The study focuses on the stability control measures for mining roadways in fault zones of deep mines,using Daqiang Coal Mine as a case study.The control system under consideration,referred to as"pre-splitting cut...The study focuses on the stability control measures for mining roadways in fault zones of deep mines,using Daqiang Coal Mine as a case study.The control system under consideration,referred to as"pre-splitting cutting roof+NPR anchor cable"(PSCR-NPR),is subjected to scrutiny through theoretical analysis,numerical modelling,and field trials.Furthermore,a comprehensive analysis is undertaken to evaluate the stability control mechanism of this particular technology.The study provides evidence that the utilization of deep-hole directional energy-concentrated blasting facilitates the attainment of directional roof cutting in roadways.The aforementioned procedure leads to the formation of a uniform structural surface on the roof of the roadway and causes modifications in the surrounding geological formation.The examination of the lateral abutment pressure and shear stress distribution,both prior to and subsequent to roof cutting,indicates that the implementation of pre-splitting techniques leads to a noteworthy reduction in pressure.The proposition of incorporating the safety factor Q for roof cutting height is suggested as a method to augment comprehension of the pressure relief phenomenon in the field of engineering.The analysis of numerical simulation has indicated that the optimal pressure relief effect of a mining roadway in a fault area is attained when the value of Q is 1.8.The NPR anchor cable exhibits noteworthy characteristics,including a high level of prestress,continuous resistance,and substantial deformation.After the excavation of the roadway,a notable reduction in radial stress occurs,leading to the reinstatement of the three-phase stress state in the surrounding rock.This restoration is attributed to the substantial prestress exerted on the radial stress.The termination point of the NPR anchor cable is strategically positioned within a stable rock formation,allowing for the utilization of the mechanical characteristics of the deep stable rock mass.This positioning serves to improve the load-bearing capacity of the surrounding rock.The mining roadway within the fault region of Daqiang Coal Mine is outfitted with the PSCR-NPR technology.The drop in shear stress experienced by the rock surrounding the roadway is estimated to be around 30%,whilst the low-stress region of the mining roadway extends by a factor of approximately 5.5.The magnitude of surface displacement convergence experiences a decrease of approximately 45%-50%.The study’s findings provide useful insights regarding the stable of mining roadway in characterized by fault zones.展开更多
The Gaoloushan Tunnel in Longnan City,Gansu Province,China,frequently experiences rockburst disasters due to high in-situ stress.Managing rockburst in deep-buried tunnels remains a challenging issue.This paper employs...The Gaoloushan Tunnel in Longnan City,Gansu Province,China,frequently experiences rockburst disasters due to high in-situ stress.Managing rockburst in deep-buried tunnels remains a challenging issue.This paper employs RFPA(Rock Failure Process Analysis)software to establish a calculation model of constant resistance and large deformation(CRLD)anchorages and analyzes the effects of different support methods and pre-stress levels on rockburst.We simulate the process of tunnel rockburst disasters and find that ordinary anchor support incurs rockburst on the right arch waist and arch top,forming a V-shaped explosion pit.CRLD anchor support has several advantages in rockburst control,such as more uniform stress distribution in the surrounding rock,a uniform distribution of plastic zones,less noticeable damage to the tunnel,and effective control of the arch top displacement.The effectiveness of the CRLD anchor support under varying pre-stress conditions shows that a higher prestress results in a smaller plastic zone of the surrounding rock and arch top displacement and a lower number of acoustic emission signals,which better explains the excavation compensation effect.Moreover,adding long anchorages in the deep surrounding rock area can better control rockburst and reduce surrounding rock deformation.Based on these findings,we propose a comprehensive control system that combines long and short anchorages and provides the optimal scheme based on calculations.Therefore,by using high-prestress CRLD anchor support and the combination of long and short anchorages at critical positions,we can enhance the integrity of the surrounding rock,effectively absorb the energy released by the surrounding rock deformation,and reduce the incidence of rockburst disasters.展开更多
The well-developed particle-swarm optimization method together with density functional theory calculations were employed to search lowest-energy geometric structures of two-dimensional(2D)SiGeP_(2).Two newly found str...The well-developed particle-swarm optimization method together with density functional theory calculations were employed to search lowest-energy geometric structures of two-dimensional(2D)SiGeP_(2).Two newly found structures(P3m1 and Pmm2)are predicted.The unbiased global search reveals that the two lowest-energy structures are honeycomb lattices with robust dynamical stabilities.A more accurate Heyd-Scuseria-Ernzerhof(HSE06)hybrid functional is used to estimate the band structures of SiGeP_(2),which indicates that both the structures are semiconductors with indirect band-gap energies 1.80 e V for P3m1 and1.93 e V for Pmm^(2),respectively.Using the deformation potential theory,the P3m1-SiGeP_(2)is predicted to have high electron mobilities(6.4×10^(4)along zigzag direction and 2.9×10^(3)cm^(2)·V^(-1)·s^(-1)along armchair direction,respectively)and hole electron mobilities(1.0×10^(3)along zigzag direction and 2.5×10^(3)cm^(2)·V^(-1)·s^(-1)along armchair direction,respectively),which can be comparable with that of phosphorene and show anisotropic character in-plane.In addition,to estimate the elastic limit of SiGeP_(2),we also calculated the surface tension of SiGeP_(2)as a function of tensile strain.Our results show that the 2D SiGeP_(2)may be good candidaticates for applications in nanoelectronic devices.展开更多
Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is ext...Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is extremely high,so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system.The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy.First,we use the information gain and Fisher Score to sort the features extracted from signals.Then,we employ a multi-objective ranking method to evaluate these features and assign different importance to them.Features with high rankings have a large probability of being selected.Finally,we propose a repair strategy to address the problem of duplicate solutions in multi-objective feature selection,which can improve the diversity of solutions and avoid falling into local traps.Using random forest and K-nearest neighbor classifiers,four English speech emotion datasets are employed to test the proposed algorithm(MBEO)as well as other multi-objective emotion identification techniques.The results illustrate that it performs well in inverted generational distance,hypervolume,Pareto solutions,and execution time,and MBEO is appropriate for high-dimensional English SER.展开更多
Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical appr...Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical approaches.The metastructure is composed of periodic rubber layers and concrete layers embedded with three-dimensional resonators,which can be freely designed with multi local resonant frequencies to attenuate vibrations at required frequencies and widen the attenuation bandgap.The metastructure can also effectively attenuate seismic responses.Compared with layered rubber-based structures,the metastructure has more excellent wave attenuation effects with greater attenuation and wider bandgap.展开更多
A novel chemiluminescence (CL) system for determination of permanganate index (CODMn) combined with flow injection analysis has been proposed in this study. On the basis of the chemiluminescent reaction of luminol...A novel chemiluminescence (CL) system for determination of permanganate index (CODMn) combined with flow injection analysis has been proposed in this study. On the basis of the chemiluminescent reaction of luminol-KMnO4 system, light emission caused by luminol-KMnO4 system was detected by the photomultiplier tube, and its intensity caused by the appearance of KMnO4 after sample digestion was inversely proportional to CODMn. Effects for CODMn determining such as pH, concentrations and interference were investigated in detail. A detection limit of 0.3 mg/L CODMn with a linear range of 0.3-200 mg/L for its theoretical CODMn was obtained under the optimized experimental conditions. The relative standard deviation was 4.3% for 5.0 mg/L CODMn (n = 11). This CL flow system for determining CODMn was simple, rapid, and suitable for automatic analysis. The data obtained by the present method were fairly in good agreement with those obtained by the standard titrimetric method. It has been applied to determine real samples with satisfactory results.展开更多
To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employ...To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks.展开更多
As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe ...As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe the constitutive relationship of SMA material.Under the assumption that there is no point of SMA layer finishing martensitic phase transformation during the loading and unloading process,the generalized restoring force generated by SMA layer is deduced for the case that the simply supported beam vibrates in its first mode.The generalized force is expressed as piecewise-nonlinear hysteretic function of the beam transverse displacement.Furthermore the energy dissipated by SMA layer during one period is obtained by integration,then its dependencies are discussed on the vibration amplitude and the SMA's strain(Ms-Strain) value at the beginning of martensitic phase transformation.It is shown that SMA's energy dissipating capacity is proportional to the stiffness difference of bilinear model and nonlinearly dependent on Ms-Strain.The increasing rate of the dissipating capacity gradually reduces with the amplitude increasing.The condition corresponding to the maximum dissipating capacity is deduced for given value of the vibration amplitude.The obtained results are helpful for designing beams laminated with shape memory alloys.展开更多
This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From th...This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From the comparison theory, it can find out whether the stochastic impulsive differential system is stable just by studying the stability of a deterministic comparison system. As a general application of this theory, it controls the chaos of stochastic Lii system using impulsive control method, and numerical simulations are employed to verify the feasibility of this method.展开更多
Bioconversion of lignocellulosic wastes to higher value products through fungal fermentation has economic and ecological benefits. In this study, to develop an effective strategy for production of manganese peroxidase...Bioconversion of lignocellulosic wastes to higher value products through fungal fermentation has economic and ecological benefits. In this study, to develop an effective strategy for production of manganese peroxidase(Mn P)from cassava residue by Phanerochaete chrysosporium in solid state fermentation, the stimulators of Mn P production were screened and their concentrations were optimized by one-at-a-time experiment and Box–Behnken design. The maximum Mn P activity of 186.38 nkat·g-1dry mass of the sample was achieved after 6 days of fermentation with the supplement of 79.5 mmol·L-1·kg-1acetic acid, 3.21 ml·kg-1soybean oil, and 28.5 g·kg-1alkaline lignin, indicating that cassava residue is a promising substrate for Mn P production in solid state fermentation. Meanwhile, in vitro decolorization of indigo carmine by the crude Mn P was also carried out, attaining the ratio of 90.18% after 6 h of incubation. An oxidative mechanism of indigo carmine decolorization by Mn P was proposed based on the analysis of intermediate metabolites with ultra-high performance liquid chromatography and gas chromatography tandem mass spectrometry. Using the crude Mn P produced from cassava residue for indigo carmine decolorization gives an effective approach to treat dyeing effluents.展开更多
The mathematical expression of the electron diffusion and drift length LDE of exponential doping photocathode is deduced. In the quantum efficiency equation of the reflection-mode uniform doping cathode, substituting ...The mathematical expression of the electron diffusion and drift length LDE of exponential doping photocathode is deduced. In the quantum efficiency equation of the reflection-mode uniform doping cathode, substituting LDE for LD, the equivalent quantum efficiency equation of the reflection-mode exponential doping cathode is obtained. By using the equivalent equation, theoretical simulation and experimental analysis shows that the equivalent index formula and formula-doped cathode quantum efficiency results in line. The equivalent equation avoids complicated calculation, thereby simplifies the process of solving the quantum efficiency of exponential doping photocathode.展开更多
The forming limit diagrams ( FLD ) of AZ31B magnesium alloy sheet were tested by means of the electro etching grid method based on the forming experiment of magnesium alloy sheet carried out with a BCS- 30D sheet fo...The forming limit diagrams ( FLD ) of AZ31B magnesium alloy sheet were tested by means of the electro etching grid method based on the forming experiment of magnesium alloy sheet carried out with a BCS- 30D sheet forming testing machine and the strain testing analysis made with an advanced ASAME automatic strain measuring system. Experiments show that, at room temperature, the mechanical properties and deep drawing peorformance of AZ31B cold-rolled magnesium alloy sheet were so poor that it failed to test the forming limit diagrams without an ideal forming and processing capacity, while the hot-rolled magnesium alloy sheet was of a little better plasticity and forming peorformance after testing its forming limit diagrams. It can be concluded that the testing of the forming limit curves ( FLC ) offers the theoretical foundation for the drawing of the deep drawing and forming process of magnesium alloy sheet.展开更多
This paper is devoted to the discussion of filters in residuated lattices. Some equivalent conditions about filter were given. The structure of generated filter was established. The concept of implicative filter in re...This paper is devoted to the discussion of filters in residuated lattices. Some equivalent conditions about filter were given. The structure of generated filter was established. The concept of implicative filter in residuated lattice was proposed with its basic properties being discussed.展开更多
Thin-walled lattice materials can be applied as energy absorbers in protective structures of civil defense. In this paper, quasi-static in-plane crushing tests were carried out to investigate the crushing behavior and...Thin-walled lattice materials can be applied as energy absorbers in protective structures of civil defense. In this paper, quasi-static in-plane crushing tests were carried out to investigate the crushing behavior and energy absorption of buckling induced meta-lattice structures (BIMSs) with different central angles made of plastic iron material DT3 and formed by wire cutting technique. Three crushing patterns were revealed and analyzed. The test results clearly show that the initial peak force (IPF), the crushing force efficiency (CFE), the specific energy absorption (SEA) and the mean crushing force (MCF) can be substantially improved by introducing buckling pattern into the straight-walled lattice structure. The MCF of the BIMS was consistently predicted based on the simplified super folding element (SSFE) and the flattening element.展开更多
The tool point frequency response function(FRF) is commonly obtained by impacting test or semi-analytical techniques.Regardless of the approach,it is assumed that the workpiece system is rigid.The assumption is valid ...The tool point frequency response function(FRF) is commonly obtained by impacting test or semi-analytical techniques.Regardless of the approach,it is assumed that the workpiece system is rigid.The assumption is valid in common machining,but it doesn’t work well in the cutting processes of thin-wall products.In order to solve the problem,a multi-degree-of-freedom dynamic model is employed to obtain the relative dynamic stiffness between the cutting tool and the workpiece system.The relative direct and cross FRFs between the cutting tool and workpiece system are achieved by relative excitation experiment,and compared with the tool point FRFs at x and y axial direction.The comparison results indicate that the relative excitation method could be used to obtain the relative dynamic compliance of machine-tool-workpiece system more actually and precisely.Based on the more precise relative FRFs,four evaluation criterions of dynamic stiffness are proposed,and the variation trend curves of these criterions during the last six months are achieved and analyzed.The analysis results show that the lowest natural frequency,the maximum and the average dynamic compliances at x axial direction deteriorate more quickly than that at y axial direction.Therefore,the main cutting direction and the large-size direction of workpieces should be arranged at y axial direction to slow down the deterioration of the dynamic stiffness of machining centers.The compliance of workpiece system is considered,which can help master the deterioration rules of the dynamic stiffness of machining centers,and enhance the reliability of machine centers and the consistency of machining processes.展开更多
The built-in electric fields within a varied doping GaAs photocathode may promote the transport of electrons from the bulk to the surface, thus the quantum efficiency of the cathode can be enhanced remarkably. But thi...The built-in electric fields within a varied doping GaAs photocathode may promote the transport of electrons from the bulk to the surface, thus the quantum efficiency of the cathode can be enhanced remarkably. But this enhancement, which might be due to the increase in either the number or the energy of electrons reaching the surface, is not clear at present. In this paper, the energy distributions of electrons in a varied doping photocathode and uniform doping photocathode before and after escaping from the cathode surface are analysed, and the number of electrons escaping from the surface in different cases is calculated for the two kinds of photocathodes. The results indicate that the varied doping structure can not only increase the number of electrons reaching the surface but also cause an offset of the electron energy distribution to high energy. That is the root reason for the enhancement of the quantum efficiency of a varied doping GaAs photocathode.展开更多
A new complex [Rh(COD)(2,2'-bipy)]·[Rh(COD)Cl2](COD = 1,5-cyclooctadiene, 2,2'-bipy = 2,2'-bipyridine) has been synthesized and characterized by elemental analyses, NMR and single-crystal X-ray diffrac...A new complex [Rh(COD)(2,2'-bipy)]·[Rh(COD)Cl2](COD = 1,5-cyclooctadiene, 2,2'-bipy = 2,2'-bipyridine) has been synthesized and characterized by elemental analyses, NMR and single-crystal X-ray diffraction. The complex crystallizes in triclinic system, space group P1 with a = 7.4782(14), b = 10.1400(11), c = 16.6982(14) , α = 103.494(11), β = 91.996(13), γ = 103.829(12)o, C26H32Cl2N2Rh2, Mr = 649.26, V = 1190.0(3)3, Dc = 1.812 g/cm3, Z = 2, F(000) = 652, μ(Mo Kα) = 1.629 mm-1, R = 0.0286 and w R = 0.0463 for 3718 observed reflections(I 2σ(I)). The complex was linked to form 1D chains by hydrogen bonding interaction(C–H···Cl), and further to construct a 2D layer structure by π···π stacking interactions between the pyridine rings of 2,2'-bipy ligands. The hydroformylation catalyzed by the title complex was also studied.展开更多
OBJECTⅣE This study aimed to investigate the role and mechanism of Astragaloside Ⅳ(AS-Ⅳ) in rats with myocardial infarction.METHODS The myocardial infarction model was established by ligation of the left anterior d...OBJECTⅣE This study aimed to investigate the role and mechanism of Astragaloside Ⅳ(AS-Ⅳ) in rats with myocardial infarction.METHODS The myocardial infarction model was established by ligation of the left anterior descending artery.The rats were randomly divided into sham,DMSO,model group,AS-Ⅳ and CID755673 groups.The rats were sacrificed 4 weeks later,and segmental heart samples were used for hematoxylin and eosin staining and masson staining.The expression of PKD1,HDAC5 and VEGF were analyzed using immunohistochemistry,reverse transcription poly.merase chain reaction and western blot.RESULTS Compared with the sham operation and DMSO groups,morphology of myocardium in model group was disordered,accompanied with necrotic myocar.dial cells and obvious collagen tissues.After treatment with AS-Ⅳ,the morphology of myocardium was obviously improved,and the number of new blood vessels increased significantly.However,after treatment with CID755673,the myocardial tissue of rats became disordered again,the necrotic cells increased,and some vessels closed.The expression levels of PKD1,HDAC5 and VEGF mRNA and protein in myocardial tissue of model group were significantly lower than the other four groups(P<0.05),whereas these levels in the AS-Ⅳ group were significantly higher than those in the other four groups(P<0.01).Additionally,the CID755673 group had significantly higher levels of PKD1,HDAC5 and VEGF mRNA and protein than the sham group,DMSO group and model group(P<0.05).CONCLUSION AS-Ⅳ may partly promote the angiogenesis of myocardial tissue in rats with myocardial infarction via the PKD1-HDAC5-VEGF pathway.展开更多
By employing a generalized Riccati technique and an integral averaging tech-nique, new interval oscillation criteria are established for the forced second-order half-lineardifferential equation [r(t)|x′ (t)|α-1x′ (...By employing a generalized Riccati technique and an integral averaging tech-nique, new interval oscillation criteria are established for the forced second-order half-lineardifferential equation [r(t)|x′ (t)|α-1x′ (t)]′ + q(t)|x(t)|α-1x(t) = e(t).展开更多
Analyses and computations of the natural frequencies of external prestressed concrete structures are the bases for studying the dynamic properties of such structures. We carded out dynamic tests on three types of exte...Analyses and computations of the natural frequencies of external prestressed concrete structures are the bases for studying the dynamic properties of such structures. We carded out dynamic tests on three types of external simply supported beams, pulling the beams gradually. Then vertical loads were applied to the beams while the frequencies and related coefficients were measured at every step. We calculated natural frequencies and the results indicate that natural frequencies increase as the prestressing force rises in the pre-crack stage, and decrease significantly during the post-crack stage. Substantial incoincidences exist between the calculated and experimental results for the frequency and its tendency to changel Based on the experimental results, we modified the stiffness and other parameters in the equations. The results calculated using the modified equations agree with experimental results well, so the modified eauations can be used nractically.展开更多
基金funded by the National Natural Science Foundation of China(52174096,42277174)the Fundamental Research Funds for the Central Universities(2022YJSSB03)the Scientific and Technological Projects of Henan Province(232102320238)。
文摘The study focuses on the stability control measures for mining roadways in fault zones of deep mines,using Daqiang Coal Mine as a case study.The control system under consideration,referred to as"pre-splitting cutting roof+NPR anchor cable"(PSCR-NPR),is subjected to scrutiny through theoretical analysis,numerical modelling,and field trials.Furthermore,a comprehensive analysis is undertaken to evaluate the stability control mechanism of this particular technology.The study provides evidence that the utilization of deep-hole directional energy-concentrated blasting facilitates the attainment of directional roof cutting in roadways.The aforementioned procedure leads to the formation of a uniform structural surface on the roof of the roadway and causes modifications in the surrounding geological formation.The examination of the lateral abutment pressure and shear stress distribution,both prior to and subsequent to roof cutting,indicates that the implementation of pre-splitting techniques leads to a noteworthy reduction in pressure.The proposition of incorporating the safety factor Q for roof cutting height is suggested as a method to augment comprehension of the pressure relief phenomenon in the field of engineering.The analysis of numerical simulation has indicated that the optimal pressure relief effect of a mining roadway in a fault area is attained when the value of Q is 1.8.The NPR anchor cable exhibits noteworthy characteristics,including a high level of prestress,continuous resistance,and substantial deformation.After the excavation of the roadway,a notable reduction in radial stress occurs,leading to the reinstatement of the three-phase stress state in the surrounding rock.This restoration is attributed to the substantial prestress exerted on the radial stress.The termination point of the NPR anchor cable is strategically positioned within a stable rock formation,allowing for the utilization of the mechanical characteristics of the deep stable rock mass.This positioning serves to improve the load-bearing capacity of the surrounding rock.The mining roadway within the fault region of Daqiang Coal Mine is outfitted with the PSCR-NPR technology.The drop in shear stress experienced by the rock surrounding the roadway is estimated to be around 30%,whilst the low-stress region of the mining roadway extends by a factor of approximately 5.5.The magnitude of surface displacement convergence experiences a decrease of approximately 45%-50%.The study’s findings provide useful insights regarding the stable of mining roadway in characterized by fault zones.
基金funded by the National Natural Science Foundation of China(52174096,42277174)the Fundamental Research Funds for the Central Universities(2022YJSSB03)the Scientific and Technological Projects of Henan Province(232102320238)。
文摘The Gaoloushan Tunnel in Longnan City,Gansu Province,China,frequently experiences rockburst disasters due to high in-situ stress.Managing rockburst in deep-buried tunnels remains a challenging issue.This paper employs RFPA(Rock Failure Process Analysis)software to establish a calculation model of constant resistance and large deformation(CRLD)anchorages and analyzes the effects of different support methods and pre-stress levels on rockburst.We simulate the process of tunnel rockburst disasters and find that ordinary anchor support incurs rockburst on the right arch waist and arch top,forming a V-shaped explosion pit.CRLD anchor support has several advantages in rockburst control,such as more uniform stress distribution in the surrounding rock,a uniform distribution of plastic zones,less noticeable damage to the tunnel,and effective control of the arch top displacement.The effectiveness of the CRLD anchor support under varying pre-stress conditions shows that a higher prestress results in a smaller plastic zone of the surrounding rock and arch top displacement and a lower number of acoustic emission signals,which better explains the excavation compensation effect.Moreover,adding long anchorages in the deep surrounding rock area can better control rockburst and reduce surrounding rock deformation.Based on these findings,we propose a comprehensive control system that combines long and short anchorages and provides the optimal scheme based on calculations.Therefore,by using high-prestress CRLD anchor support and the combination of long and short anchorages at critical positions,we can enhance the integrity of the surrounding rock,effectively absorb the energy released by the surrounding rock deformation,and reduce the incidence of rockburst disasters.
基金Funded by Henan Joint Funds of the National Natural Science Foundation of China(No.U1904179)the National Natural Science Foundation of China(No.51501093)the Key Scientific and Technological Project of Technology Department of Henan Province of China(No.212102210448)。
文摘The well-developed particle-swarm optimization method together with density functional theory calculations were employed to search lowest-energy geometric structures of two-dimensional(2D)SiGeP_(2).Two newly found structures(P3m1 and Pmm2)are predicted.The unbiased global search reveals that the two lowest-energy structures are honeycomb lattices with robust dynamical stabilities.A more accurate Heyd-Scuseria-Ernzerhof(HSE06)hybrid functional is used to estimate the band structures of SiGeP_(2),which indicates that both the structures are semiconductors with indirect band-gap energies 1.80 e V for P3m1 and1.93 e V for Pmm^(2),respectively.Using the deformation potential theory,the P3m1-SiGeP_(2)is predicted to have high electron mobilities(6.4×10^(4)along zigzag direction and 2.9×10^(3)cm^(2)·V^(-1)·s^(-1)along armchair direction,respectively)and hole electron mobilities(1.0×10^(3)along zigzag direction and 2.5×10^(3)cm^(2)·V^(-1)·s^(-1)along armchair direction,respectively),which can be comparable with that of phosphorene and show anisotropic character in-plane.In addition,to estimate the elastic limit of SiGeP_(2),we also calculated the surface tension of SiGeP_(2)as a function of tensile strain.Our results show that the 2D SiGeP_(2)may be good candidaticates for applications in nanoelectronic devices.
文摘Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is extremely high,so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system.The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy.First,we use the information gain and Fisher Score to sort the features extracted from signals.Then,we employ a multi-objective ranking method to evaluate these features and assign different importance to them.Features with high rankings have a large probability of being selected.Finally,we propose a repair strategy to address the problem of duplicate solutions in multi-objective feature selection,which can improve the diversity of solutions and avoid falling into local traps.Using random forest and K-nearest neighbor classifiers,four English speech emotion datasets are employed to test the proposed algorithm(MBEO)as well as other multi-objective emotion identification techniques.The results illustrate that it performs well in inverted generational distance,hypervolume,Pareto solutions,and execution time,and MBEO is appropriate for high-dimensional English SER.
基金Supports from National Natural Science Foundation of China(Grant Nos.U20A20286 and 11972184)the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Engineering Safety(Grant No.2021ZDK006)+1 种基金Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201286)Science and Technology Project of Jiangsu Province of China(Grant No.BE2020716)are gratefully acknowledged.
文摘Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical approaches.The metastructure is composed of periodic rubber layers and concrete layers embedded with three-dimensional resonators,which can be freely designed with multi local resonant frequencies to attenuate vibrations at required frequencies and widen the attenuation bandgap.The metastructure can also effectively attenuate seismic responses.Compared with layered rubber-based structures,the metastructure has more excellent wave attenuation effects with greater attenuation and wider bandgap.
基金This work was supported by the National Natural Science Foundation of China (No. 20005005) the Chenguang Project of Wuhan City (No. 20005004026).
文摘A novel chemiluminescence (CL) system for determination of permanganate index (CODMn) combined with flow injection analysis has been proposed in this study. On the basis of the chemiluminescent reaction of luminol-KMnO4 system, light emission caused by luminol-KMnO4 system was detected by the photomultiplier tube, and its intensity caused by the appearance of KMnO4 after sample digestion was inversely proportional to CODMn. Effects for CODMn determining such as pH, concentrations and interference were investigated in detail. A detection limit of 0.3 mg/L CODMn with a linear range of 0.3-200 mg/L for its theoretical CODMn was obtained under the optimized experimental conditions. The relative standard deviation was 4.3% for 5.0 mg/L CODMn (n = 11). This CL flow system for determining CODMn was simple, rapid, and suitable for automatic analysis. The data obtained by the present method were fairly in good agreement with those obtained by the standard titrimetric method. It has been applied to determine real samples with satisfactory results.
基金supported by the National Key Research and Development Plan of China(No.2016YFC0600901)the National Natural Science Foundation of China(No.51874311)the Natural Science Foundation of China(No.51904306)。
文摘To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks.
基金supported by the National Natural Science Foundation of China (10872142 and 10632040)New Century Excellent Talents in University of China (NCET-05-0247)the Key Program of the Natural Science Foundation of Tianjin (09JCZDJ26800)
文摘As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe the constitutive relationship of SMA material.Under the assumption that there is no point of SMA layer finishing martensitic phase transformation during the loading and unloading process,the generalized restoring force generated by SMA layer is deduced for the case that the simply supported beam vibrates in its first mode.The generalized force is expressed as piecewise-nonlinear hysteretic function of the beam transverse displacement.Furthermore the energy dissipated by SMA layer during one period is obtained by integration,then its dependencies are discussed on the vibration amplitude and the SMA's strain(Ms-Strain) value at the beginning of martensitic phase transformation.It is shown that SMA's energy dissipating capacity is proportional to the stiffness difference of bilinear model and nonlinearly dependent on Ms-Strain.The increasing rate of the dissipating capacity gradually reduces with the amplitude increasing.The condition corresponding to the maximum dissipating capacity is deduced for given value of the vibration amplitude.The obtained results are helpful for designing beams laminated with shape memory alloys.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10902085)
文摘This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From the comparison theory, it can find out whether the stochastic impulsive differential system is stable just by studying the stability of a deterministic comparison system. As a general application of this theory, it controls the chaos of stochastic Lii system using impulsive control method, and numerical simulations are employed to verify the feasibility of this method.
基金Supported by the Science&Technology Program of Jiangsu Province(BE2011623)the Scientific Research Project of Provincial Environmental Protection Bureau of Jiangsu Province(2012047)
文摘Bioconversion of lignocellulosic wastes to higher value products through fungal fermentation has economic and ecological benefits. In this study, to develop an effective strategy for production of manganese peroxidase(Mn P)from cassava residue by Phanerochaete chrysosporium in solid state fermentation, the stimulators of Mn P production were screened and their concentrations were optimized by one-at-a-time experiment and Box–Behnken design. The maximum Mn P activity of 186.38 nkat·g-1dry mass of the sample was achieved after 6 days of fermentation with the supplement of 79.5 mmol·L-1·kg-1acetic acid, 3.21 ml·kg-1soybean oil, and 28.5 g·kg-1alkaline lignin, indicating that cassava residue is a promising substrate for Mn P production in solid state fermentation. Meanwhile, in vitro decolorization of indigo carmine by the crude Mn P was also carried out, attaining the ratio of 90.18% after 6 h of incubation. An oxidative mechanism of indigo carmine decolorization by Mn P was proposed based on the analysis of intermediate metabolites with ultra-high performance liquid chromatography and gas chromatography tandem mass spectrometry. Using the crude Mn P produced from cassava residue for indigo carmine decolorization gives an effective approach to treat dyeing effluents.
基金Supported by the National Natural Science Foundation of China under Grant No 60678043.
文摘The mathematical expression of the electron diffusion and drift length LDE of exponential doping photocathode is deduced. In the quantum efficiency equation of the reflection-mode uniform doping cathode, substituting LDE for LD, the equivalent quantum efficiency equation of the reflection-mode exponential doping cathode is obtained. By using the equivalent equation, theoretical simulation and experimental analysis shows that the equivalent index formula and formula-doped cathode quantum efficiency results in line. The equivalent equation avoids complicated calculation, thereby simplifies the process of solving the quantum efficiency of exponential doping photocathode.
文摘The forming limit diagrams ( FLD ) of AZ31B magnesium alloy sheet were tested by means of the electro etching grid method based on the forming experiment of magnesium alloy sheet carried out with a BCS- 30D sheet forming testing machine and the strain testing analysis made with an advanced ASAME automatic strain measuring system. Experiments show that, at room temperature, the mechanical properties and deep drawing peorformance of AZ31B cold-rolled magnesium alloy sheet were so poor that it failed to test the forming limit diagrams without an ideal forming and processing capacity, while the hot-rolled magnesium alloy sheet was of a little better plasticity and forming peorformance after testing its forming limit diagrams. It can be concluded that the testing of the forming limit curves ( FLC ) offers the theoretical foundation for the drawing of the deep drawing and forming process of magnesium alloy sheet.
文摘This paper is devoted to the discussion of filters in residuated lattices. Some equivalent conditions about filter were given. The structure of generated filter was established. The concept of implicative filter in residuated lattice was proposed with its basic properties being discussed.
基金Supports from National Natural Science Foundation of China(11972184 and U20A20286)China National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact(6142902200203)+1 种基金Natural Science Foundation of Jiangsu Province of China(BK20201286)Science and Technology Project of Jiangsu Province of China(BE2020716)are gratefully acknowledged.
文摘Thin-walled lattice materials can be applied as energy absorbers in protective structures of civil defense. In this paper, quasi-static in-plane crushing tests were carried out to investigate the crushing behavior and energy absorption of buckling induced meta-lattice structures (BIMSs) with different central angles made of plastic iron material DT3 and formed by wire cutting technique. Three crushing patterns were revealed and analyzed. The test results clearly show that the initial peak force (IPF), the crushing force efficiency (CFE), the specific energy absorption (SEA) and the mean crushing force (MCF) can be substantially improved by introducing buckling pattern into the straight-walled lattice structure. The MCF of the BIMS was consistently predicted based on the simplified super folding element (SSFE) and the flattening element.
基金supported by National Natural Science Foundation of China(Grant No.51175208)National Key Basic Research Program of China(973 ProgramGrant No.2011CB706803)
文摘The tool point frequency response function(FRF) is commonly obtained by impacting test or semi-analytical techniques.Regardless of the approach,it is assumed that the workpiece system is rigid.The assumption is valid in common machining,but it doesn’t work well in the cutting processes of thin-wall products.In order to solve the problem,a multi-degree-of-freedom dynamic model is employed to obtain the relative dynamic stiffness between the cutting tool and the workpiece system.The relative direct and cross FRFs between the cutting tool and workpiece system are achieved by relative excitation experiment,and compared with the tool point FRFs at x and y axial direction.The comparison results indicate that the relative excitation method could be used to obtain the relative dynamic compliance of machine-tool-workpiece system more actually and precisely.Based on the more precise relative FRFs,four evaluation criterions of dynamic stiffness are proposed,and the variation trend curves of these criterions during the last six months are achieved and analyzed.The analysis results show that the lowest natural frequency,the maximum and the average dynamic compliances at x axial direction deteriorate more quickly than that at y axial direction.Therefore,the main cutting direction and the large-size direction of workpieces should be arranged at y axial direction to slow down the deterioration of the dynamic stiffness of machining centers.The compliance of workpiece system is considered,which can help master the deterioration rules of the dynamic stiffness of machining centers,and enhance the reliability of machine centers and the consistency of machining processes.
基金supported by the National Natural Science Foundation of China (Grant No.60678043) the Research and Innovation Plan for Graduate Students of Jiangsu Higher Education Institutions of China (Grant No. CX09B-096Z)
文摘The built-in electric fields within a varied doping GaAs photocathode may promote the transport of electrons from the bulk to the surface, thus the quantum efficiency of the cathode can be enhanced remarkably. But this enhancement, which might be due to the increase in either the number or the energy of electrons reaching the surface, is not clear at present. In this paper, the energy distributions of electrons in a varied doping photocathode and uniform doping photocathode before and after escaping from the cathode surface are analysed, and the number of electrons escaping from the surface in different cases is calculated for the two kinds of photocathodes. The results indicate that the varied doping structure can not only increase the number of electrons reaching the surface but also cause an offset of the electron energy distribution to high energy. That is the root reason for the enhancement of the quantum efficiency of a varied doping GaAs photocathode.
基金Supported by the National Natural Science Foundation of China(Nos.2126102021361022)+2 种基金the Scientific and Technological Landing Project of Higher Education of Jiangxi Province(No.KJLD12094)the College Students’ Innovative Education Program of Jiangxi Provincethe Leading Talent Training Plan of "Xinjiang 866 Engineering Excellence"of Shangrao city
文摘A new complex [Rh(COD)(2,2'-bipy)]·[Rh(COD)Cl2](COD = 1,5-cyclooctadiene, 2,2'-bipy = 2,2'-bipyridine) has been synthesized and characterized by elemental analyses, NMR and single-crystal X-ray diffraction. The complex crystallizes in triclinic system, space group P1 with a = 7.4782(14), b = 10.1400(11), c = 16.6982(14) , α = 103.494(11), β = 91.996(13), γ = 103.829(12)o, C26H32Cl2N2Rh2, Mr = 649.26, V = 1190.0(3)3, Dc = 1.812 g/cm3, Z = 2, F(000) = 652, μ(Mo Kα) = 1.629 mm-1, R = 0.0286 and w R = 0.0463 for 3718 observed reflections(I 2σ(I)). The complex was linked to form 1D chains by hydrogen bonding interaction(C–H···Cl), and further to construct a 2D layer structure by π···π stacking interactions between the pyridine rings of 2,2'-bipy ligands. The hydroformylation catalyzed by the title complex was also studied.
基金supported by National Natural Science Foundation of China(8147343881202791)+2 种基金 Science and Technology Project of Henan Province(162102310011) Key Research Projects of Henan Colleges and Universities(18B360011) Funding Scheme for the Young Backbone Teache
文摘OBJECTⅣE This study aimed to investigate the role and mechanism of Astragaloside Ⅳ(AS-Ⅳ) in rats with myocardial infarction.METHODS The myocardial infarction model was established by ligation of the left anterior descending artery.The rats were randomly divided into sham,DMSO,model group,AS-Ⅳ and CID755673 groups.The rats were sacrificed 4 weeks later,and segmental heart samples were used for hematoxylin and eosin staining and masson staining.The expression of PKD1,HDAC5 and VEGF were analyzed using immunohistochemistry,reverse transcription poly.merase chain reaction and western blot.RESULTS Compared with the sham operation and DMSO groups,morphology of myocardium in model group was disordered,accompanied with necrotic myocar.dial cells and obvious collagen tissues.After treatment with AS-Ⅳ,the morphology of myocardium was obviously improved,and the number of new blood vessels increased significantly.However,after treatment with CID755673,the myocardial tissue of rats became disordered again,the necrotic cells increased,and some vessels closed.The expression levels of PKD1,HDAC5 and VEGF mRNA and protein in myocardial tissue of model group were significantly lower than the other four groups(P<0.05),whereas these levels in the AS-Ⅳ group were significantly higher than those in the other four groups(P<0.01).Additionally,the CID755673 group had significantly higher levels of PKD1,HDAC5 and VEGF mRNA and protein than the sham group,DMSO group and model group(P<0.05).CONCLUSION AS-Ⅳ may partly promote the angiogenesis of myocardial tissue in rats with myocardial infarction via the PKD1-HDAC5-VEGF pathway.
文摘By employing a generalized Riccati technique and an integral averaging tech-nique, new interval oscillation criteria are established for the forced second-order half-lineardifferential equation [r(t)|x′ (t)|α-1x′ (t)]′ + q(t)|x(t)|α-1x(t) = e(t).
基金Funded by the National Science Foundation of China (No. 50808090)
文摘Analyses and computations of the natural frequencies of external prestressed concrete structures are the bases for studying the dynamic properties of such structures. We carded out dynamic tests on three types of external simply supported beams, pulling the beams gradually. Then vertical loads were applied to the beams while the frequencies and related coefficients were measured at every step. We calculated natural frequencies and the results indicate that natural frequencies increase as the prestressing force rises in the pre-crack stage, and decrease significantly during the post-crack stage. Substantial incoincidences exist between the calculated and experimental results for the frequency and its tendency to changel Based on the experimental results, we modified the stiffness and other parameters in the equations. The results calculated using the modified equations agree with experimental results well, so the modified eauations can be used nractically.