Caspase-1-mediated IL-1β production is generally controlled by two pathways. Toll-like receptors (TLRs) recognize pathogen-derived products and induce NF-KB-dependent pro-IL-1β transcription; NOD-like receptors (...Caspase-1-mediated IL-1β production is generally controlled by two pathways. Toll-like receptors (TLRs) recognize pathogen-derived products and induce NF-KB-dependent pro-IL-1β transcription; NOD-like receptors (NLRs) assemble caspase-l-activating inflammasome complexes that sense bacterial products/danger signals. Through a targeted chemical screen, we identify bromoxone, a marine natural product, as a specifc and potent inhibitor of the caspase-1 pathway. Bromoxone is effective over diverse inflammatory stimuli including TLR ligands plus ATP/nigeri- cin, cytosolic DNA, flagellin and Bacillus anthracis lethal toxin. Bromoxone also efficiently suppresses easpase-1 acti- vation triggered by several types of bacterial infection. Bromoxone acts upstream or at the level of the inflammasome in a transcription-independent manner. Bromoxone also inhibits pro-IL-1β expression by targeting components up- stream of IKK in the TLR-NF-kB pathway. The unique dual activities of bromoxone are shared by the known TAK1 inhibitor that specifically blocks Nalp3 inflammasome activation. Hinted from the mechanistic and pharmacological properties of bromoxone, we further discover that several known NF-KB inhibitors that act upstream of IKK, but not those targeting IKK or IKK downstream, are potent blockers of different NLRs-mediated caspase-1 activation. Our study uncovers a possible non-transcriptional molecular link between the NLR (Nalp3)-mediated inflammasome pathway and TLR-NF-kB signaling, and suggests a potential strategy to develop new anti-inflammatory drugs.展开更多
DEAR EDITOR,The use of CRISPR/Cas9 technology to breed polygenicmodified animals with desired traits holds great promise in agriculture and biomedicine. However, as most studies are based on human and mouse models, wh...DEAR EDITOR,The use of CRISPR/Cas9 technology to breed polygenicmodified animals with desired traits holds great promise in agriculture and biomedicine. However, as most studies are based on human and mouse models, whether different single guide RNA(sg RNA) expression strategies affect multiplex gene-editing efficiency in domestic animals remains elusive.展开更多
Dear Editor, Histone lysine methylation has received a great deal of attention from the chromatin field over the past 10 years. To date, histone lysine methylations have been demonstrated to play pivotal roles in near...Dear Editor, Histone lysine methylation has received a great deal of attention from the chromatin field over the past 10 years. To date, histone lysine methylations have been demonstrated to play pivotal roles in nearly all biological processes involving chromatin, including replication, transcription, DNA repair etc.展开更多
Atmospheric CO2 can signal the presence of food, predators or environmental stress and trigger stereotypical behaviors in both vertebrates and invertebrates. Recent studies have shown that the necklace olfactory syste...Atmospheric CO2 can signal the presence of food, predators or environmental stress and trigger stereotypical behaviors in both vertebrates and invertebrates. Recent studies have shown that the necklace olfactory system in mice sensitively detects CO2 in the air. Olfactory CO2 neurons are believed to rely on cyclic gnanosine monophosphate (cGMP) as the key second messenger; however, the specific ion channel underlying CO2 responses remains unclear. Here we show that CO2-evoked neuronal and behavioral responses require cyclic nucleotide-gated (CNG) channels consisting of the CNGA3 subunit. Through Ca2+-imaging, we found that CO2-triggered Ca2+ influx was abolished in necklace olfactory sensory neurons (OSNs) of CNGA3-knockout mice. Olfactory detection tests using a Go/No-go paradigm showed that these knockout mice failed to detect 0.5% CO2. Thus, sensitive detection of atmospheric CO2 depends on the function of CNG channels consisting of the CNGA3 subunit in necklace OSNs. These data support the important role of the necklace olfactory system in CO2 sensing and extend our understanding of the signal transduction pathway mediating CO2 detection in mammals [Current Zoology 56 (6): 793-799, 2010].展开更多
Objective: To investigate the latent nuclear localization sequence (NLS) OF STAT3. Methods: Clustal X (1.81) was used to alignment the DNA binding domain of the STAT family. According to structure characters, correspo...Objective: To investigate the latent nuclear localization sequence (NLS) OF STAT3. Methods: Clustal X (1.81) was used to alignment the DNA binding domain of the STAT family. According to structure characters, corresponding expression plasmids were constructed via oligonucleotides designed with gene tool software. Through in vitro transfection, images were observed with laser confocal microscopy. Results: homology positions of arginine and lysine were found in DNA binding domain of the stat family. The wild type-STAT3 proteins primarily localized in the cytoplasm and translocated into the nucleus after interleukin-6 stimulation. However, the truncated mutant of DSTAT3-GFP protein was exclusively expressed in the cytoplasm. Conclusion: The potential NLS in the DNA binding domain of STAT3 is exposed to nuclear importing receptor when cells are stinulated by cytokine, which promotes the translocation of STAT3 into nuclear.展开更多
In addition to DNA sequence information, site-specific histone modifications are another important determinant of gene expression in a eukaryotic organism. We selected four modification sites in common histones that a...In addition to DNA sequence information, site-specific histone modifications are another important determinant of gene expression in a eukaryotic organism. We selected four modification sites in common histones that are known to significantly impact chromatin function and generated monoclonal or polyclonal antibodies that recognize each of those site-specific modifications. We used these antibodies to demonstrate that the site-specific histone modification levels remain relatively constant in different organs of the same organism. We also compared the levels of selected histone modifications among several representative organisms and found that site-specific modifications are highly variable among different organisms, providing new insight into the evolutionary divergence of specific histone modifications.展开更多
Recent studies have demonstrated that differentiated somatic cells from various mammalian species can be reprogrammed into induced pluripotent stem (iPS) cells by the ectopic expression of four transcription factors...Recent studies have demonstrated that differentiated somatic cells from various mammalian species can be reprogrammed into induced pluripotent stem (iPS) cells by the ectopic expression of four transcription factors that are highly expressed in embryonic stem (ES) cells. The generation of patient-specific iPS cells directly from somatic cells without using oocytes or embryos holds great promise for curing numerous diseases that are currently unresponsive to traditional clinical approaches. However, some recent studies have argued that various iPS cell lines may still retain certain epigenetic memories that are inherited from the somatic cells. Such observations have raised concerns regarding the safety and efficacy of using iPS cell derivatives for clinical applications. Recently, our study demonstrated full pluripotency of mouse iPS cells by tetraploid complementation, indicating that it is possible to obtain fully reprogrammed iPS cells directly from differentiated somatic cells. Therefore, we propose in this review that further comprehensive studies of both mouse and human iPS cells are required so that additional information will be available for evaluating the quality of human iPS cells.展开更多
Mitogen-activated protein kinase (MAPK) cascades play important roles in regulating plant innate immune responses. In a genetic screen to search for mutants with constitutive defense responses, we identified multipl...Mitogen-activated protein kinase (MAPK) cascades play important roles in regulating plant innate immune responses. In a genetic screen to search for mutants with constitutive defense responses, we identified multiple alleles of mpk4 and mekkl that exhibit cell death and constitutive defense responses. Bimolecular fluorescence complemen- tation (BiFC) analysis showed that both MPK4 and MEKK1 interact with MKK1 and MKK2, two closely related MAPK kinases, mkkl and mkk2 single mutant plants do not have obvious mutant phenotypes. To test whether MKK1 and MKK2 function redundantly, mkkl mkk2 double mutants were generated. The mkkl mkk2 double mutant plants die at seedling stage and the seedling-lethality phenotype is temperature-dependent. Similar to the mpk4 and mekkl mutants, the mkkl mkk2 double mutant seedlings accumulate high levels of H202, display spontaneous cell death, constitutively express Pathogenesis Related (PR) genes and exhibit pathogen resistance. In addition, activation of MPK4 by fig22 is impaired in the mkkl mkk2 double mutants, suggesting that MKK1 and MKK2 function together with MPK4 and MEKK1 in a MAP kinase cascade to negatively regulate innate immune responses in plants.展开更多
Potassium transporters play crucial roles in K^+ uptake and translocation in plants. However, so far little is known about the regulatory mechanism of potassium transporters. Here, we show that a Shaker-like potassiu...Potassium transporters play crucial roles in K^+ uptake and translocation in plants. However, so far little is known about the regulatory mechanism of potassium transporters. Here, we show that a Shaker-like potassium channel AtKC1, encoded by the AtLKT1 gene cloned from the Arabidopsis thaliana low-K^+ (LK)-tolerant mutant Atlktl, significantly regulates AKTl-mediated K^+ uptake under LK conditions. Under LK conditions, the Atkcl mutants maintained their root growth, whereas wild-type plants stopped their root growth. Lesion of AtKC1 significantly enhanced the tolerance of the Atkcl mutants to LK stress and markedly increased K^+ uptake and K^+ accumulation in the Atkclmutant roots under LK conditions. Electrophysiological results showed that AtKC1 inhibited the AKT1-mediated inward K^+ currents and negatively shifted the voltage dependence of AKT1 channels. These results demonstrate that the ‘silent' K^+ channel α-subunit AtKC1 negatively regulates the AKTl-mediated K^+ uptake in Arabidopsis roots and consequently alters the ratio of root-to-shoot under LK stress conditions.展开更多
Dear Editor, Both the fission yeast Schizosaccharomyces pombe and the budding yeast Saccharomyces cerevisiae are popular model organisms, and studies using these models have provided many informative clues for solvin...Dear Editor, Both the fission yeast Schizosaccharomyces pombe and the budding yeast Saccharomyces cerevisiae are popular model organisms, and studies using these models have provided many informative clues for solving fundamental biological questions [1], such as DNA replication, cell cycle regulation and gene transcription. Since the completion of genome sequencing of these fungi [2, 3],展开更多
Mouse oocytes undergo polarization during meiotic maturation, and this polarization is essential for asymmetric cell divisions that maximize retention of maternal components required for early development. Without con...Mouse oocytes undergo polarization during meiotic maturation, and this polarization is essential for asymmetric cell divisions that maximize retention of maternal components required for early development. Without conventional centrosomes, the meiotic spindle has less focused poles and is barrel-shaped. The migration of meiotic spindles to the cortex is accompanied by a local reorganization and polarization of the cortex. LGN is a conserved protein involved in cell polarity and regulation of spindle organization. In the present study, we characterized the localization dynamics of LGN during mouse oocyte maturation and analyzed the effects of LGN upregulation and downregulation on meiotic spindle organization. At the germinal vesicle stage, LGN is distributed both cytoplasmically and at the cortex. During maturation, LGN localizes to the meiotic spindle apparatus and cortical LGN becomes less concentrated at the actin cap region. Excessive LGN induces meiotic spindle organization defects by elongating the spindle and enhancing pole focusing, whereas depletion of LGN by RNA interference results in meiotic spindle deformation and chromosome misalignment. Furthermore, the N-terminus of LGN has the ability of full-length LGN to regulate spindle organization, whereas the C-terminus of LGN controls cortical localization and polarization. Our results reveal that LGN is cortically polarized in mouse oocytes and is critical for meiotic spindle organization.展开更多
The feasibility of adsorption and the adsorption behavior of radon on a nanomaterial-based zeolitic imidazolate framework-8(ZIF-8) adsorbent were investigated.Grand canonical Monte Carlo simulation and four-channel lo...The feasibility of adsorption and the adsorption behavior of radon on a nanomaterial-based zeolitic imidazolate framework-8(ZIF-8) adsorbent were investigated.Grand canonical Monte Carlo simulation and four-channel low-background a/b measurement were performed to examine the adsorption kinetics of this adsorbent. Results demonstrated that ZIF-8 is a good adsorbent of radon.Therefore, this adsorbent can be used to significantly reduce the hazardous effects of radon on occupational radiation workers.展开更多
BACKGROUND Growth differentiation factor 15(GDF-15)has been explored as a potential biomarker for various inflammatory diseases and cardiovascular events.This study aimed to assess the predictive role of GDF-15 levels...BACKGROUND Growth differentiation factor 15(GDF-15)has been explored as a potential biomarker for various inflammatory diseases and cardiovascular events.This study aimed to assess the predictive role of GDF-15 levels in cardiovascular events and all-cause mortality,considering traditional risk factors and other biomarkers.METHODS A prospective study was conducted and 3699 patients with stable coronary artery disease(CAD)were enrolled into the research.Baseline GDF-15 levels were measured.Median follow-up was 3.1 years during the study.We analyzed clinical variables and several biomarkers.Multivariable Cox regression analysis was performed to evaluate prognostic performance of GDF-15 levels in predicting myocardial infarction(MI),heart failure,stroke,cardiovascular death,and non-cardiovascular death.RESULTS Baseline GDF-15 levels for 3699 patients were grouped by quartile(≤1153,1153-1888,1888-3043,>3043 ng/L).Higher GDF-15 levels were associated with older age,male gender,history of hypertension,and elevated levels of N-terminal pro Btype natriuretic peptide(NT-pro BNP),soluble suppression of tumorigenesis-2(sST2),and creatine(each with P<0.001).Adjusting for established risk factors and biomarkers in Cox proportional hazards models,a 1 standard deviation(SD)increase in GDF-15 was associated with elevated risk of clinical events[hazard ratio(HR)=2.18,95%confidence interval(CI):(1.52-3.11)],including:MI[HR=2.8395%CI:(1.03-7.74)],heart failure[HR=2.7195%CI:(1.18-6.23)],cardiovascular and non-cardiovascular death[HR=2.48,95%CI(1.49-4.11)]during the median follow up of 3.1 years.CONCLUSIONS Higher levels of GDF-15 consistently provides prognostic information for cardiovascular events and all cause death,independent of clinical risk factors and other biomarkers.GDF-15 could be considered as a valuable addition to future risk prediction model in secondary prevention for predicting clinical events in patient with stable CAD.展开更多
Manipulating and real-time monitoring of neuronal activities with cell-type specificity and precise spatiotemporal resolution during animal behavior are fundamental technologies for exploring the functional connectivi...Manipulating and real-time monitoring of neuronal activities with cell-type specificity and precise spatiotemporal resolution during animal behavior are fundamental technologies for exploring the functional connectivity, information transmission, and physiological functions of neural circuits in vivo. However, current techniques for optogenetic stimulation and neuronal activity recording mostly operate independently. Here, we report an all-fiber-transmission photometry system for simultaneous optogenetic manipulation and multi-color recording of neuronal activities and the neurotransmitter release in a freely moving animal. We have designed and manufactured a wavelength-independent multi-branch fiber bundle to enable simultaneous optogenetic manipulation and multi-color recording at different wavelengths. Further, we combine a laser of narrow linewidth with the lock-in amplification method to suppress the optogenetic stimulation-induced artifacts and channel crosstalk. We show that the collection efficiency of our system outperforms a traditional epi-fluorescence system. Further, we demonstrate successful recording of dynamic dopamine(DA) responses to unexpected rewards in the nucleus accumbens(NAc) in a freely moving mouse. We also show simultaneous dual-color recording of neuronal Ca2+ signals and DA dynamics in the NAc upon delivering an unexpected reward and the simultaneous optogenetic activating at dopaminergic terminals in the same location. Thus, our multi-function fiber photometry system provides a compatible, efficient, and flexible solution for neuroscientists to study neural circuits and neurological diseases.展开更多
The circadian clock coordinates rhythms in numerous physiological processes to maintain organismal homeostasis. Since the suprachiasmatic nucleus(SCN) is widely accepted as the circadian pacemaker, it is critical to u...The circadian clock coordinates rhythms in numerous physiological processes to maintain organismal homeostasis. Since the suprachiasmatic nucleus(SCN) is widely accepted as the circadian pacemaker, it is critical to understand the neural mechanisms by which rhythmic information is transferred from the SCN to peripheral clocks. Here, we present the first comprehensive map of SCN efferent connections and suggest a molecular logic underlying these projections. The SCN projects broadly to most major regions of the brain, rather than solely to the hypothalamus and thalamus. The efferent projections from different subtypes of SCN neurons vary in distance and intensity, and blocking synaptic transmission of these circuits affects circadian rhythms in locomotion and feeding to different extents. We also developed a barcoding system to integrate retrograde tracing with in-situ sequencing, allowing us to link circuit anatomy and spatial patterns of gene expression. Analyses using this system revealed that brain regions functioning downstream of the SCN receive input from multiple neuropeptidergic cell types within the SCN, and that individual SCN neurons generally project to a single downstream brain region.This map of SCN efferent connections provides a critical foundation for future investigations into the neural circuits underlying SCNmediated rhythms in physiology. Further, our new barcoded tracing method provides a tool for revealing the molecular logic of neuronal circuits within heterogeneous brain regions.展开更多
Although the mechanism of DNA methylationmediated gene silencing is extensively studied, relatively little is known about how promoter methylated genes are protected from transcriptional silencing. SUVH1, an Arabidops...Although the mechanism of DNA methylationmediated gene silencing is extensively studied, relatively little is known about how promoter methylated genes are protected from transcriptional silencing. SUVH1, an Arabidopsis Su(var)3-9 homolog, was previously shown to be required for the expression of a few promoter methylated genes. By chromatin immunoprecipitation combined with sequencing, we demonstrate that SUVH1 binds to methylated genomic loci targeted by RNA-directed DNA methylation. SUVH1 and its homolog SUVH3 function partially redundantly and interact with three DNAJ domain-containing homologs, SDJ1, SDJ2, and SDJ3, thus forming a complex which we named SUVH-SDJ. The SUVH-SDJ complex components are co-localized in a large number of methylated promoters and are required for the expression of a subset of promoter methylated genes. We demonstrate that the SUVHSDJ complex components have transcriptional activation activity. SUVH1 and SUVH3 function synergistically with SDJ1,SDJ2, and SDJ3 and are required for plant viability. This study reveals how the SUVH-SDJ complex protects promoter methylated genes from transcriptional silencing and suggests that the transcriptional activation of promoter methylated genes mediated by the SUVH-SDJ complex may play a critical role in plant growth and development.展开更多
NPR1 (Nonexpressor of Pathogenesis-Related gene 1) is a major co-activator of plant defense. Phosphorylations of NPR1 play important roles in fine-tuning its activity, however a kinase corresponding to such modifica...NPR1 (Nonexpressor of Pathogenesis-Related gene 1) is a major co-activator of plant defense. Phosphorylations of NPR1 play important roles in fine-tuning its activity, however a kinase corresponding to such modification remains uncharacterized. Here, we report that NPR1 interacts with PKS5 (SOS2-1ike Protein Kinase 5). The AKR (AnKyrin Repeats) motif of NPR1 is required for this interaction. PKS5 phosphorylates NPR1 at the C-terminal region. Expression of PKS5 is induced quickly by Pseudomonas syringae pv. tomato DC3000. Expression level of two NPR1 target genes, WRKY38 and WRKY62, is reduced and/or delayed in pks5 mutants. Moreover, the expression of WRKY38 and WRKY62 displays a similar pattern in nprl-lpks5-1 double mutant comparing to that in nprl-1. Our results suggest that PKS5 functions at the upstream of NPR1 and might mediate expression of WRKY38 and WRKY62 possibly by interacting with and phosphorylating NPR 1.展开更多
The KNAT1 gene is a member of the Class I KNOXhomeobox gene family and is thought to play an important role in meristem development and leaf morphogenesis. Recent studies have demonstrated that KNAT1/BP regulates the ...The KNAT1 gene is a member of the Class I KNOXhomeobox gene family and is thought to play an important role in meristem development and leaf morphogenesis. Recent studies have demonstrated that KNAT1/BP regulates the architecture of the inflorescence by affecting pedicle development in Arabidopsis thaliana. Herein, we report the characterization of an Arabidopsis T-DNA insertion mutant that shares considerable phenotypic similarity to the previously identified mutant brevipedicle (bp). Molecular and genetic analyses showed that the mutant is allelic to bp and that the T-DNA is located within the first helix of the KNAT1 homeodomain (HD). Although the mutation causes a typical abnormality of short pedicles, propendent siliques, and semidwarfism, no obvious defects are observed in the vegetative stage. A study on cell morphology showed that asymmetrical division and inhibition of cell elongation contribute to the downward-pointing and shorter pedicle phenotype. Loss of KNAT/BPfunction results in the abnormal development of abscission zones. Mlcroarray analysis of gene expression profiling suggests that KNAT1/BP may regulate abscission zone development through hormone signaling and hormone metabolism in Arabidopsis.展开更多
The aging of alveolar stem cells has been linked to many chronic lung diseases, including pulmonary fibrosis. However, the effects of aging on alveolar stem cells during homeostasis and post-injury alveolar repair hav...The aging of alveolar stem cells has been linked to many chronic lung diseases, including pulmonary fibrosis. However, the effects of aging on alveolar stem cells during homeostasis and post-injury alveolar repair have not been well characterized. Here we conducted a single-cell RNA sequencing(scRNA-seq) analysis of alveolar stem cells of 3-month-old and 12-month-old mice to characterize the aging effect on alveolar stem cells. Our results have shown that the transcriptomes of alveolar stem cells of 3-month-old and 12-month-old mice are not significantly different under the steady condition. However, after a bleomycin-induced lung injury, the alveolar stem cells of 12-month-old mice show enhanced inflammatory responses and decreased lipid metabolism. Our study suggests a close relationship among aging, lipid metabolism, inflammatory responses and chronic lung diseases.展开更多
The SAGA(Spt-Ada-Gcn5 acetyltransferase)complex is an evolutionarily conserved histone acetyltransferase complex that has a critical role in histone acetylation,gene expression,and various developmental processes in e...The SAGA(Spt-Ada-Gcn5 acetyltransferase)complex is an evolutionarily conserved histone acetyltransferase complex that has a critical role in histone acetylation,gene expression,and various developmental processes in eukaryotes.However,little is known about the composition and function of the SAGA complex in plants.In this study,we found that the SAGA complex in Arabidopsis thaliana contains not only conserved subunits but also four plant-specific subunits:three functionally redundant paralogs,SCSI,SCS2A,and SCS2B(SCS1/2A/2B),and a TAF-like subunit,TAFL.Mutations in SCS1/2A/2B lead to defective phenotypes similar to those caused by mutations in the genes encoding conserved SAGA subunits HAG1 and ADA2B,including delayed juvenile-to-adult phase transition,late flowering,and increased trichome density.Furthermore,we demonstrated that SCS1/2A/2B are required for the function of the SAGA complex in histone acetylation,thereby promoting the transcription of development-related genes.These results together suggest that SCS1/2A/2B are core subunits of the SAGA complex in Arabidopsis.Compared with SAGA complexes in other eukaryotes,the SAGA complexes in plants have evolved unique features that are necessary for normal growth and development.展开更多
文摘Caspase-1-mediated IL-1β production is generally controlled by two pathways. Toll-like receptors (TLRs) recognize pathogen-derived products and induce NF-KB-dependent pro-IL-1β transcription; NOD-like receptors (NLRs) assemble caspase-l-activating inflammasome complexes that sense bacterial products/danger signals. Through a targeted chemical screen, we identify bromoxone, a marine natural product, as a specifc and potent inhibitor of the caspase-1 pathway. Bromoxone is effective over diverse inflammatory stimuli including TLR ligands plus ATP/nigeri- cin, cytosolic DNA, flagellin and Bacillus anthracis lethal toxin. Bromoxone also efficiently suppresses easpase-1 acti- vation triggered by several types of bacterial infection. Bromoxone acts upstream or at the level of the inflammasome in a transcription-independent manner. Bromoxone also inhibits pro-IL-1β expression by targeting components up- stream of IKK in the TLR-NF-kB pathway. The unique dual activities of bromoxone are shared by the known TAK1 inhibitor that specifically blocks Nalp3 inflammasome activation. Hinted from the mechanistic and pharmacological properties of bromoxone, we further discover that several known NF-KB inhibitors that act upstream of IKK, but not those targeting IKK or IKK downstream, are potent blockers of different NLRs-mediated caspase-1 activation. Our study uncovers a possible non-transcriptional molecular link between the NLR (Nalp3)-mediated inflammasome pathway and TLR-NF-kB signaling, and suggests a potential strategy to develop new anti-inflammatory drugs.
基金supported by the National Natural Science Foundation of China(32072806)Shaanxi Province Science and Technology Innovation Team(2019TD-036)+1 种基金Key Program of Shaanxi Province Science and Technology(2022NY-044)。
文摘DEAR EDITOR,The use of CRISPR/Cas9 technology to breed polygenicmodified animals with desired traits holds great promise in agriculture and biomedicine. However, as most studies are based on human and mouse models, whether different single guide RNA(sg RNA) expression strategies affect multiplex gene-editing efficiency in domestic animals remains elusive.
文摘Dear Editor, Histone lysine methylation has received a great deal of attention from the chromatin field over the past 10 years. To date, histone lysine methylations have been demonstrated to play pivotal roles in nearly all biological processes involving chromatin, including replication, transcription, DNA repair etc.
基金supported by the China Ministry of Science and Technology 973 (2010CB833902)863 grants (2008AA022902)
文摘Atmospheric CO2 can signal the presence of food, predators or environmental stress and trigger stereotypical behaviors in both vertebrates and invertebrates. Recent studies have shown that the necklace olfactory system in mice sensitively detects CO2 in the air. Olfactory CO2 neurons are believed to rely on cyclic gnanosine monophosphate (cGMP) as the key second messenger; however, the specific ion channel underlying CO2 responses remains unclear. Here we show that CO2-evoked neuronal and behavioral responses require cyclic nucleotide-gated (CNG) channels consisting of the CNGA3 subunit. Through Ca2+-imaging, we found that CO2-triggered Ca2+ influx was abolished in necklace olfactory sensory neurons (OSNs) of CNGA3-knockout mice. Olfactory detection tests using a Go/No-go paradigm showed that these knockout mice failed to detect 0.5% CO2. Thus, sensitive detection of atmospheric CO2 depends on the function of CNG channels consisting of the CNGA3 subunit in necklace OSNs. These data support the important role of the necklace olfactory system in CO2 sensing and extend our understanding of the signal transduction pathway mediating CO2 detection in mammals [Current Zoology 56 (6): 793-799, 2010].
基金This work was supported by NationalScience Foundation for Distinguished Young Scholars(No.39925019) and National "973" Basic Research Programsof China (No. 001CB510005).
文摘Objective: To investigate the latent nuclear localization sequence (NLS) OF STAT3. Methods: Clustal X (1.81) was used to alignment the DNA binding domain of the STAT family. According to structure characters, corresponding expression plasmids were constructed via oligonucleotides designed with gene tool software. Through in vitro transfection, images were observed with laser confocal microscopy. Results: homology positions of arginine and lysine were found in DNA binding domain of the stat family. The wild type-STAT3 proteins primarily localized in the cytoplasm and translocated into the nucleus after interleukin-6 stimulation. However, the truncated mutant of DSTAT3-GFP protein was exclusively expressed in the cytoplasm. Conclusion: The potential NLS in the DNA binding domain of STAT3 is exposed to nuclear importing receptor when cells are stinulated by cytokine, which promotes the translocation of STAT3 into nuclear.
文摘In addition to DNA sequence information, site-specific histone modifications are another important determinant of gene expression in a eukaryotic organism. We selected four modification sites in common histones that are known to significantly impact chromatin function and generated monoclonal or polyclonal antibodies that recognize each of those site-specific modifications. We used these antibodies to demonstrate that the site-specific histone modification levels remain relatively constant in different organs of the same organism. We also compared the levels of selected histone modifications among several representative organisms and found that site-specific modifications are highly variable among different organisms, providing new insight into the evolutionary divergence of specific histone modifications.
基金supported by the Ministry of Science and Technology of China(grants 2008AA022311,2010CB944900 and 2011CB964800)
文摘Recent studies have demonstrated that differentiated somatic cells from various mammalian species can be reprogrammed into induced pluripotent stem (iPS) cells by the ectopic expression of four transcription factors that are highly expressed in embryonic stem (ES) cells. The generation of patient-specific iPS cells directly from somatic cells without using oocytes or embryos holds great promise for curing numerous diseases that are currently unresponsive to traditional clinical approaches. However, some recent studies have argued that various iPS cell lines may still retain certain epigenetic memories that are inherited from the somatic cells. Such observations have raised concerns regarding the safety and efficacy of using iPS cell derivatives for clinical applications. Recently, our study demonstrated full pluripotency of mouse iPS cells by tetraploid complementation, indicating that it is possible to obtain fully reprogrammed iPS cells directly from differentiated somatic cells. Therefore, we propose in this review that further comprehensive studies of both mouse and human iPS cells are required so that additional information will be available for evaluating the quality of human iPS cells.
文摘Mitogen-activated protein kinase (MAPK) cascades play important roles in regulating plant innate immune responses. In a genetic screen to search for mutants with constitutive defense responses, we identified multiple alleles of mpk4 and mekkl that exhibit cell death and constitutive defense responses. Bimolecular fluorescence complemen- tation (BiFC) analysis showed that both MPK4 and MEKK1 interact with MKK1 and MKK2, two closely related MAPK kinases, mkkl and mkk2 single mutant plants do not have obvious mutant phenotypes. To test whether MKK1 and MKK2 function redundantly, mkkl mkk2 double mutants were generated. The mkkl mkk2 double mutant plants die at seedling stage and the seedling-lethality phenotype is temperature-dependent. Similar to the mpk4 and mekkl mutants, the mkkl mkk2 double mutant seedlings accumulate high levels of H202, display spontaneous cell death, constitutively express Pathogenesis Related (PR) genes and exhibit pathogen resistance. In addition, activation of MPK4 by fig22 is impaired in the mkkl mkk2 double mutants, suggesting that MKK1 and MKK2 function together with MPK4 and MEKK1 in a MAP kinase cascade to negatively regulate innate immune responses in plants.
基金Acknowledgments We thank Dr Emily Liman (University of Southern California, USA) for providing the pGEMHE vector for the Xenopus oocyte experiments. We also thank Dr Richer Gaber (Northwestern Uni- versity, USA) for providing the yeast mutant strain with K+ transport deficiency. We are grateful to Dr Rainer Hedrich (University of Wurzburg, Germany) for critical discussion. This work was supported by the National Natural Science Foundation of China (grant no. 30830013 to WHW), the Beijing Municipal Education Commission (grant no. YB20081001901 to WHW) and the Program of Introducing Talents of Discipline to Universities (grant no. B06003 to WHW).
文摘Potassium transporters play crucial roles in K^+ uptake and translocation in plants. However, so far little is known about the regulatory mechanism of potassium transporters. Here, we show that a Shaker-like potassium channel AtKC1, encoded by the AtLKT1 gene cloned from the Arabidopsis thaliana low-K^+ (LK)-tolerant mutant Atlktl, significantly regulates AKTl-mediated K^+ uptake under LK conditions. Under LK conditions, the Atkcl mutants maintained their root growth, whereas wild-type plants stopped their root growth. Lesion of AtKC1 significantly enhanced the tolerance of the Atkcl mutants to LK stress and markedly increased K^+ uptake and K^+ accumulation in the Atkclmutant roots under LK conditions. Electrophysiological results showed that AtKC1 inhibited the AKT1-mediated inward K^+ currents and negatively shifted the voltage dependence of AKT1 channels. These results demonstrate that the ‘silent' K^+ channel α-subunit AtKC1 negatively regulates the AKTl-mediated K^+ uptake in Arabidopsis roots and consequently alters the ratio of root-to-shoot under LK stress conditions.
文摘Dear Editor, Both the fission yeast Schizosaccharomyces pombe and the budding yeast Saccharomyces cerevisiae are popular model organisms, and studies using these models have provided many informative clues for solving fundamental biological questions [1], such as DNA replication, cell cycle regulation and gene transcription. Since the completion of genome sequencing of these fungi [2, 3],
文摘Mouse oocytes undergo polarization during meiotic maturation, and this polarization is essential for asymmetric cell divisions that maximize retention of maternal components required for early development. Without conventional centrosomes, the meiotic spindle has less focused poles and is barrel-shaped. The migration of meiotic spindles to the cortex is accompanied by a local reorganization and polarization of the cortex. LGN is a conserved protein involved in cell polarity and regulation of spindle organization. In the present study, we characterized the localization dynamics of LGN during mouse oocyte maturation and analyzed the effects of LGN upregulation and downregulation on meiotic spindle organization. At the germinal vesicle stage, LGN is distributed both cytoplasmically and at the cortex. During maturation, LGN localizes to the meiotic spindle apparatus and cortical LGN becomes less concentrated at the actin cap region. Excessive LGN induces meiotic spindle organization defects by elongating the spindle and enhancing pole focusing, whereas depletion of LGN by RNA interference results in meiotic spindle deformation and chromosome misalignment. Furthermore, the N-terminus of LGN has the ability of full-length LGN to regulate spindle organization, whereas the C-terminus of LGN controls cortical localization and polarization. Our results reveal that LGN is cortically polarized in mouse oocytes and is critical for meiotic spindle organization.
基金Supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Open Project of Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection(No.KJS1246)
文摘The feasibility of adsorption and the adsorption behavior of radon on a nanomaterial-based zeolitic imidazolate framework-8(ZIF-8) adsorbent were investigated.Grand canonical Monte Carlo simulation and four-channel low-background a/b measurement were performed to examine the adsorption kinetics of this adsorbent. Results demonstrated that ZIF-8 is a good adsorbent of radon.Therefore, this adsorbent can be used to significantly reduce the hazardous effects of radon on occupational radiation workers.
基金supported by in part by the National Natural Science Fund (81900382)supported,in part,by the Yang Talents Program of Beijing (QML20200302)Beijing Municipal Natural Science Foundation (7222072)
文摘BACKGROUND Growth differentiation factor 15(GDF-15)has been explored as a potential biomarker for various inflammatory diseases and cardiovascular events.This study aimed to assess the predictive role of GDF-15 levels in cardiovascular events and all-cause mortality,considering traditional risk factors and other biomarkers.METHODS A prospective study was conducted and 3699 patients with stable coronary artery disease(CAD)were enrolled into the research.Baseline GDF-15 levels were measured.Median follow-up was 3.1 years during the study.We analyzed clinical variables and several biomarkers.Multivariable Cox regression analysis was performed to evaluate prognostic performance of GDF-15 levels in predicting myocardial infarction(MI),heart failure,stroke,cardiovascular death,and non-cardiovascular death.RESULTS Baseline GDF-15 levels for 3699 patients were grouped by quartile(≤1153,1153-1888,1888-3043,>3043 ng/L).Higher GDF-15 levels were associated with older age,male gender,history of hypertension,and elevated levels of N-terminal pro Btype natriuretic peptide(NT-pro BNP),soluble suppression of tumorigenesis-2(sST2),and creatine(each with P<0.001).Adjusting for established risk factors and biomarkers in Cox proportional hazards models,a 1 standard deviation(SD)increase in GDF-15 was associated with elevated risk of clinical events[hazard ratio(HR)=2.18,95%confidence interval(CI):(1.52-3.11)],including:MI[HR=2.8395%CI:(1.03-7.74)],heart failure[HR=2.7195%CI:(1.18-6.23)],cardiovascular and non-cardiovascular death[HR=2.48,95%CI(1.49-4.11)]during the median follow up of 3.1 years.CONCLUSIONS Higher levels of GDF-15 consistently provides prognostic information for cardiovascular events and all cause death,independent of clinical risk factors and other biomarkers.GDF-15 could be considered as a valuable addition to future risk prediction model in secondary prevention for predicting clinical events in patient with stable CAD.
基金supported by Beijing Municipal Governmentsupported by the National Natural Science Foundation of China(Grant Nos.61890952)the Director Fund of WNLO。
文摘Manipulating and real-time monitoring of neuronal activities with cell-type specificity and precise spatiotemporal resolution during animal behavior are fundamental technologies for exploring the functional connectivity, information transmission, and physiological functions of neural circuits in vivo. However, current techniques for optogenetic stimulation and neuronal activity recording mostly operate independently. Here, we report an all-fiber-transmission photometry system for simultaneous optogenetic manipulation and multi-color recording of neuronal activities and the neurotransmitter release in a freely moving animal. We have designed and manufactured a wavelength-independent multi-branch fiber bundle to enable simultaneous optogenetic manipulation and multi-color recording at different wavelengths. Further, we combine a laser of narrow linewidth with the lock-in amplification method to suppress the optogenetic stimulation-induced artifacts and channel crosstalk. We show that the collection efficiency of our system outperforms a traditional epi-fluorescence system. Further, we demonstrate successful recording of dynamic dopamine(DA) responses to unexpected rewards in the nucleus accumbens(NAc) in a freely moving mouse. We also show simultaneous dual-color recording of neuronal Ca2+ signals and DA dynamics in the NAc upon delivering an unexpected reward and the simultaneous optogenetic activating at dopaminergic terminals in the same location. Thus, our multi-function fiber photometry system provides a compatible, efficient, and flexible solution for neuroscientists to study neural circuits and neurological diseases.
基金supported by the National Natural Science Foundation of China(32171157,31971090)Ministry of Science and Technology of the People’s Republic of China(2021ZD0203400)Kuanren Talents’Project of The Second Affiliated Hospital of Chongqing Medical University。
文摘The circadian clock coordinates rhythms in numerous physiological processes to maintain organismal homeostasis. Since the suprachiasmatic nucleus(SCN) is widely accepted as the circadian pacemaker, it is critical to understand the neural mechanisms by which rhythmic information is transferred from the SCN to peripheral clocks. Here, we present the first comprehensive map of SCN efferent connections and suggest a molecular logic underlying these projections. The SCN projects broadly to most major regions of the brain, rather than solely to the hypothalamus and thalamus. The efferent projections from different subtypes of SCN neurons vary in distance and intensity, and blocking synaptic transmission of these circuits affects circadian rhythms in locomotion and feeding to different extents. We also developed a barcoding system to integrate retrograde tracing with in-situ sequencing, allowing us to link circuit anatomy and spatial patterns of gene expression. Analyses using this system revealed that brain regions functioning downstream of the SCN receive input from multiple neuropeptidergic cell types within the SCN, and that individual SCN neurons generally project to a single downstream brain region.This map of SCN efferent connections provides a critical foundation for future investigations into the neural circuits underlying SCNmediated rhythms in physiology. Further, our new barcoded tracing method provides a tool for revealing the molecular logic of neuronal circuits within heterogeneous brain regions.
基金supported by grants from National Key Research and Development Program of China (2016YFA0500801)
文摘Although the mechanism of DNA methylationmediated gene silencing is extensively studied, relatively little is known about how promoter methylated genes are protected from transcriptional silencing. SUVH1, an Arabidopsis Su(var)3-9 homolog, was previously shown to be required for the expression of a few promoter methylated genes. By chromatin immunoprecipitation combined with sequencing, we demonstrate that SUVH1 binds to methylated genomic loci targeted by RNA-directed DNA methylation. SUVH1 and its homolog SUVH3 function partially redundantly and interact with three DNAJ domain-containing homologs, SDJ1, SDJ2, and SDJ3, thus forming a complex which we named SUVH-SDJ. The SUVH-SDJ complex components are co-localized in a large number of methylated promoters and are required for the expression of a subset of promoter methylated genes. We demonstrate that the SUVHSDJ complex components have transcriptional activation activity. SUVH1 and SUVH3 function synergistically with SDJ1,SDJ2, and SDJ3 and are required for plant viability. This study reveals how the SUVH-SDJ complex protects promoter methylated genes from transcriptional silencing and suggests that the transcriptional activation of promoter methylated genes mediated by the SUVH-SDJ complex may play a critical role in plant growth and development.
基金supported by the National Basic Re-search Program of China (No. 2006CB100100)the National High Technology Research and Development Program of China (863 Programme) (No. 2003AA210100)
文摘NPR1 (Nonexpressor of Pathogenesis-Related gene 1) is a major co-activator of plant defense. Phosphorylations of NPR1 play important roles in fine-tuning its activity, however a kinase corresponding to such modification remains uncharacterized. Here, we report that NPR1 interacts with PKS5 (SOS2-1ike Protein Kinase 5). The AKR (AnKyrin Repeats) motif of NPR1 is required for this interaction. PKS5 phosphorylates NPR1 at the C-terminal region. Expression of PKS5 is induced quickly by Pseudomonas syringae pv. tomato DC3000. Expression level of two NPR1 target genes, WRKY38 and WRKY62, is reduced and/or delayed in pks5 mutants. Moreover, the expression of WRKY38 and WRKY62 displays a similar pattern in nprl-lpks5-1 double mutant comparing to that in nprl-1. Our results suggest that PKS5 functions at the upstream of NPR1 and might mediate expression of WRKY38 and WRKY62 possibly by interacting with and phosphorylating NPR 1.
基金Supported by the National Natural Science Foundation of China (30330040 and 30221002).
文摘The KNAT1 gene is a member of the Class I KNOXhomeobox gene family and is thought to play an important role in meristem development and leaf morphogenesis. Recent studies have demonstrated that KNAT1/BP regulates the architecture of the inflorescence by affecting pedicle development in Arabidopsis thaliana. Herein, we report the characterization of an Arabidopsis T-DNA insertion mutant that shares considerable phenotypic similarity to the previously identified mutant brevipedicle (bp). Molecular and genetic analyses showed that the mutant is allelic to bp and that the T-DNA is located within the first helix of the KNAT1 homeodomain (HD). Although the mutation causes a typical abnormality of short pedicles, propendent siliques, and semidwarfism, no obvious defects are observed in the vegetative stage. A study on cell morphology showed that asymmetrical division and inhibition of cell elongation contribute to the downward-pointing and shorter pedicle phenotype. Loss of KNAT/BPfunction results in the abnormal development of abscission zones. Mlcroarray analysis of gene expression profiling suggests that KNAT1/BP may regulate abscission zone development through hormone signaling and hormone metabolism in Arabidopsis.
基金supported by the National Natural Science Foundation of China (81430001 and 81870056)Beijing Major Science and Technology Projects (Z171100000417003 to N.T.)
文摘The aging of alveolar stem cells has been linked to many chronic lung diseases, including pulmonary fibrosis. However, the effects of aging on alveolar stem cells during homeostasis and post-injury alveolar repair have not been well characterized. Here we conducted a single-cell RNA sequencing(scRNA-seq) analysis of alveolar stem cells of 3-month-old and 12-month-old mice to characterize the aging effect on alveolar stem cells. Our results have shown that the transcriptomes of alveolar stem cells of 3-month-old and 12-month-old mice are not significantly different under the steady condition. However, after a bleomycin-induced lung injury, the alveolar stem cells of 12-month-old mice show enhanced inflammatory responses and decreased lipid metabolism. Our study suggests a close relationship among aging, lipid metabolism, inflammatory responses and chronic lung diseases.
基金the National Natural Science Foundation of China(32025003)the National Key Research and Development Program of China(2016YFA0500801)from the Chinese Ministry of Science and Technology.
文摘The SAGA(Spt-Ada-Gcn5 acetyltransferase)complex is an evolutionarily conserved histone acetyltransferase complex that has a critical role in histone acetylation,gene expression,and various developmental processes in eukaryotes.However,little is known about the composition and function of the SAGA complex in plants.In this study,we found that the SAGA complex in Arabidopsis thaliana contains not only conserved subunits but also four plant-specific subunits:three functionally redundant paralogs,SCSI,SCS2A,and SCS2B(SCS1/2A/2B),and a TAF-like subunit,TAFL.Mutations in SCS1/2A/2B lead to defective phenotypes similar to those caused by mutations in the genes encoding conserved SAGA subunits HAG1 and ADA2B,including delayed juvenile-to-adult phase transition,late flowering,and increased trichome density.Furthermore,we demonstrated that SCS1/2A/2B are required for the function of the SAGA complex in histone acetylation,thereby promoting the transcription of development-related genes.These results together suggest that SCS1/2A/2B are core subunits of the SAGA complex in Arabidopsis.Compared with SAGA complexes in other eukaryotes,the SAGA complexes in plants have evolved unique features that are necessary for normal growth and development.