model systems used for studying HBV infections,and highlight potential mechanisms that link a chronic HBV-infection to the development of HCC.For example,the HBV X protein(HBx),a key regulatory HBV protein that is important for HBV replication,is thought to play a cofactor role in the development of HBV-induced HCC,and the authors highlight the functions of HBx that may contribute to the development of HBV-associated HCC.展开更多
Alzheimer’s disease is a neurodegenerative disease that affected over 6.5 million people in the United States in 2021,with this number expected to double in the next 40 years without any sort of treatment.Due to its ...Alzheimer’s disease is a neurodegenerative disease that affected over 6.5 million people in the United States in 2021,with this number expected to double in the next 40 years without any sort of treatment.Due to its heterogeneity and complexity,the etiology of Alzheimer’s disease,especially sporadic Alzheimer’s disease,remains largely unclear.Compelling evidence suggests that brain glucose hypometabolism,preceding Alzheimer’s disease hallmarks,is involved in the pathogenesis of Alzheimer’s disease.Herein,we discuss the potential causes of reduced glucose uptake and the mechanisms underlying glucose hypometabolism and Alzheimer’s disease pathology.Specifically,decreased O-Glc NAcylation levels by glucose deficiency alter mitochondrial functions and together contribute to Alzheimer’s disease pathogenesis.One major problem with Alzheimer’s disease research is that the disease progresses for several years before the onset of any symptoms,suggesting the critical need for appropriate models to study the molecular changes in the early phase of Alzheimer’s disease progression.Therefore,this review also discusses current available sporadic Alzheimer’s disease models induced by metabolic abnormalities and provides novel directions for establishing a human neuronal sporadic Alzheimer’s disease model that better represents human sporadic Alzheimer’s disease as a metabolic disease.展开更多
The process of ripening involves physiological and biochemical events that become a concern during postharvest storage.We have documented different approaches for the preservation and maintenance of fruit quality duri...The process of ripening involves physiological and biochemical events that become a concern during postharvest storage.We have documented different approaches for the preservation and maintenance of fruit quality during the postharvest period that are biocompatible and fully safe for consumption.Chemical residues that sustain sensory characteristics,such as color,flavor,aroma,and texture,are considered.In fruit ripening,both physical and chemical elicitors are described that regulate ethylene biosynthesis or its signaling for gene expression.The key regulatory enzymes,such as ACC synthase and ACC oxidase,for ethylene biosynthesis,are important for both climacteric and non-climacteric fruits.Anti-oxidizing genes that retain sensory characteristics are concerns in this respect.Chemical elicitors,including chitosan,polyamine,phenolics,lipopolysaccharide,silver derivatives,and nanocomposites,are described.Gas pressure,light wavelengths,relative humidity,cooling,and other environmental factors are important for improved postharvest storage.These elicitors maintain redox status by inhibiting the generation of reactive oxygen species(ROS)or their lysis.Growth regulators,including abscisic acid,auxin,brassinosteroids,jasmonic acid,and salicylic acid,are important for the regulation of ripening.Mechanical injuries,ionic imbalances,temperature variations,and tissue dehydration can occur irrespective of ripening cate-gories.The use of synthetic physiochemically active compounds is discussed in terms of physiological,metabolic,cellular,and molecular functions.Ethylene-induced autocatalytic processes,antioxidant cascades,epigenetic regulation,and homeodomain gene expression are discussed.Sugar–acid metabolism,dissolution of the cell wall,and direct or indirect production of secondary metabolites related to postharvest storage are mentioned regarding chilling storage.Elicitors and agrochemicals that trigger plant defense to increase secondary metabolite production are discussed for reducing fruit senescence during postharvest storage.展开更多
Background: To preserve its nutritional properties, fish must have good sanitary quality. The objective of this study was to investigate some pathogens contaminating smoked, dried, and braised fish marketed in Ouagado...Background: To preserve its nutritional properties, fish must have good sanitary quality. The objective of this study was to investigate some pathogens contaminating smoked, dried, and braised fish marketed in Ouagadougou. Methodology: Potential pathogens of Enterobacteriaceae and Staphylococcus were screened in eight (8) species of processed fish. The investigation of the germs was carried out following the normative methods of microbiology. The identities of the strains were determined by API 20 E (BioMerieux S.A., France) and API STAPH (BioMerieux S.A., France) kits for Enterobacteriaceae and Staphylococcus species respectively. The uidA gene profile in Escherichia coli isolates was determined by simplex PCR. The identity of Staphylococcus aureus was confirmed by amplification of specific 23S rDNA regions and nuc gene profile with PCR. Results: A total of 235 fish samples were analyzed. A diversity of Enterobacteriaceae and Staphylococcus was detected. Twenty species of Enterobacteriaceae were identified among which, the most frequent were Escherichia coli, Salmonella sp, Raoultella ornithinolytica and Serratia odorifera, respectively in 22.6%, 4.3%, 28.9%, 17.4% of the samples analyzed. However, eleven species of Staphylococcus were identified among which, Staphylococcus xylosus, Staphylococcus aureus, Staphylococcus lugdunensis, and Staphylococcus sciuri were the most frequent with respective percentages of 47.7%, 23.4%, 12.8% and 10.6% of samples. For all the samples, the species frequently isolated were: Raoultella ornithinolytica, Escherichia coli, Serratia odorifera, Staphylococcus aureus, Staphylococcus xylosus, and Staphylococcus lugdunensis. The uidA gene specific to Escherichia coli was detected in 82.85% of strains (29/35). Amplification of the specific 23S rDNA region using staur primers was observed in 98% (49/50) of the isolated Staphylococcus aureus strains and the nuc gene was detected in 86% of Staphylococcus aureus strains. Conclusion: The isolated bacteria are potential pathogens involved in foodborne illnesses and intoxications. Effective sanitary safety systems must be implemented to guarantee the sanitary quality of fish supplied to consumers.展开更多
Background: The persistence of the rapid spread of the COVID-19 pandemic is linked to the appearance of several variants of SARS-CoV2 with an impact on biological diagnosis, treatment and vaccination. The United State...Background: The persistence of the rapid spread of the COVID-19 pandemic is linked to the appearance of several variants of SARS-CoV2 with an impact on biological diagnosis, treatment and vaccination. The United States Food and Drug Administration (FDA) has granted several SARS-CoV-2 detection tests Emergency Use Authorization (EUA) for diagnosis and better epidemiological surveillance. Thus, multiple RT-PCR tests have been developed and brought to market in order to meet the urgent need for the diagnosis of COVID-19. However, comparative data between these tests in clinical laboratories are scarcely available to assess their performance. Objective: To compare two molecular methods for detecting SARS-CoV-2: the RT-PCR, Allplex™2019-nCoV tests on CFX96 Bio-Rad and the Abbott m2000sp/rt RealTime SARS-CoV-2. Materials and Methods: Nasopharyngeal and oropharyngeal swabs were taken from patients to diagnose SARS-CoV-2 infection. For each sample, we searched for the virus with two different RT-PCR tests: 1) first on Abbott m2000 SARS-CoV-2 targeting the N and RdRp genes, 2) then on Allplex™2019-nCoV Assay looking for the E, N and RdRp genes. Results: Percentages of the agreement were calculated. A total of 100 samples that tested negative and 90 positives on Abbott m2000 SARS-CoV-2 were retested on Allplex™2019-nCoV. Overall agreement was 74.74% on all samples. The specific agreement was 84% and 64.4% respectively for negative and positive samples with the RealTime SARS-CoV-2 test. A positive correlation (r<sup>2</sup> = 0.63;p Conclusion: Our results showed good overall agreement between RT-PCR, Allplex™2019-nCoV and Abbott RealTime SARS-CoV-2 tests in the diagnosis of COVID-19. As the concordance is low for small viremias, the RT-PCR Allplex™2019-nCoV Assay would be better indicated during the acute and symptomatic phase of the disease.展开更多
基金supported by the National Natural Science Foundation of China(31672025,31471765 and 31630057)
文摘The brown planthopper, Nilaparvata lugens St?l, has become a major threat in tropical Asian and China since the rice green revolution of the 1960 s. Currently, insecticide application remains the primary choice for controlling this rice insect pest, but heavy use of insecticides poses dangerous risks to beneficial natural enemies and pollinators, and stimulates N. lugens reproductivity, and has caused a resurgence of the pest in the major rice-planting regions throughout Asia. Achieving the long-lasting goal of sustainable management of N. lugens requires understanding of the molecular basis of outbreaks of the pest and the development of environment-friendly pest-control strategies. Here, we review the recent molecular advances in N. lugens research on the aspects of its endosymbionts, virus transmission, insecticide resistance, and interaction between N. lugens and rice plants. We also put forward further research directions that may shed some lights on management of the rice pest.
文摘Objective:To present an integrated molecular biology dedicated system for tuberculosis diagnosis.Methods:One hundred and five sputum specimens from patients strongly suspected by clinical parameters of tuberculosis were studied by Ziehl-Neelsen staining,by cultivation on solid medium and by a balanced hemincsted fluorometric PCR system(Orange C3TB) that could preserve worker safety and produce a rather pure material free of potential inhibitors. DNA amplification was performed in a low cost tuberculosis termocycler-fluorotneter.Produced double stranded DNA was flurometrically detected.The whole reaction was conducted in one single tube which would not be opened after adding the processed sample in order to minimize the risk of cross contamination with amplicons.Results:The assay was able to delect 30 bacillus per sample mL with 99.8%interassay variation coefficient.PCR was positive in 23(21.9%) tested samples(21 of them were smear negative).In our study it showed a preliminary sensitivity of 94.5%for sputum and an overall specificity of 98.7%.Conclusions:Total run time of the test is 4 h with 2.5 real working time.All PCR positive samples are also positive by microbiological culture and clinical criteria.Results show that it could be a very useful tool to increase detection efficiency of tuberculosis disease in low bacilus load samples.Furthermore,its low cost and friendly using make it feasible to run in poor regions.
基金Supported by The National Institute on Aging-Intramural Research Program,National Institutes of Health
文摘New technologies are constantly being introduced into the medical and surgical fields. These technologies come in the form of newer medicines, imaging methods and prognostic tools, among others, and allow clinicians to make more rational and informed decisions on the care of their patients. Many of these technologies utilize advanced techniques which are at the forefront of many research fields and represent a transition of bench advances into the clinical realm. This review will highlight four technologies that are at the forefront in the treatment of oncology patients treated by surgeons on a daily basis. Circulating tumor cells, microarray analysis, proteomic studies and rapid sequencing technologies will be highlighted. These technologies will be reviewed and their potential use in the care o surgical patients will be discussed.
基金supported by grants from the Alzheimer’s Association Research Grant(to GC)Olle Engkvists Stiftelse(to GC)+10 种基金the Petrus and Augusta Hedlunds Stiftelse(to GC)Ake Wibergs stiftelse(to GC)the Swedish Alzheimer foundation(to GC)the Ahlén Stiftelsens(to GC)Karolinska Institutet Research Foundation Grant(to GC)the Stiftelsen for Gamla Tjanarinnor(to GC)the Stiftelsen Sigurd och Elsa Goljes Minne(to GC)the Loo and Hans Osterman Foundation(to GC)Geriatric Diseases Foundation at Karolinska Institutet(to GC)the Gun and Bertil Stohne’s Foundation(to GC)the Magnus Bergvall Foundation(to GC).
文摘Alzheimer’s disease(AD)is the most prevalent form of dementia,i.e.,progressive memory loss and profound cognitive dysfunction,resulting in a considerable societal burden.At the neuropathological level,the brains of AD patients exhibit amyloid-β(Aβ)plaques,neurofibrillary tangles,and neuroinflammation(Sala Frigerio and De Strooper,2016).
基金supported by the grants from National Natural Science Foundation of China(No.82174334)Hainan Provincial Key Laboratory of Tropical Brain Science Research and Transformation Research Project(JCKF2021001)Innovative Research Projects for Graduate Students(HYYS2021B01).
文摘Background:In this study,we used network pharmacology and molecular docking combined with vitro experiments to explore the potential mechanism of action of Gualou Qumai pill(GLQMP)against DKD.Methods:We screened effective compounds and drug targets using Chinese medicine systemic pharmacology database and analysis platform and Chinese medicine molecular mechanism bioinformatics analysis tools;and searched for DKD targets using human online Mendelian genetics and gene cards.The potential targets of GLQMP for DKD were obtained through the intersection of drug targets and disease targets.Cytoscape software was applied to build herbal medicine-active compound-target-disease networks and analyze them;protein-protein interaction networks were analyzed using the STRING database platform;gene ontology and Kyoto Encyclopedia of Genes and Genomes were used for gene ontology and gene and genome encyclopedia to enrich potential targets using the DAVID database;and the AutoDock Vina 1.1.2 software for molecular docking of key targets with corresponding key components.In vitro experiments were validated by CCK8,oil red O staining,TC,TG,RT-qPCR,and Western blot.Results:Through network pharmacology analysis,a total of 99 potential therapeutic targets of GLQMP for DKD and the corresponding 38 active compounds were obtained,and 5 core compounds were identified.By constructing the protein-protein interaction network and performing network topology analysis,we found that PPARA and PPARG were the key targets,and then we molecularly docked these two key targets with the 38 active compounds,especially the 5 core compounds,and found that PPARA and PPARG had good binding ability with a variety of compounds.In vitro experiments showed that GLQMP was able to ameliorate HK-2 cell injury under high glucose stress,improve cell viability,reduce TC and TG levels as well as decrease the accumulation of lipid droplets,and RT-qPCR and Western blot confirmed that GLQMP was able to promote the expression levels of PPARA and PPARG.Conclusion:Overall,this study revealed the active compounds,important targets and possible mechanisms of GLQMP treatment for DKD,and conducted preliminary verification experiments on its correctness,provided novel insights into the treatment of DKD by GLQMP.
基金supported by the Improvement of Green Rice Plant Type Using Genetic Information Program, Rural Development Administration, Korea (Grant No. PJ01699202)
文摘Anthropogenic methane emissions are a leading cause of the increase in global averagetemperatures,often referred to as global warming.Flooded soils play a significant role in methaneproduction,where the anaerobic conditions promote the production of methane by methanogenicmicroorganisms.Rice fields contribute a considerable portion of agricultural methane emissions,as riceplants provide both factors that enhance and limit methane production.Rice plants harbor both methaneproducingand methane-oxidizing microorganisms.Exudates from rice roots provide source for methaneproduction,while oxygen delivered from the root aerenchyma enhances methane oxidation.Studies haveshown that the diversity of these microorganisms depends on rice cultivars with some genes characterizedas harboring specific groups of microorganisms related to methane emissions.However,there is still aneed for research to determine the balance between methane production and oxidation,as rice plantspossess the ability to regulate net methane production.Various agronomical practices,such as fertilizerand water management,have been employed to mitigate methane emissions.Nevertheless,studiescorrelating agronomic and chemical management of methane with productivity are limited.Moreover,evidences for breeding low-methane-emitting rice varieties are scattered largely due to the absence ofcoordinated breeding programs.Research has indicated that phenotypic characteristics,such as rootbiomass,shoot architecture,and aerenchyma,are highly correlated with methane emissions.This reviewdiscusses available studies that involve the correlation between plant characteristics and methaneemissions.It emphasizes the necessity and importance of breeding low-methane-emitting rice varieties inaddition to existing agronomic,biological,and chemical practices.The review also delves into the idealphenotypic and physiological characteristics of low-methane-emitting rice and potential breeding techniques,drawing from studies conducted with diverse varieties,mutants,and transgenic plants.
基金supported by the grants from National Natural Science Foundation of China(No.82174334)Hainan Province in 2022 postgraduate innovation research projects(No.Qhys2022-273).
文摘Background:Diabetic kidney disease(DKD)is a microvascular complication of diabetes mellitus and is the main cause of end-stage renal failure.Suoquan pills(SQP)has a variety of pharmacological activities and multiple therapeutic effects,and it is used clinically as a basic formula for the treatment of DKD.Methods:Public databases were used to identify SQP compounds and the potential targets of SQP and DKD.A drug-component-therapeutic target network was constructed.Protein-protein interaction network analysis,Gene Ontology functional analysis,and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were used to analyse the potential molecular mechanisms of SQP based on common targets of drugs and diseases.Molecular docking simulations were conducted to confirm the binding abity of the core compounds to key targets.The efficacy and predicted molecular mechanisms of SQP were validated using cell counting kit-8 assay,flow cytometry,and western blotting with HK-2 cells as a model.Results:Network pharmacology analysis showed that 26 compounds and 207 potential targets of SQP were involved in the treatment of DKD;boldine,denudatin B,pinocembrin,kaempferoid,and quercetin were considered core compounds,and epidermal growth factor receptor(EGFR)and proto-oncogene,non-receptor tyrosine kinase(SRC)were considered key targets.Gene Ontology enrichment analysis indicated that protein phosphorylation and negative regulation of apoptotic processes are important biological processes in the treatment of DKD by SQP.Molecular docking confirmed the excellent binding abilities of boldine,denudatin B,kaempferide,and quercetin to EGFR and SRC.The results of in vitro experiments showed that treatment with an ethanolic extract of SQP significantly protected HK-2 cells from high glucose-induced cell damage.In addition,the SQP ethanol extract inhibited the phosphorylation of EGFR and SRC,suppressed the apoptosis rate,and regulated apoptosis-related proteins in HK-2 cells under high glucose stress.Conclusion:This study systematically and intuitively illustrated the possible pharmacological mechanisms of SQP against DKD through multiple components,targets,and signalling pathways,especially the inhibition of EGFR and SRC phosphorylation and apoptosis.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDA22050302,XDB42000000)the Taishan Scholar Project Special Fund(to Nansheng CHEN)the Post-doctoral Program of Qingdao 2021(No.E2KY14101N)。
文摘A sudden and unprecedented outbreak of molluscan Philine kinglipini occurred in summer 2022 in Jiaozhou Bay,Shandong,China,causing substantial damage to local mariculture industry of the Manila clam Ruditapes philippinarum.Although P.kinglipini has been found in many coastal regions of China,the molecular research of P.kinglipini has not been extensively studied,making it difficult to accurately identify and track P.kinglipini samples in field using molecular methods.Samples were collected during the outbreak and their morphological features and molecular sequences were analyzed.Results show that the causative species of the outbreak was P.kinglipini.The mitochondrial genome(mt DNA)of P.kinglipini was constructed for the first time,based on which phylogenetic analysis of the mt DNAs of P.kinglipini and related species in the order Cephalaspidea was carried out.As revealed by metabarcoding analysis of 18S rDNA V4,the seasonal change of P.kinglipini and closely related Philine species was striking with peaks between April and August.Therefore,metabarcoding analysis is applicable tool for monitoring the bloom development of P.kinglipini and related species.This study generated for the first time essential molecular marker sequences and mtDNA of P.kinglipini,which provided a reference for future characterization and monitoring of its outbreaks and for phylogenetic analysis of Philine species.
文摘Rice is one of the most widely cultivated cereals in the world, and its aroma is increasingly in demand. With the advancement of research, a major rice flavor gene has been identified on rice chromosome 8. It encodes non-functional betaine aldehyde dehydrogenase leading to the accumulation of 2-acetyl-1-pyrroline which is the major olfactory compound that confers the fragrant character to rice. The aroma of rice is considered a special trait of enormous economic importance that determines the prime price in world trade. To satisfy the needs of the population and reduce rice imports into Benin, we conducted this study to identify aromatic rice accessions grown in Benin. Seventy-two rice accessions collected across Benin were PCR amplified with three SSR markers RM 7049, Aro 7, and RM 223, linked to the fgr (fragrance of rice) aroma gene. Molecular analysis revealed that 12 of the 72 accessions, namely Bagou 19, Bagou 22, Tchaka 34, Foun 15, Tchaka 41, Nana 32, Kan 61, Kung 69, Kung 67, Bagou 20, Agbab 101 and Koum 55 possess the fgr gene and can be considered as aromatic rice accessions. A sensory phenotypic test using KOH was carried out on rice accessions carrying fgr gene. Of the twelve positives, only one had the smell of aromatic rice, like the Azucena control. These results show that Benin also has aromatic rice varieties that can be sold on national and international markets.
文摘Resistance to pentavalent antimonial drugs and the lack of vaccines make it urgent to find novel therapeutic options to treat Leishmaniasis, a tropical disease caused by the Leishmania protozoan parasite. The study reported here is to investigate if Streptomycin, an aminoglycoside, and Amphotericin B, the second-line treatment drug, exhibit antileishmanial activity through a similar mechanism. By using MOE (Molecular Operating Environment), we performed molecular docking studies on these drugs binding to a range of targets including ribosome targets in Leishmania and H. sapiens. Our study shows that the two drugs do not bind to the same pockets in Leishmania targets but to the same pockets in the human ribosome, with some differences in interactions. Moreover, our 2D maps indicated that Amphotericin B binds to the A-site in the human cytoplasmic ribosome, whereas streptomycin does not.
文摘Introduction: The differentiation of digestive tumors very often requires the use of techniques currently not widely in use in the Democratic Republic of Congo (DRC), such as immunohistochemistry. This is perfectly verified for GISTs whose precise, or at least highly certain, diagnosis can only be made using immunohistochemical markers. This underuse of these techniques due to lack of equipment and human skills explains the limited epidemiological data available to date, thus leading to untargeted and too often late treatment of patients. Research question: What contribution can immunohistochemical markers make to the diagnosis of digestive tract tumours? Objective: Discuss the contribution of immunohistochemical markers in the diagnosis of GIST and provide basic data on the epidemiology of these nosological entities in Kinshasa. Methodology: This was a retrospective study carried out at the LEBOMA private anatomy and pathological cytology centre. The main inclusion criterion was any digestive tract block or slide whose diagnosis of GIST had been requalified after review by at least 2 pathologists. An immuhistochemical study was performed using an automated technique (with a Ventana XT machine) using a panel of antibodies: CD-117 and DOG-1 which are listed in the literature as strongly correlated with the occurrence of GIST, all slides were made at Hj Hospital using an OLYMPUS BX41 co-observation microscope. Results: Of 601 cases of digestive tumors recorded during the concerned period, 32 (5.32%) concerned GIST. This prevalence was confirmed by our immunohistochemical results where the expression of CD117 and that of DOG-1 were positive in 90.6% and 100% of cases which prevalence is high compared with the worldwide prevalence according to the literature, respectively. The distribution of the patients concerned was made with a sex ratio of 1.6 women/men with a median age of 53 years. Most cases (81%) had a gastric location and were fusiform GISTs. Conclusion: Gastrointestinal stromal tumours, although rare and underestimated, account for 5.32% of cases in the DRC. This is a considerable and high prevalence compared with the world average. To the best of our knowledge, no studies have been carried out on these aspects in the DRC, which explains the importance of this study. The results of this research demonstrated the contribution of these 2 markers as specific and effective biomarkers for optimal and differential diagnosis in GIST. In view of the above, it is therefore more than necessary to popularise the use of these biomarkers in order to contribute effectively to improving the overall management of gastrointestinal tumours by improving their identification.
文摘Zika virus (ZIKV), a mosquito-borne flavivirus, has been associated with benign infections for decades. However, it has become a public health concern due to its association with severe fetal and neurological complications. Although many efforts have been made to control ZIKV infection, approved vaccines or antiviral drugs are still lacking. Consequently, the development of new effective anti-ZIKV agents is urgently needed. In this context, we investigated the antiviral potential of pyrazolone derivatives against ZIKV replication using in silico and in vitro methods. The four pyrazolone derivatives evaluated (1a, 1b, 1c, and 1d) inhibited over 50% of ZIKV replication with low cytotoxicity. Among them, compound 1b exhibited the most potent activity (EC50 = 4.3 μM) and the highest selectivity (SI = 342). Mechanism of action studies indicated that these compounds act at early stages of virus replication, and compound 1b can also directly inactivate ZIKV particles. Molecular docking studies suggested that these compounds can bind to and block the activity of ZIKV NS5 methyltransferase. Finally, pharmacokinetic and toxicological predictions have reinforced the safety and drug-like profiles of these derivatives. In conclusion, the pyrazolone scaffold proved to be valuable for anti-ZIKV drug development, and the derivatives studied deserve further investigation.
基金Supported by Sao Paulo Research Foundation,No.2022/02339-4Conselho Nacional de Desenvolvimento Científico e Tecnológico,No.313376/2021-2 and No.313479/2017-8.
文摘Type 2 diabetes(T2D)is a multifaceted and heterogeneous syndrome associated with complications such as hypertension,coronary artery disease,and notably,breast cancer(BC).The connection between T2D and BC is established through processes that involve insulin resistance,inflammation and other factors.Despite this comprehension the specific cellular and molecular mechanisms linking T2D to BC,especially through microRNAs(miRNAs),remain elusive.miRNAs are regulators of gene expression at the post-transcriptional level and have the function of regulating target genes by modulating various signaling pathways and biological processes.However,the signaling pathways and biological processes regulated by miRNAs that are associated with T2D and BC have not yet been elucidated.This review aims to identify dysregulated miRNAs in both T2D and BC,exploring potential signaling pathways and biological processes that collectively contribute to the development of BC.
文摘Introduction: The Six Sigma methodology is an opportunity for a better understanding of the performance of analytical methods and for a better adaptation of the quality control management policy of the medical biology laboratory. Using the sigma metric, this study assessed the performance of the Biochemistry analytical system of a medical biology laboratory in Côte d'Ivoire. Methods: Six Sigma methodology was applied to 3 analytes (alanine aminotransferase, glucose and creatinine). Performance indicators such as measurement imprecision and bias were determined based on the results of internal and external quality controls. The sigma number was calculated using the total allowable error values proposed by Ricos et al. Results: For both control levels, ALT had a sigma number greater than 6 (7.6 for normal control and 7.9 for pathological control). However, low sigma numbers, less than or equal to 2 for creatinine (1.4 for normal control and 2 for pathological control) and less than 1 for glucose were found. Conclusion: This study revealed good analytical performance of ALT from the point of view of 6 sigma analysis. However, modifications to the overall quality control procedure for glucose and creatinine are needed to improve their analytical performance. The study should be extended to the entire laboratory’s analytes in order to modify the strategies of quality control procedures based on metric analysis for an overall improvement in analytical performance.
基金Ministerio de Ciencia e Innovación,Grant/Award Number:PID2019-105010RB-I00Agencia de Innovación y Desarrollo de Andalucía,Grant/Award Numbers:BIO 267,UMA18-FEDERJA-220。
文摘Glioblastoma multiforme(GBM)is the most aggressive and common malig-nant primary brain tumor.Patients with GBM often have poor prognoses,with a median survival of∼15 months.Enhanced understanding of the molecular biology of central nervous system tumors has led to modifications in their classifications,the most recent of which classified these tumors into new categories and made some changes in their nomenclature and grading system.This review aims to give a panoramic view of the last 3 years’findings in glioblastoma characterization,its heterogeneity,and current advances in its treatment.Several molecular parameters have been used to achieve an accurate and personalized characterization of glioblastoma in patients,including epigenetic,genetic,transcriptomic and metabolic features,as well as age-and sex-related patterns and the involvement of several noncoding RNAs in glioblastoma progression.Astrocyte-like neural stem cells and outer radial glial-like cells from the subven-tricular zone have been proposed as agents involved in GBM of IDH-wildtype origin,but this remains controversial.Glioblastoma metabolism is characterized by upregulation of the PI3K/Akt/mTOR signaling pathway,promotion of the gly-colytic flux,maintenance of lipid storage,and other features.This metabolism also contributes to glioblastoma’s resistance to conventional therapies.Tumor heterogeneity,a hallmark of GBM,has been shown to affect the genetic expresion,modulation of metabolic pathways,and immune system evasion.GBM’s aggressive invasion potential is modulated by cell-to-cell crosstalk within the tumor microenvironment and altered expressions of specific genes,such as ANXA2,GBP2,FN1,PHIP,and GLUT3.Nevertheless,the rising number of active clinical trials illustrates the efforts to identify new targets and drugs to treat this malignancy.Immunotherapy is still relevant for research purposes,given the amount of ongoing clinical trials based on this strategy to treat GBM,and neoantigen and nucleic acid-based vaccines are gaining importance due to their antitumoral activity by inducing the immune response.Furthermore,there are clinical trials focused on the PI3K/Akt/mTOR axis,angiogenesis,and tumor heterogeneity for developing molecular-targeted therapies against GBM.Other strategies,such as nanodelivery and computational models,may improve the drug pharmacokinetics and the prognosis of patients with GBM.
基金supported by an NIH predoctoral fellowship to RJLthe grant number is F31CA171712.
文摘As obligate intracellular parasites,viruses need a host cell to provide a milieu favorable to viral replication.Consequently,viruses often adopt mechanisms to subvert host cellular signaling processes.While beneficial for the viral replication cycle,virus-induced deregulation of host cellular signaling processes can be detrimental to host cell physiology and can lead to virus-associated pathogenesis,including,for oncogenic viruses,cell transformation and cancer progression.Included among these oncogenic viruses is the hepatitis B virus(HBV).Despite the availability of an HBV vaccine,350-500 million people worldwide are chronically infected with HBV,and a significant number of these chronically infected individuals will develop hepatocellular carcinoma(HCC).Epidemiological studies indicate that chronic infection with HBV is the leading risk factor for the development of HCC.Globally,HCC is the second highest cause of cancer-associated deaths,underscoring the need for understanding mechanisms that regulate HBV replication and the development of HBV-associated HCC.HBV is the prototype member of the Hepadnaviridae family;members of this family of viruses have a narrow host range and predominately infect hepatocytes in their respective hosts.The extremely small and compact hepadnaviral genome,the unique arrangement of open reading frames,and a replication strategy utilizing reverse transcription of an RNA intermediate to generate the DNA genome are distinguishing features of the Hepadnaviridae.In this review,the authors provide a comprehensive description of HBV biology,summarize the model systems used for studying HBV infections,and highlight potential mechanisms that link a chronic HBV-infection to the development of HCC.For example,the HBV X protein(HBx),a key regulatory HBV protein that is important for HBV replication,is thought to play a cofactor role in the development of HBV-induced HCC,and the authors highlight the functions of HBx that may contribute to the development of HBV-associated HCC.
基金supported by the Georgia Research Alliance and the University of Georgia(to GWH)。
文摘Alzheimer’s disease is a neurodegenerative disease that affected over 6.5 million people in the United States in 2021,with this number expected to double in the next 40 years without any sort of treatment.Due to its heterogeneity and complexity,the etiology of Alzheimer’s disease,especially sporadic Alzheimer’s disease,remains largely unclear.Compelling evidence suggests that brain glucose hypometabolism,preceding Alzheimer’s disease hallmarks,is involved in the pathogenesis of Alzheimer’s disease.Herein,we discuss the potential causes of reduced glucose uptake and the mechanisms underlying glucose hypometabolism and Alzheimer’s disease pathology.Specifically,decreased O-Glc NAcylation levels by glucose deficiency alter mitochondrial functions and together contribute to Alzheimer’s disease pathogenesis.One major problem with Alzheimer’s disease research is that the disease progresses for several years before the onset of any symptoms,suggesting the critical need for appropriate models to study the molecular changes in the early phase of Alzheimer’s disease progression.Therefore,this review also discusses current available sporadic Alzheimer’s disease models induced by metabolic abnormalities and provides novel directions for establishing a human neuronal sporadic Alzheimer’s disease model that better represents human sporadic Alzheimer’s disease as a metabolic disease.
文摘The process of ripening involves physiological and biochemical events that become a concern during postharvest storage.We have documented different approaches for the preservation and maintenance of fruit quality during the postharvest period that are biocompatible and fully safe for consumption.Chemical residues that sustain sensory characteristics,such as color,flavor,aroma,and texture,are considered.In fruit ripening,both physical and chemical elicitors are described that regulate ethylene biosynthesis or its signaling for gene expression.The key regulatory enzymes,such as ACC synthase and ACC oxidase,for ethylene biosynthesis,are important for both climacteric and non-climacteric fruits.Anti-oxidizing genes that retain sensory characteristics are concerns in this respect.Chemical elicitors,including chitosan,polyamine,phenolics,lipopolysaccharide,silver derivatives,and nanocomposites,are described.Gas pressure,light wavelengths,relative humidity,cooling,and other environmental factors are important for improved postharvest storage.These elicitors maintain redox status by inhibiting the generation of reactive oxygen species(ROS)or their lysis.Growth regulators,including abscisic acid,auxin,brassinosteroids,jasmonic acid,and salicylic acid,are important for the regulation of ripening.Mechanical injuries,ionic imbalances,temperature variations,and tissue dehydration can occur irrespective of ripening cate-gories.The use of synthetic physiochemically active compounds is discussed in terms of physiological,metabolic,cellular,and molecular functions.Ethylene-induced autocatalytic processes,antioxidant cascades,epigenetic regulation,and homeodomain gene expression are discussed.Sugar–acid metabolism,dissolution of the cell wall,and direct or indirect production of secondary metabolites related to postharvest storage are mentioned regarding chilling storage.Elicitors and agrochemicals that trigger plant defense to increase secondary metabolite production are discussed for reducing fruit senescence during postharvest storage.
文摘Background: To preserve its nutritional properties, fish must have good sanitary quality. The objective of this study was to investigate some pathogens contaminating smoked, dried, and braised fish marketed in Ouagadougou. Methodology: Potential pathogens of Enterobacteriaceae and Staphylococcus were screened in eight (8) species of processed fish. The investigation of the germs was carried out following the normative methods of microbiology. The identities of the strains were determined by API 20 E (BioMerieux S.A., France) and API STAPH (BioMerieux S.A., France) kits for Enterobacteriaceae and Staphylococcus species respectively. The uidA gene profile in Escherichia coli isolates was determined by simplex PCR. The identity of Staphylococcus aureus was confirmed by amplification of specific 23S rDNA regions and nuc gene profile with PCR. Results: A total of 235 fish samples were analyzed. A diversity of Enterobacteriaceae and Staphylococcus was detected. Twenty species of Enterobacteriaceae were identified among which, the most frequent were Escherichia coli, Salmonella sp, Raoultella ornithinolytica and Serratia odorifera, respectively in 22.6%, 4.3%, 28.9%, 17.4% of the samples analyzed. However, eleven species of Staphylococcus were identified among which, Staphylococcus xylosus, Staphylococcus aureus, Staphylococcus lugdunensis, and Staphylococcus sciuri were the most frequent with respective percentages of 47.7%, 23.4%, 12.8% and 10.6% of samples. For all the samples, the species frequently isolated were: Raoultella ornithinolytica, Escherichia coli, Serratia odorifera, Staphylococcus aureus, Staphylococcus xylosus, and Staphylococcus lugdunensis. The uidA gene specific to Escherichia coli was detected in 82.85% of strains (29/35). Amplification of the specific 23S rDNA region using staur primers was observed in 98% (49/50) of the isolated Staphylococcus aureus strains and the nuc gene was detected in 86% of Staphylococcus aureus strains. Conclusion: The isolated bacteria are potential pathogens involved in foodborne illnesses and intoxications. Effective sanitary safety systems must be implemented to guarantee the sanitary quality of fish supplied to consumers.
文摘Background: The persistence of the rapid spread of the COVID-19 pandemic is linked to the appearance of several variants of SARS-CoV2 with an impact on biological diagnosis, treatment and vaccination. The United States Food and Drug Administration (FDA) has granted several SARS-CoV-2 detection tests Emergency Use Authorization (EUA) for diagnosis and better epidemiological surveillance. Thus, multiple RT-PCR tests have been developed and brought to market in order to meet the urgent need for the diagnosis of COVID-19. However, comparative data between these tests in clinical laboratories are scarcely available to assess their performance. Objective: To compare two molecular methods for detecting SARS-CoV-2: the RT-PCR, Allplex™2019-nCoV tests on CFX96 Bio-Rad and the Abbott m2000sp/rt RealTime SARS-CoV-2. Materials and Methods: Nasopharyngeal and oropharyngeal swabs were taken from patients to diagnose SARS-CoV-2 infection. For each sample, we searched for the virus with two different RT-PCR tests: 1) first on Abbott m2000 SARS-CoV-2 targeting the N and RdRp genes, 2) then on Allplex™2019-nCoV Assay looking for the E, N and RdRp genes. Results: Percentages of the agreement were calculated. A total of 100 samples that tested negative and 90 positives on Abbott m2000 SARS-CoV-2 were retested on Allplex™2019-nCoV. Overall agreement was 74.74% on all samples. The specific agreement was 84% and 64.4% respectively for negative and positive samples with the RealTime SARS-CoV-2 test. A positive correlation (r<sup>2</sup> = 0.63;p Conclusion: Our results showed good overall agreement between RT-PCR, Allplex™2019-nCoV and Abbott RealTime SARS-CoV-2 tests in the diagnosis of COVID-19. As the concordance is low for small viremias, the RT-PCR Allplex™2019-nCoV Assay would be better indicated during the acute and symptomatic phase of the disease.