期刊文献+
共找到271篇文章
< 1 2 14 >
每页显示 20 50 100
Numerical investigation of hydro-morphodynamic characteristics of a cascading failure of landslide dams
1
作者 ZHONG Qiming CHEN Lingchun +3 位作者 MEI Shengyao SHAN Yibo WU Hao ZHAO Kunpeng 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1868-1885,共18页
A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the t... A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the three-dimensional Reynoldsaveraged Navier-Stokes equations(RANS),the renormalization group(RNG)k-εturbulence model,suspended and bed load transport equations,and the instability discriminant formula of dam breach side slope,and the explicit finite volume method(FVM),a detailed numerical simulation model for calculating the hydro-morphodynamic characteristics of cascading dam breach process has been developed.The developed numerical model can simulate the breach hydrograph and the dam breach morphology evolution during the cascading failure process of landslide dams.A model test of the breaches of two cascading landslide dams has been used as the validation case.The comparison of the calculated and measured results indicates that the breach hydrograph and the breach morphology evolution process of the upstream and downstream dams are generally consistent with each other,and the relative errors of the key breaching parameters,i.e.,the peak breach flow and the time to peak of each dam,are less than±5%.Further,the comparison of the breach hydrographs of the upstream and downstream dams shows that there is an amplification effect of the breach flood on the cascading landslide dam failures.Three key parameters,i.e.,the distance between the upstream and the downstream dams,the river channel slope,and the downstream dam height,have been used to study the flood amplification effect.The parameter sensitivity analyses show that the peak breach flow at the downstream dam decreases with increasing distance between the upstream and the downstream dams,and the downstream dam height.Further,the peak breach flow at the downstream dam first increases and then decreases with steepening of the river channel slope.When the flood caused by the upstream dam failure flows to the downstream dam,it can produce a surge wave that overtops and erodes the dam crest,resulting in a lowering of the dam crest elevation.This has an impact on the failure occurrence time and the peak breach flow of the downstream dam.The influence of the surge wave on the downstream dam failure process is related to the volume of water that overtops the dam crest and the erosion characteristics of dam material.Moreover,the cascading failure case of the Xiaogangjian and Lower Xiaogangjian landslide dams has also been used as the representative case for validating the model.In comparisons of the calculated and measured breach hydrographs and final breach morphologies,the relative errors of the key dam breaching parameters are all within±10%,which verify the rationality of the model is applicable to real-world cases.Overall,the numerical model developed in this study can provide important technical support for the risk assessment and emergency treatment of failures of cascading landslide dams. 展开更多
关键词 Cascading landslide dams Cascading dam failure process Detailed numerical simulation model Flood amplification effect Parameter sensitivity analyses
下载PDF
Wave Attenuation and Turbulence Driven by Submerged Vegetation Under Current-Wave Flow
2
作者 HUANG Yu-ming Ding Lei +3 位作者 WANG Yi-fei CHEN Ben YANG Xiao-yu DOU Xi-ping 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期602-611,共10页
A set of laboratory experiments are carried out to investigate the effect of following/opposing currents on wave attenuation.Rigid vegetation canopies with aligned and staggered configurations were tested under the co... A set of laboratory experiments are carried out to investigate the effect of following/opposing currents on wave attenuation.Rigid vegetation canopies with aligned and staggered configurations were tested under the condition of various regular wave heights and current velocities,with the constant water depth being 0.60 m to create the desired submerged scenarios.Results show that the vegetation-induced wave dissipation is enhanced with the increasing incident wave height.A larger velocity magnititude leads to a greater wave height attenuation for both following and opposing current conditions.Moreover,there is a strong positive linear correlation between the damping coefficientβand the relative wave height H_(0)/h,especially for pure wave conditions.For the velocity profile,the distributions of U_(min)and U_(max)show different patterns under combined wave and current.The time-averaged turbulent kinetic energy(TKE)vary little under pure wave and U_(c)=±0.05 m/s conditions.With the increase of flow velocity amplitude,the time-averaged TKE shows a particularly pronounced increase trend at the top of the canopy.The vegetation drag coefficients are obtained by a calibration approach.The empirical relations of drag coefficient with Reynolds and Keulegane-Carpenter numbers are proposed to further understand the wave-current-vegetation interaction mechanism. 展开更多
关键词 wave attenuation rigid vegetation following and opposing currents turbulent kinetic energy
下载PDF
Study on the Load Characteristics of Submerged Body Under Internal Solitary Waves on the Continental Shelf and Slope
3
作者 LIU Qian CUI Jian +5 位作者 MEI Huan GAO Jun-liang WU Xiang-bai ZHANG Dai-yu ZHANG Rui-rui SHANG Xiao-dong 《China Ocean Engineering》 SCIE EI CSCD 2024年第5期809-820,共12页
Based on the high-quality observation data and the numerical simulation,the evolution characteristics of internal solitary waves(ISWs)and the load on the suspend submerged body are studied on the continental shelf and... Based on the high-quality observation data and the numerical simulation,the evolution characteristics of internal solitary waves(ISWs)and the load on the suspend submerged body are studied on the continental shelf and slope separately.The observed ISWs exhibit the first mode depression ISWs.The amplitudes of ISWs on the shelf and slope areas reach 50 m and 80 m,respectively.The upper layer velocity in the westward direction is about 0.8 m/s on the continental shelf and 0.9 m/s on the continental slope during the passing through of ISWs.The lower layer is dominated by the eastward compensating flow.In the vertical direction,the water in front of the wave flows downward,while the water behind the wave flows upward,and the maximum vertical velocity exceeds 0.2 m/s.Numerical simulation results show that the larger the amplitude of ISWs,the larger the load on the submerged body.The force on the submerged body by ISWs is dominated by the vertical force,and the corresponding maximum vertical forces on the continental shelf and slope are−25 kN and −27 kN.The submerged body is subjected to a large counterclockwise moment and the sudden change of the moment will also cause the submerged body to capsize.This paper not only gives a deeper understanding of the characteristics of ISWs from the deep continental slope to the shallow continental shelf,but also has a certain guiding value for the prediction of ISWs and for marine military activities. 展开更多
关键词 internal solitary waves submerged body CFD horizontal force vertical force MOMENT South China Sea
下载PDF
Effect of Wave Nonlinearity on the Instantaneous Seabed Liquefaction
4
作者 WANG Zhao-jun SUI Ti-ti +1 位作者 ZHANG Chi PAN Jun-ning 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期93-103,共11页
The nonlinear variation of wave is commonly seen in nearshore area,and the resulting seabed response and liquefaction are of high concern to coastal engineers.In this study,an analytical formula considering the nonlin... The nonlinear variation of wave is commonly seen in nearshore area,and the resulting seabed response and liquefaction are of high concern to coastal engineers.In this study,an analytical formula considering the nonlinear wave skewness and asymmetry is adopted to provide wave pressure on the seabed surface.The liquefaction depth attenuation coefficient and width growth coefficient are defined to quantitatively characterize the nonlinear effect of wave on seabed liquefaction.Based on the 2D full dynamic model of wave-induced seabed response,a detailed parametric study is carried out in order to evaluate the influence of the nonlinear variation of wave loadings on seabed liquefaction.Further,new empirical prediction formulas are proposed to fast predict the maximum liquefaction under nonlinear wave.Results indicate that(1)Due to the influence of wave nonlinearity,the vertical transmission of negative pore water pressure in the seabed is hindered,and therefore,the amplitude decreases significantly.(2)In general,with the increase of wave nonlinearity,the liquefaction depth of seabed decreases gradually.Especially under asymmetric and skewed wave loading,the attenuation of maximum seabed liquefaction depth is the most significant among all the nonlinear wave conditions.However,highly skewed wave can cause the liquefaction depth of seabed greater than that under linear wave.(3)The asymmetry of wave pressure leads to the increase of liquefaction width,whereas the influence of skewedness is not significant.(4)Compared with the nonlinear waveform,seabed liquefaction is more sensitive to the variation of nonlinear degree of wave loading. 展开更多
关键词 nonlinear wave seabed response seabed liquefaction numerical simulation liquefaction prediction
下载PDF
引江济太不是太湖磷负荷上升的原因
5
作者 Zhiyuan Wang Qiuwen Chen +1 位作者 Jianyun Zhang Hanlu Yan 《Engineering》 SCIE EI CAS CSCD 2024年第4期10-14,共5页
Despite frequent cyanobacterial blooms increasing in magnitude and duration,Taihu Lake remains one of the most important water sources in the Yangtze River Delta of China.To meet the rising water demand from social–e... Despite frequent cyanobacterial blooms increasing in magnitude and duration,Taihu Lake remains one of the most important water sources in the Yangtze River Delta of China.To meet the rising water demand from social–economic development and secure water source during cyanobacterial blooms,the Water Diversion Project from the Yangtze River to Taihu Lake(WDYT)through the Wangyuhe(WYH)River channel was initiated in 2002 and has been in operation since 2007. 展开更多
关键词 YANGTZE China initiated
下载PDF
A Novel Method for Linear Systems of Fractional Ordinary Differential Equations with Applications to Time-Fractional PDEs
6
作者 Sergiy Reutskiy Yuhui Zhang +1 位作者 Jun Lu Ciren Pubu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1583-1612,共30页
This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering a... This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering and science.An approximate solution of the system is sought in the formof the finite series over the Müntz polynomials.By using the collocation procedure in the time interval,one gets the linear algebraic system for the coefficient of the expansion which can be easily solved numerically by a standard procedure.This technique also serves as the basis for solving the time-fractional partial differential equations(PDEs).The modified radial basis functions are used for spatial approximation of the solution.The collocation in the solution domain transforms the equation into a system of fractional ordinary differential equations similar to the one mentioned above.Several examples have verified the performance of the proposed novel technique with high accuracy and efficiency. 展开更多
关键词 System of FODEs numerical solution Müntz polynomial basis time fractional PDE BSM collocation method
下载PDF
气候变化对青藏高原河流源区径流的影响
7
作者 Zhenxin Bao Jianyun Zhang +6 位作者 Yanqing Lian Guoqing Wang Junliang Jin Zhongrui Ning Jiapeng Zhang Yanli Liu Xiaojun Wang 《Engineering》 SCIE EI CAS CSCD 2024年第3期133-142,共10页
The Tibetan Plateau(TP)is the headwater of the Yangtze,Yellow,and the transboundary Yarlung Zangbo,Lancang,and Nujiang Rivers,providing essential and pristine freshwater to around 1.6 billion people in Southeast and S... The Tibetan Plateau(TP)is the headwater of the Yangtze,Yellow,and the transboundary Yarlung Zangbo,Lancang,and Nujiang Rivers,providing essential and pristine freshwater to around 1.6 billion people in Southeast and South Asia.However,the temperature rise TP has experienced is almost three times that of the global warming rate.The rising temperature has resulted in glacier retreat,snow cover reduction,permafrost layer thawing,and so forth.Here we show,based on the longest observed streamflow data available for the region so far,that changing climatic conditions in the TP already had significant impacts on the streamflow in the headwater basins in the area.Our analysis indicated that the annual average temperature in the headwater basins of these five major rivers has been rising on a trend averaging 0.38℃-decade^(-1) since 1998,almost triple the rate before 1998,and the change of streamflow has been predominantly impacted by precipitation in these headwater basins.As a result,streamflow in the Yangtze,Yarlung Zangbo,Lancang,and Nujiang River headwater areas is on a decreasing trend with a reduction of flow ranging from 3.0-10^(9)-5.9-10^(9) m^(3)·decade^(-1)(-9.12%to-16.89%per decade)since 1998.The increased precipitation in the Tangnahai(TNH)and Lanzhou(LZ)Basins contributed to the increase of their streamflows at 8.04%and 14.29%per decade,respectively.Although the increased streamflow in the headwater basins of the Yellow River may ease some of the water resources concerns,the decreasing trend of streamflow in the headwater areas of the southeastern TP region since 1998 could lead to a water crisis in transboundary river basins for billions of people in Southeast and South Asia. 展开更多
关键词 Tibetan Plateau Streamflow Change trend Climate change
下载PDF
Seasonal constraint of dynamic water temperature on riverine dissolved inorganic nitrogen transport in land surface modeling
8
作者 Shuang Liu Kaiheng Hu +1 位作者 Zhenghui Xie Yan Wang 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第4期35-40,共6页
水体温度变化对河流可溶性无机氮(DIN)输送有着强烈控制作用.然而,在全球尺度上河流DIN输送量对水温度变化的响应尚不清楚.因此,本文基于陆面过程模式,耦合河流水温估算和DIN传输方案,设定有,无动态水温情景,对比研究陆面模拟中水温变... 水体温度变化对河流可溶性无机氮(DIN)输送有着强烈控制作用.然而,在全球尺度上河流DIN输送量对水温度变化的响应尚不清楚.因此,本文基于陆面过程模式,耦合河流水温估算和DIN传输方案,设定有,无动态水温情景,对比研究陆面模拟中水温变化对河流DIN通量变化的影响.结果表明:在考虑水温动态变化后,在30°N和30°S之间, DIN通量年振幅减小5%–25%.在中国东部地区,水温动态变化使河流DIN通量在夏季减少1%–3%,在冬季增加1%–5%,对DIN通量具有明显的季节性约束作用,表明动态水温的表达在河流DIN输送模拟中的重要性. 展开更多
关键词 陆面模拟 河流氮输送 水温变化 季节变化 全球尺度
下载PDF
A Novel Accurate Method forMulti-Term Time-Fractional Nonlinear Diffusion Equations in Arbitrary Domains
9
作者 Tao Hu Cheng Huang +2 位作者 Sergiy Reutskiy Jun Lu Ji Lin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1521-1548,共28页
Anovel accuratemethod is proposed to solve a broad variety of linear and nonlinear(1+1)-dimensional and(2+1)-dimensional multi-term time-fractional partial differential equations with spatial operators of anisotropic ... Anovel accuratemethod is proposed to solve a broad variety of linear and nonlinear(1+1)-dimensional and(2+1)-dimensional multi-term time-fractional partial differential equations with spatial operators of anisotropic diffusivity.For(1+1)-dimensional problems,analytical solutions that satisfy the boundary requirements are derived.Such solutions are numerically calculated using the trigonometric basis approximation for(2+1)-dimensional problems.With the aid of these analytical or numerical approximations,the original problems can be converted into the fractional ordinary differential equations,and solutions to the fractional ordinary differential equations are approximated by modified radial basis functions with time-dependent coefficients.An efficient backward substitution strategy that was previously provided for a single fractional ordinary differential equation is then used to solve the corresponding systems.The straightforward quasilinearization technique is applied to handle nonlinear issues.Numerical experiments demonstrate the suggested algorithm’s superior accuracy and efficiency. 展开更多
关键词 Müntz polynomial basis backward substitutionmethod collocationmethod meshlessmethod fractional equation
下载PDF
Analytical solutions of turbulent boundary layer beneath forward-leaning waves
10
作者 Yiqin XIE Jifu ZHOU +3 位作者 Xu WANG Jinlong DUAN Yongjun LU Shouqian LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期695-710,共16页
As a typical nonlinear wave,forward-leaning waves can be frequently encountered in the near-shore areas,which can impact coastal sediment transport significantly.Hence,it is of significance to describe the characteris... As a typical nonlinear wave,forward-leaning waves can be frequently encountered in the near-shore areas,which can impact coastal sediment transport significantly.Hence,it is of significance to describe the characteristics of the boundary layer beneath forward-leaning waves accurately,especially for the turbulent boundary layer.In this work,the linearized turbulent boundary layer model with a linear turbulent viscosity coefficient is applied,and the novel expression of the near-bed orbital velocity that has been worked out by the authors for forward-leaning waves of arbitrary forward-leaning degrees is further used to specify the free stream boundary condition of the bottom boundary layer.Then,a variable transformation is found so as to make the equation of the turbulent boundary layer model be solved analytically through a modified Bessel function.Consequently,an explicit analytical solution of the turbulent boundary layer beneath forward-leaning waves is derived by means of variable separation and variable transformation.The analytical solutions of the velocity profile and bottom shear stress of the turbulent boundary layer beneath forward-leaning waves are verified by comparing the present analytical results with typical experimental data available in the previous literature. 展开更多
关键词 forward-leaning wave turbulent boundary layer velocity profile bottom shear stress
下载PDF
Predicting impact forces on pipelines from deep-sea fluidized slides:A comprehensive review of key factors
11
作者 Xingsen Guo Ning Fan +5 位作者 Defeng Zheng Cuiwei Fu Hao Wu Yanjun Zhang Xiaolong Song Tingkai Nian 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期211-225,共15页
Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on ... Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures. 展开更多
关键词 Deep-sea fluidized slides Pipes Impact forces Shear behavior of slides Interface contact conditions Spatial relation
下载PDF
Abrasion test of flexible protective materials on hydraulic structures 被引量:7
12
作者 Xin WANG Shao-ze LUO +2 位作者 Guang-sheng LIU Lu-chen ZHANG Yong WANG 《Water Science and Engineering》 EI CAS CSCD 2014年第1期106-116,共11页
In this study, several kinds of flexible protective materials sprayed with polyurea elastomers (hereinafter referred to as polyurea elastomer protective material) were adopted to meet the abrasion resistance require... In this study, several kinds of flexible protective materials sprayed with polyurea elastomers (hereinafter referred to as polyurea elastomer protective material) were adopted to meet the abrasion resistance requirement of hydraulic structures, and their abrasion resistances against the water flow with suspended load or bed load were studied systematically through tests. Natural basalt stones were adopted as the abrasive for simulation of the abrasion effect of the water flow with bed load, and test results indicate that the basalt stone is suitable for use in the abrasion resistance test of the flexible protective material. The wear process of the polyurea elastomer protective material is stable, and the wear loss is linear with the time of abrasion. If the wear thickness is regarded as the abrasion resistance evaluation factor, the abrasion resistance of the 351 pure polyurea is about twice those of pure polyurea with a high level of hardness and aliphatic polyurea, and over five times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with suspended load. It is also about 50 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load. Overall, the abrasion resistance of pure polyurea presented a decreasing trend with increasing hardness. Pure polyurea with a Shore hardness of D30 has the best abrasion resistance, which is 60 to 70 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load, and has been recommended, among the five kinds of pure polyurea materials with different hardness, in anti-abrasion protection of hydraulic structures. 展开更多
关键词 flexible protective material polyurea elastomer material abrasion resistance hardness influence hydraulic structure
下载PDF
Research on Measurement of Bed Shear Stress Under Wave-Current Interaction 被引量:6
13
作者 徐华 夏云峰 +3 位作者 马炳和 郝思禹 张世钊 杜德军 《China Ocean Engineering》 SCIE EI CSCD 2015年第4期589-598,共10页
The movement of sediment in estuary and on coast is directly restricted by the bed shear stress. Therefore, the research on the basic problem of sediment movement by the bed shear stress is an important way to researc... The movement of sediment in estuary and on coast is directly restricted by the bed shear stress. Therefore, the research on the basic problem of sediment movement by the bed shear stress is an important way to research the theory of sediment movement. However, there is not a measuring and computing method to measure the bed shear stress under a complicated dynamic effect like wave and current. This paper describes the measurement and test research on the bed shear stress in a long launder of direct current by the new instrument named thermal shearometer based on micro-nanotechnology. As shown by the research results, the thermal shearometer has a high response frequency and strong stability. The measured results can reflect the basic change of the bed shear stress under wave and wave-current effect, and confirm that the method of measuring bed shear stress under wave-current effect with thermal shearometer is feasible. Meanwhile, a preliminary method to compute the shear stress compounded by wave-current is put forward according to the tested and measured results, and then a reference for further study on the basic theory of sediment movement under a complicated dynamic effect is provided. 展开更多
关键词 bed shear stress micro-nanotechnology thermal shearometer wave-current effect sediment movement
下载PDF
Research on shape optimization of CSG dams 被引量:4
14
作者 Xin CAI Ying-li WU +1 位作者 Jian-gang YI Yu MING 《Water Science and Engineering》 EI CAS 2011年第4期445-454,共10页
The multi-objective optimization method was used for shape optimization of cement sand and gravel (CSG) dams in this study. The economic efficiency, the sensitivities of maximum horizontal displacement and maximum s... The multi-objective optimization method was used for shape optimization of cement sand and gravel (CSG) dams in this study. The economic efficiency, the sensitivities of maximum horizontal displacement and maximum settlement of the dam to water level changes, the overall stability, and the overall strength security were taken into account during the optimization process. Three weight coefficient selection schemes were adopted to conduct shape optimization of a dam, and the case studies lead to the conclusion that both the upstream-and downstream dam slope ratios for the optimal cross-section equal 1:0.7, which is consistent with the empirically observed range of 1:0.6 to 1;0.8 for the upstream and downstream dam slope ratios of CSG dams. Therefore, the present study is of certain reference value for designing CSG dams. 展开更多
关键词 CSG dam shape optimization sensitivity ANALYSIS
下载PDF
Hydrodynamic Effect of the Regulation Project of Yangtze River Deepwater Channel Downstream of Nanjing 被引量:2
15
作者 杨东利 窦希萍 +1 位作者 张新周 罗小峰 《China Ocean Engineering》 SCIE EI CSCD 2013年第6期767-779,共13页
A two-dimensional flow numerical model of the tidal reaches, which total length is more than 700 km, is established from Datong to the Yangtze River estuary. The tidal levels, velocities, diversion ratios and dynamic ... A two-dimensional flow numerical model of the tidal reaches, which total length is more than 700 km, is established from Datong to the Yangtze River estuary. The tidal levels, velocities, diversion ratios and dynamic axes before and after the separate regulation of each reach and combined regulation of all reaches are obtained. The comparative analysis shows that the regulation project of a separate reach basically has no impact on velocity distributions and variations of diversion ratios of upper and lower reaches, the variations of dynamic axes are only within the local scope of the project. The regulation project of a separate reach also has less impact on the water level in the lower adjacent reaches, but will make the water levels in the upper reaches rise. After the implementation of the regulation projects for all reaches, the rise of water level in the upstream reaches will have a cumulative impact. 展开更多
关键词 Yangtze River deepwater channel regulation project numerical model
下载PDF
Model Test Research of Breakwater Core Material Influence on Wave Propagation 被引量:2
16
作者 WANG Deng-ting SUN Tian-ting +1 位作者 CHEN Wei-qiu ZHU Jia-ling 《China Ocean Engineering》 SCIE EI CSCD 2016年第5期786-793,共8页
The interaction between waves and porous breakwater has an important theoretical significance and great application value of engineering.In this paper,the tests of the core material's influence in rubble mound bre... The interaction between waves and porous breakwater has an important theoretical significance and great application value of engineering.In this paper,the tests of the core material's influence in rubble mound breakwater on wave propagation are carried out.The relations among the transmitted wave height,incident wave element,and breakwater width are discussed.The calculation formula is obtained.The test results show that different core materials have obvious influence on wave propagation. 展开更多
关键词 core material simulation permeable wave height transmitted coefficient
下载PDF
Experimental Research on Wave Transmission over Submerged Rubble-Mound Breakwaters 被引量:2
17
作者 左其华 Valeri PENCHEV +2 位作者 李鹏 Dorina DRAGANCHEVA 王登婷 《China Ocean Engineering》 SCIE EI 2008年第4期575-584,共10页
This paper discusses some previous, and presents some new experimental results on wave transmission over submerged breakwaters. The objective of this study is to evaluate wave transmission coefficient and develop a tw... This paper discusses some previous, and presents some new experimental results on wave transmission over submerged breakwaters. The objective of this study is to evaluate wave transmission coefficient and develop a two-dimensional (2D) model as an improvement to the existing wave transmission coefficient models. Factors which affect wave transmission over stbmerged breakwaters are discussed through a series of laboratory experiments. Basic recommendations for evaluation and design of submerged rubble-monud breakwaters are presented. From the test results, a calculation formula of wave transmission coefficient is proposed. 展开更多
关键词 submerged rubble breakwater wave transmission coefficient wave dissipation laboratory experiment
下载PDF
Experimental Research on Boundary Shear Stress in Typical Meandering Channel 被引量:1
18
作者 CHEN Kai-hua XIA Yun-feng +2 位作者 ZHANG Shi-zhao WEN Yun-cheng XU Hua 《China Ocean Engineering》 SCIE EI CSCD 2018年第3期365-373,共9页
A novel instrument named Micro-Electro-Mechanical System(MEMS) flexible hot-film shear stress sensor was used to study the boundary shear stress distribution in the generalized natural meandering open channel, and the... A novel instrument named Micro-Electro-Mechanical System(MEMS) flexible hot-film shear stress sensor was used to study the boundary shear stress distribution in the generalized natural meandering open channel, and the mean sidewall shear stress distribution along the meandering channel, and the lateral boundary shear stress distribution in the typical cross-section of the meandering channel was analysed. Based on the measurement of the boundary shear stress, a semi-empirical semi-theoretical computing approach of the boundary shear stress was derived including the effects of the secondary flow, sidewall roughness factor, eddy viscosity and the additional Reynolds stress, and more importantly, for the first time, it combined the effects of the cross-section central angle and the Reynolds number into the expressions. Afterwards, a comparison between the previous research and this study was developed. Following the result, we found that the semi-empirical semi-theoretical boundary shear stress distribution algorithm can predict the boundary shear stress distribution precisely. Finally, a single factor analysis was conducted on the relationship between the average sidewall shear stress on the convex and concave bank and the flow rate, water depth, slope ratio,or the cross-section central angle of the open channel bend. The functional relationship with each of the above factors was established, and then the distance from the location of the extreme sidewall shear stress to the bottom of the open channel was deduced based on the statistical theory. 展开更多
关键词 boundary shear stress flume physical model river bend MEMS flexible hot-film shear stress sensor
下载PDF
Resilience of hydraulic structures under significant impact of typhoons
19
作者 Zhi-min FU Yan XIANG +2 位作者 Cheng-dong LIU Zi-yang LI Zhan-jun WANG 《Water Science and Engineering》 EI CAS 2011年第3期284-293,共10页
Vulnerability to natural disasters falls into three categories: exposure, resistance, and resilience, where resilience mainly refers to the capability of a pressure-bearing system to recover by returning to its initi... Vulnerability to natural disasters falls into three categories: exposure, resistance, and resilience, where resilience mainly refers to the capability of a pressure-bearing system to recover by returning to its initial state, that is, the ability to adapt to disaster pressure. Resilience is a major subject of research on disaster prevention and mitigation. This research mainly focuses on the ability of the hydraulic structure to recover from the significant impacts of typhoons. According to the load/unload response ratio theory, the degree of instability by which nonlinear systems can be identified according to the difference between load and unload responses was analyzed. This analysis was used as a basis to study the resilience of a hydraulic structure. Taking the Yangtze River embankments under the impact of Typhoon Matsa as an example, the ability of the typical sections of different types of embankments to adapt to the significant impact of the typhoon, i.e., the resilience of the hydraulic structure, is described with the help of the load/unload response ratio (L). The results of the calculated resilience reflect the actual conditions of the structure and can be used to determine the applicability of the embankment section. The load/unload response ratio theory is one of the effective tools for calculating the resilience of hydraulic structures under the significant impacts of typhoons. 展开更多
关键词 typhoon hydraulic engineering load/unload response ratio RESILIENCE
下载PDF
Risk zone of wrack hitting marine structure simulated by 2D hydraulic model
20
作者 MA Jin-rong GUO Ya-qiong NAN Wei 《水道港口》 2010年第5期415-415,共1页
The wrack or the ship out of control will drift with flow.One of the most important factors that drive the ship is flow current which moves circularly in tidal area.The wrack from same place always drifts in different... The wrack or the ship out of control will drift with flow.One of the most important factors that drive the ship is flow current which moves circularly in tidal area.The wrack from same place always drifts in different ways if the start time is different.So,during the ship drifting period,the drift trace is also determined by both wave and wind forces.The drift direction is limited by water depth which must be deeper than ship draft. These marine structures that can not afford the hit of wrack or will destroy the wrack must be well considered when they are placed near harbor and waterway or other water area with ship running.The risk zone should be consulted according to tide and weather conditions to protect structures and ships in necessary.A method is presented here to simulate the risk zone by 2D numerical hydraulic model with tidal current,wave,wind and water depth considered.This model can be used to built early-warning and protect system for special marine structure. 展开更多
关键词 DRIFT TRACE risk zone simulation
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部