An optical lattice clock based on 87Sr is built at National Institute of Metrology (NIM) of China. The systematic frequency shifts of the clock are evaluated with a total uncertainty of 2.3×10-16. To measure it...An optical lattice clock based on 87Sr is built at National Institute of Metrology (NIM) of China. The systematic frequency shifts of the clock are evaluated with a total uncertainty of 2.3×10-16. To measure its absolute frequency with respect to NIM's cesium fountain clock NIM5, the frequency of a flywheel H-maser of NIM5 is transferred to the Sr laboratory through a 50-kin-long fiber. reference frequency of this H-maser, is used for the optical this Sr clock is measured to be 429228004229873.7(1.4)Hz. A fiber optical frequency comb, phase-locked to the frequency measurement. The absolute frequency of展开更多
The NIM4 caesium fountain clock has been operating stably and sub-continually since August 2003. We present our improvements on NIM4 in 2005-06 and the most recent evaluation for its frequency shifts with an uncertain...The NIM4 caesium fountain clock has been operating stably and sub-continually since August 2003. We present our improvements on NIM4 in 2005-06 and the most recent evaluation for its frequency shifts with an uncertainty of 5 × 10^-15. A 203-day comparison between NIM4 and GPS time shows an agreement of 2 × 10^-14. Finally the construction of the NIM5 transportable caesium fountain clock is briefly reported.展开更多
An experiment is proposed to precisely measure the Planck constant. In this experiment, the Planck constant is measured based on the inertial mass measurement rather than the gravitational mass determinations in some ...An experiment is proposed to precisely measure the Planck constant. In this experiment, the Planck constant is measured based on the inertial mass measurement rather than the gravitational mass determinations in some other well-known experiments, e.g., the Kibble balance and counting atoms. We link the mechanical force to a quantum-traceable electrostatic force by a beam balance oscillator. After a 5-year continuous effort, the principle of the proposal is verified by a preliminary measurement with a relative uncertainty of 5.4×10^-5. The proposal has the potential to achieve much higher measurement accuracy with further improvements.展开更多
To improve the signal to noise ratio(SNR)and the short-term stability of cesium atomic fountain clocks,the work of two-laser optical pumping is presented theoretically and experimentally.The short-term stability of th...To improve the signal to noise ratio(SNR)and the short-term stability of cesium atomic fountain clocks,the work of two-laser optical pumping is presented theoretically and experimentally.The short-term stability of the NIM6 fountain clock has been improved by preparing more cold atoms in the|F=4,m_(F)=0>clock state with a shortened cycle time.Two π-polarized laser beams overlapped in the horizontal plane have been applied after launching,one is resonant with|F=4>→|F′=4>transition and the other is resonant with|F=3>→|F′=4>transition.With optical pumping,the population accumulated in the|m_(F)=0>clock state is improved from 11%to 63%,and the detection signal is increased by a factor of 4.2,the SNR of the clock transition probability and the short-term stability are also improved accordingly.展开更多
We present the motion equation of the standard-beam balance oscillation system, whose beam and suspensions, compared with the compound pendulum, are connected flexibly and vertically. The nonlinearity and the periodic...We present the motion equation of the standard-beam balance oscillation system, whose beam and suspensions, compared with the compound pendulum, are connected flexibly and vertically. The nonlinearity and the periodic solution of the equation are discussed by the phase-plane analysis. We find that this kind of oscillation can be equivalent to a standard-beam compound pendulum without suspensions; however, the equivalent mass centre of the standard beam is extended. The derived periodic solution shows that the oscillation period is tightly related to the initial pivot energy and several systemic parameters: beam length, masses of the beam, and suspensions, and the beam mass centre. A numerical example is calculated.展开更多
Black phosphorus(BP),an emerging two-dimensional material,is considered a promising candidate for next-generation electronic and optoelectronic devices due to in-plane anisotropy,high mobility,and direct bandgap.Howev...Black phosphorus(BP),an emerging two-dimensional material,is considered a promising candidate for next-generation electronic and optoelectronic devices due to in-plane anisotropy,high mobility,and direct bandgap.However,BP devices face challenges due to their limited stability,photo-response speed,and detection range.To enhance BP with powerful electrical and optical performance,the BP heterostructures can be created.In this review,the state-of-the-art heterostructures and their electrical and optoelectronic applications based on black phosphorus are discussed.Five parts introduce the performance of BP-based devices,including black phosphorus sandwich structure by hBN with better stability and higher mobility,black phosphorus homojunction by dual-gate structure for optical applications,black phosphorus heterojunction with other 2D materials for faster photo-detection,black phosphorus heterojunction integration with 3 D bulk material,and BP via Asdoping tunable bandgap enabling photo-detection up to 8.2μm.Finally,we discuss the challenges and prospects for BP electrical and optical devices and applications.展开更多
Cold atom clocks have made remarkable progresses in the last two decades and played critical roles in precision measurements. Primary Cs fountain frequency standards have achieved a total uncertainty of a few parts in...Cold atom clocks have made remarkable progresses in the last two decades and played critical roles in precision measurements. Primary Cs fountain frequency standards have achieved a total uncertainty of a few parts in 1016, and the best optical clock has reached a type B uncertainty below 10-18. Besides applications in the metrology, navigation, etc.,ultra-stable and ultra-accurate atomic clocks have also become powerful tools in the basic scientific investigations. In this paper, we focus on the recent developments in the high-performance cold atomic clocks which can be used as frequency standards to calibrate atomic time scales. The basic principles, performances, and limitations of fountain clocks and optical clocks based on signal trapped ion or neutral atoms are summarized. Their applications in metrology and other areas are briefly introduced.展开更多
We propose and realize a new optical state selection method on a cesium atomic fountain clock by applying a two-laser 3-3'optical pumping configuration to spin polarize atoms.The atoms are prepared in|F=3,mF=0>...We propose and realize a new optical state selection method on a cesium atomic fountain clock by applying a two-laser 3-3'optical pumping configuration to spin polarize atoms.The atoms are prepared in|F=3,mF=0>clock state with optical pumping directly after being launched up,followed by a pushing beam to push away the atoms remaining in the|F=4>state.With a state selection efficiency exceeding 92%,this optical method can substitute the traditional microwave state selection,and helps to develop a more compact physical package.A Ramsey fringe has been achieved with this optical state selection method,and a contrast of 90%is obtained with a full width half maximum of 0.92 Hz.The short-term frequency stability of 6.8×10^(-14)(τ/s)^(-1/2) is acquired.In addition,the number of detected atoms is increased by a factor of 1.7 with the optical state selection.展开更多
A precise and noninvasive method for the size and shape measurement of gold nanorods(GNRs) has been proposed based on depolarized dynamic light scattering(DDLS). A home-made DDLS apparatus has been established. By app...A precise and noninvasive method for the size and shape measurement of gold nanorods(GNRs) has been proposed based on depolarized dynamic light scattering(DDLS). A home-made DDLS apparatus has been established. By applying depolarized optical path with precise alignment method, the signal-to-noise ratio(SNR) of this apparatus is highly improved. GNRs with three different diameter and length has been precisely measured by using DDLS method as well as scanning electron microscopy(SEM). The thickness of adsorption layer of cetyltrimethylammonium bromide(CTAB) in solution has been taken into consideration. Results show that size measurement of GNRs by using DDLS method agrees very well with that by using SEM. In addition, it is shown that the extinction spectroscopy strongly limited the application of DDLS method by affecting the effective scattering light intensity. Proper laser wavelength should be chosen before the application of this method.展开更多
Magnetic and magnetocaloric properties of HoFe_(1-x)Co_(x)Al(x = 0, 0.3) were investigated. Both HoFeAl and HoFe_(0.7)Co_(0.3) Al undergo a second-order ferromagnetic(FIM) to paramagnetic(PM) transition at Curie tempe...Magnetic and magnetocaloric properties of HoFe_(1-x)Co_(x)Al(x = 0, 0.3) were investigated. Both HoFeAl and HoFe_(0.7)Co_(0.3) Al undergo a second-order ferromagnetic(FIM) to paramagnetic(PM) transition at Curie temperatures(TC) of 87 and 82 K, respectively. The magnetocaloric effect is improved by the introduction of Co in HoFeAl compound. For a field change from 0 to 5 T,the maximum values of magnetic entropy change(﹣△SM)are 7.0 J·kg^(-1)·K^(-1) for HoFeAl and 8.6 J·kg^(-1)·K^(-1) for HoFe_(0.7)Co_(0.3) Al. In addition, the refrigerant capacity(RC)is enhanced largely from 416.2 J·kg^(-1) for HoFeAl to561.9 J·kg^(-1) for HoFe_(0.7)Co_(0.3) Al. This large RC is attributed to the large ﹣?SM and the wide temperature span of ?SM peak in HoFe_(0.7)Co_(0.3) Al compound. The physical mechanism of improvement in magnetocaloric effect by Co substitution in HoFeAl was also discussed in detail.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 91336212 and 91436104
文摘An optical lattice clock based on 87Sr is built at National Institute of Metrology (NIM) of China. The systematic frequency shifts of the clock are evaluated with a total uncertainty of 2.3×10-16. To measure its absolute frequency with respect to NIM's cesium fountain clock NIM5, the frequency of a flywheel H-maser of NIM5 is transferred to the Sr laboratory through a 50-kin-long fiber. reference frequency of this H-maser, is used for the optical this Sr clock is measured to be 429228004229873.7(1.4)Hz. A fiber optical frequency comb, phase-locked to the frequency measurement. The absolute frequency of
文摘The NIM4 caesium fountain clock has been operating stably and sub-continually since August 2003. We present our improvements on NIM4 in 2005-06 and the most recent evaluation for its frequency shifts with an uncertainty of 5 × 10^-15. A 203-day comparison between NIM4 and GPS time shows an agreement of 2 × 10^-14. Finally the construction of the NIM5 transportable caesium fountain clock is briefly reported.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51477160 and 91536224the National Key Research and Development Program of China under Grant No 2016YFF0200102
文摘An experiment is proposed to precisely measure the Planck constant. In this experiment, the Planck constant is measured based on the inertial mass measurement rather than the gravitational mass determinations in some other well-known experiments, e.g., the Kibble balance and counting atoms. We link the mechanical force to a quantum-traceable electrostatic force by a beam balance oscillator. After a 5-year continuous effort, the principle of the proposal is verified by a preliminary measurement with a relative uncertainty of 5.4×10^-5. The proposal has the potential to achieve much higher measurement accuracy with further improvements.
基金the National Natural Science Foundation of China(Grant No.11873044).
文摘To improve the signal to noise ratio(SNR)and the short-term stability of cesium atomic fountain clocks,the work of two-laser optical pumping is presented theoretically and experimentally.The short-term stability of the NIM6 fountain clock has been improved by preparing more cold atoms in the|F=4,m_(F)=0>clock state with a shortened cycle time.Two π-polarized laser beams overlapped in the horizontal plane have been applied after launching,one is resonant with|F=4>→|F′=4>transition and the other is resonant with|F=3>→|F′=4>transition.With optical pumping,the population accumulated in the|m_(F)=0>clock state is improved from 11%to 63%,and the detection signal is increased by a factor of 4.2,the SNR of the clock transition probability and the short-term stability are also improved accordingly.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51077120)the National Department Public Benefit Research Foundation (Grant No. 201010010)
文摘We present the motion equation of the standard-beam balance oscillation system, whose beam and suspensions, compared with the compound pendulum, are connected flexibly and vertically. The nonlinearity and the periodic solution of the equation are discussed by the phase-plane analysis. We find that this kind of oscillation can be equivalent to a standard-beam compound pendulum without suspensions; however, the equivalent mass centre of the standard beam is extended. The derived periodic solution shows that the oscillation period is tightly related to the initial pivot energy and several systemic parameters: beam length, masses of the beam, and suspensions, and the beam mass centre. A numerical example is calculated.
基金supported in part by Fundamental Research Project of National Institute of Metrology China under Grant AKYZZ2116in part by National Natural Science Foundation of China under Grant 62022047,Grant 61874065 and Grant 51861145202+4 种基金in part by the National Key R&D Program under Grant 2016YFA0200400in part by the Research Fund from Beijing Innovation Center for Future Chipthe Independent Research Program of Tsinghua University under Grant 20193080047in part by Young Elite Scientists Sponsorship Program by CAST under Grant 2018QNRC001in part by Fok Ying-Tong Education Foundation under Grant 171051。
文摘Black phosphorus(BP),an emerging two-dimensional material,is considered a promising candidate for next-generation electronic and optoelectronic devices due to in-plane anisotropy,high mobility,and direct bandgap.However,BP devices face challenges due to their limited stability,photo-response speed,and detection range.To enhance BP with powerful electrical and optical performance,the BP heterostructures can be created.In this review,the state-of-the-art heterostructures and their electrical and optoelectronic applications based on black phosphorus are discussed.Five parts introduce the performance of BP-based devices,including black phosphorus sandwich structure by hBN with better stability and higher mobility,black phosphorus homojunction by dual-gate structure for optical applications,black phosphorus heterojunction with other 2D materials for faster photo-detection,black phosphorus heterojunction integration with 3 D bulk material,and BP via Asdoping tunable bandgap enabling photo-detection up to 8.2μm.Finally,we discuss the challenges and prospects for BP electrical and optical devices and applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.11873044)the National Key Research and Development Project of China(Grant No.2016YFF0200202)Consulting Research Project of Chinese Academy of Engineering(Grant No.2018-ZCQ-03)。
文摘Cold atom clocks have made remarkable progresses in the last two decades and played critical roles in precision measurements. Primary Cs fountain frequency standards have achieved a total uncertainty of a few parts in 1016, and the best optical clock has reached a type B uncertainty below 10-18. Besides applications in the metrology, navigation, etc.,ultra-stable and ultra-accurate atomic clocks have also become powerful tools in the basic scientific investigations. In this paper, we focus on the recent developments in the high-performance cold atomic clocks which can be used as frequency standards to calibrate atomic time scales. The basic principles, performances, and limitations of fountain clocks and optical clocks based on signal trapped ion or neutral atoms are summarized. Their applications in metrology and other areas are briefly introduced.
基金Project supported by the National Natural Science Foundation of China(Grant No.11873044).
文摘We propose and realize a new optical state selection method on a cesium atomic fountain clock by applying a two-laser 3-3'optical pumping configuration to spin polarize atoms.The atoms are prepared in|F=3,mF=0>clock state with optical pumping directly after being launched up,followed by a pushing beam to push away the atoms remaining in the|F=4>state.With a state selection efficiency exceeding 92%,this optical method can substitute the traditional microwave state selection,and helps to develop a more compact physical package.A Ramsey fringe has been achieved with this optical state selection method,and a contrast of 90%is obtained with a full width half maximum of 0.92 Hz.The short-term frequency stability of 6.8×10^(-14)(τ/s)^(-1/2) is acquired.In addition,the number of detected atoms is increased by a factor of 1.7 with the optical state selection.
基金This work has been supported by the National Natural Science Foundation of China(No.51805505)the Key R&D Projects of Science and Technology(No.2016YFA0200901)the Basic Science Research Operating Fund of NIM(No.AKY 1817)。
文摘A precise and noninvasive method for the size and shape measurement of gold nanorods(GNRs) has been proposed based on depolarized dynamic light scattering(DDLS). A home-made DDLS apparatus has been established. By applying depolarized optical path with precise alignment method, the signal-to-noise ratio(SNR) of this apparatus is highly improved. GNRs with three different diameter and length has been precisely measured by using DDLS method as well as scanning electron microscopy(SEM). The thickness of adsorption layer of cetyltrimethylammonium bromide(CTAB) in solution has been taken into consideration. Results show that size measurement of GNRs by using DDLS method agrees very well with that by using SEM. In addition, it is shown that the extinction spectroscopy strongly limited the application of DDLS method by affecting the effective scattering light intensity. Proper laser wavelength should be chosen before the application of this method.
基金financially supported by the Fundamental Research Funds from National Institute of Metrology(Nos.35-ALC1514-15 and 35-AHY1323-13)the National Natural Science Foundation of China(No.51402031)。
文摘Magnetic and magnetocaloric properties of HoFe_(1-x)Co_(x)Al(x = 0, 0.3) were investigated. Both HoFeAl and HoFe_(0.7)Co_(0.3) Al undergo a second-order ferromagnetic(FIM) to paramagnetic(PM) transition at Curie temperatures(TC) of 87 and 82 K, respectively. The magnetocaloric effect is improved by the introduction of Co in HoFeAl compound. For a field change from 0 to 5 T,the maximum values of magnetic entropy change(﹣△SM)are 7.0 J·kg^(-1)·K^(-1) for HoFeAl and 8.6 J·kg^(-1)·K^(-1) for HoFe_(0.7)Co_(0.3) Al. In addition, the refrigerant capacity(RC)is enhanced largely from 416.2 J·kg^(-1) for HoFeAl to561.9 J·kg^(-1) for HoFe_(0.7)Co_(0.3) Al. This large RC is attributed to the large ﹣?SM and the wide temperature span of ?SM peak in HoFe_(0.7)Co_(0.3) Al compound. The physical mechanism of improvement in magnetocaloric effect by Co substitution in HoFeAl was also discussed in detail.