This article studies the influence of polymers on drag reduction and heat transfer enhancement of a nanofluid past a uniformly heated permeable vertically stretching surface. Our prime focus is on analyzing the possib...This article studies the influence of polymers on drag reduction and heat transfer enhancement of a nanofluid past a uniformly heated permeable vertically stretching surface. Our prime focus is on analyzing the possible effects of polymer inclusion in the nanofluid on drag coefficient, Nusselt number and Sherwood number. Dispersion model is considered to study the behavior of fluid flow and heat transfer in the presence of nanoparticles. Molecular approach is opted to explore polymer addition in the base fluid. An extra stress arises in the momentum equation as an outcome of polymer stretching. The governing boundary layer equations are solved numerically. Dependence of physical quantities of engineering interest on different flow parameters is studied. Reduction in drag coefficient, Nusselt number and Sherwood number is noticed because of polymer additives.展开更多
:Social media data are rapidly increasing and constitute a source of user opinions and tips on a wide range of products and services.The increasing availability of such big data on biased reviews and blogs creates cha...:Social media data are rapidly increasing and constitute a source of user opinions and tips on a wide range of products and services.The increasing availability of such big data on biased reviews and blogs creates challenges for customers and businesses in reviewing all content in their decision-making process.To overcome this challenge,extracting suggestions from opinionated text is a possible solution.In this study,the characteristics of suggestions are analyzed and a suggestion mining extraction process is presented for classifying suggestive sentences from online customers’reviews.A classification using a word-embedding approach is used via the XGBoost classifier.The two datasets used in this experiment relate to online hotel reviews and Microsoft Windows App Studio discussion reviews.F1,precision,recall,and accuracy scores are calculated.The results demonstrated that the XGBoost classifier outperforms—with an accuracy of more than 80%.Moreover,the results revealed that suggestion keywords and phrases are the predominant features for suggestion extraction.Thus,this study contributes to knowledge and practice by comparing feature extraction classifiers and identifying XGBoost as a better suggestion mining process for identifying online reviews.展开更多
Software crowdsourcing(SW CS)is an evolving software development paradigm,in which crowds of people are asked to solve various problems through an open call(with the encouragement of prizes for the top solutions).Beca...Software crowdsourcing(SW CS)is an evolving software development paradigm,in which crowds of people are asked to solve various problems through an open call(with the encouragement of prizes for the top solutions).Because of its dynamic nature,SW CS has been progressively accepted and adopted in the software industry.However,issues pertinent to the understanding of requirements among crowds of people and requirements engineers are yet to be clarified and explained.If the requirements are not clear to the development team,it has a significant effect on the quality of the software product.This study aims to identify the potential challenges faced by requirements engineers when conducting the SW–CS based requirements engineering(RE)process.Moreover,solutions to overcome these challenges are also identified.Qualitative data analysis is performed on the interview data collected from software industry professionals.Consequently,20 SW–CS based RE challenges and their subsequent proposed solutions are devised,which are further grouped under seven categories.This study is beneficial for academicians,researchers and practitioners by providing detailed SW–CS based RE challenges and subsequent solutions that could eventually guide them to understand and effectively implement RE in SW CS.展开更多
Emotion detection from the text is a challenging problem in the text analytics.The opinion mining experts are focusing on the development of emotion detection applications as they have received considerable attention ...Emotion detection from the text is a challenging problem in the text analytics.The opinion mining experts are focusing on the development of emotion detection applications as they have received considerable attention of online community including users and business organization for collecting and interpreting public emotions.However,most of the existing works on emotion detection used less efficient machine learning classifiers with limited datasets,resulting in performance degradation.To overcome this issue,this work aims at the evaluation of the performance of different machine learning classifiers on a benchmark emotion dataset.The experimental results show the performance of different machine learning classifiers in terms of different evaluation metrics like precision,recall ad f-measure.Finally,a classifier with the best performance is recommended for the emotion classification.展开更多
In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Conver...In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Convergence analysis proved that the order of convergence of the family of derivative free simultaneous iterative method is nine.Our main aim is to check out the most regularly used simultaneous iterative methods for finding all roots of non-linear equations by studying their dynamical planes,numerical experiments and CPU time-methodology.Dynamical planes of iterative methods are drawn by using MATLAB for the comparison of global convergence properties of simultaneous iterative methods.Convergence behavior of the higher order simultaneous iterative methods are also illustrated by residual graph obtained from some numerical test examples.Numerical test examples,dynamical behavior and computational efficiency are provided to present the performance and dominant efficiency of the newly constructed derivative free family of simultaneous iterative method over existing higher order simultaneous methods in literature.展开更多
Sentiment Analysis(SA)is often referred to as opinion mining.It is defined as the extraction,identification,or characterization of the sentiment from text.Generally,the sentiment of a textual document is classified in...Sentiment Analysis(SA)is often referred to as opinion mining.It is defined as the extraction,identification,or characterization of the sentiment from text.Generally,the sentiment of a textual document is classified into binary classes i.e.,positive and negative.However,fine-grained classification provides a better insight into the sentiments.The downside is that fine-grained classification is more challenging as compared to binary.On the contrary,performance deteriorates significantly in the case of multi-class classification.In this study,pre-processing techniques and machine learning models for the multi-class classification of sentiments were explored.To augment the performance,a multi-layer classification model has been proposed.Owing to similitude with social media text,the movie reviews dataset has been used for the implementation.Supervised machine learning models namely Decision Tree,Support Vector Machine,and Naive Bayes models have been implemented for the task of sentiment classification.We have compared the models of single-layer architecture with multi-tier model.The results of Multi-tier model have slight improvement over the single-layer architecture.Moreover,multi-tier models have better recall which allow our proposed model to learn more context.We have discussed certain shortcomings of the model that will help researchers to design multi-tier models with more contextual information.展开更多
There is an emerging interest in using agile methodologies in Global Software Development(GSD)to get the mutual benefits of both methods.Scrum is currently admired by many development teams as an agile most known meth...There is an emerging interest in using agile methodologies in Global Software Development(GSD)to get the mutual benefits of both methods.Scrum is currently admired by many development teams as an agile most known meth-odology and considered adequate for collocated teams.At the same time,stake-holders in GSD are dispersed by geographical,temporal,and socio-cultural distances.Due to the controversial nature of Scrum and GSD,many significant challenges arise that might restrict the use of Scrum in GSD.We conducted a Sys-tematic Literature Review(SLR)by following Kitchenham guidelines to identify the challenges that limit the use of Scrum in GSD and to explore the mitigation strategies adopted by practitioners to resolve the challenges.To validate our reviewfindings,we conducted an industrial survey of 305 practitioners.The results of our study are consolidated into a research framework.The framework represents current best practices and recommendations to mitigate the identified distributed scrum challenges and is validated byfive experts of distributed Scrum.Results of the expert review were found supportive,reflecting that the framework will help the stakeholders deliver sustainable products by effectively mitigating the identified challenges.展开更多
Teachers are the obligatory ingredients in enhancing the effective learning process at university through their keen potential for quality of teaching, research, and management. The faculty of agricultural universitie...Teachers are the obligatory ingredients in enhancing the effective learning process at university through their keen potential for quality of teaching, research, and management. The faculty of agricultural universities in Pakistan is striving for productive agriculture education and research. Teachers possessing prevailing sense of self-efficacy are intrinsically motivated and additionally challenge themselves by multifarious tasks. The study was conducted to observe the self-efficacy levels of agricultural universities teachers at Faisalabad and Rawalpindi with respect to three particular domains named as teaching, research, and management. Stratified random sampling technique was used. From target population four strata, i.e., professors, associate professors, assistant professors, and lecturers were considered. As a result, 100 (59%) teachers from University of Agriculture Faisalabad and 67 (40.1%) teachers from PirMehr Ali Shah Arid Agriculture University Rawalpindi participated in the study as respondents. Data were collected through a questionnaire as an instrument of research. Pilot study was done on a sample of 24 teachers. Data were analyzed by using t-test and ANOVA test. High level of efficacy in terms of teaching, research, and management was found;teachers were fully confident in their beliefs to accomplish intended tasks. Teachers having less administrative tasks reported better performance in related tasks.展开更多
This study explores the practices of the Holy Prophet Muhammad ■ to establish a peaceful and diverse society with special reference to Methāq-e-Madīnah and its significance and application in contemporary socio-pol...This study explores the practices of the Holy Prophet Muhammad ■ to establish a peaceful and diverse society with special reference to Methāq-e-Madīnah and its significance and application in contemporary socio-political context. Theoretically, the effort and dream to establish a peaceful and diverse society have been a matter of concern for the humanity from the ancient times. But it has become the most significant and burning issue of the contemporary global scenario. Ultimately, the human intellectual and physical development is based upon peace and peaceful coexistence. Therefore, a number of religious and socio-political scholars have been tried to establish a peaceful and diverse society in different phases of the human history. Practically, the Prophet Muhammad (■ )has made a unique and distinct contribution towards developing a peaceful and diverse society for 1,400 years ago, though he led or had been the part of multiethnic society of different faiths in the state of Madīnah. In order to establish a peaceful and pleasant relationship between Muslims and other communities of Madīnah, an agreement was signed which was titled Methāq-e-Madīnah. The Charter of Madīnah contained certain principles and regulations that are mandatory for a peaceful living in a diverse state or society. This charter is an excellent model for peace, prosperity, religious freedom, and human rights in the human history. According to this charter, all groups were free to exercise their religious beliefs and social and economic interests. According to this agreement, Madīnah was declared a federal capital of the state. This agreement had provided equal rights, religious autonomy, and socio-cultural freedom to all other groups of the Madīnah (Jews, Christians, and polytheists). Therefore, it is perceived that the Charter of Madīnah may become a preamble for peaceful coexistence in this multicultural and multipath world of the contemporary era. In this study, analytical research methodology has been adopted with qualitative approach.展开更多
In the contemporary era,the death rate is increasing due to lung cancer.However,technology is continuously enhancing the quality of well-being.To improve the survival rate,radiologists rely on Computed Tomography(CT)s...In the contemporary era,the death rate is increasing due to lung cancer.However,technology is continuously enhancing the quality of well-being.To improve the survival rate,radiologists rely on Computed Tomography(CT)scans for early detection and diagnosis of lung nodules.This paper presented a detailed,systematic review of several identification and categorization techniques for lung nodules.The analysis of the report explored the challenges,advancements,and future opinions in computer-aided diagnosis CAD systems for detecting and classifying lung nodules employing the deep learning(DL)algorithm.The findings also highlighted the usefulness of DL networks,especially convolutional neural networks(CNNs)in elevating sensitivity,accuracy,and specificity as well as overcoming false positives in the initial stages of lung cancer detection.This paper further presented the integral nodule classification stage,which stressed the importance of differentiating between benign and malignant nodules for initial cancer diagnosis.Moreover,the findings presented a comprehensive analysis of multiple techniques and studies for nodule classification,highlighting the evolution of methodologies from conventional machine learning(ML)classifiers to transfer learning and integrated CNNs.Interestingly,while accepting the strides formed by CAD systems,the review addressed persistent challenges.展开更多
The feedback collection and analysis has remained an important subject matter for long.The traditional techniques for student feedback analysis are based on questionnaire-based data collection and analysis.However,the...The feedback collection and analysis has remained an important subject matter for long.The traditional techniques for student feedback analysis are based on questionnaire-based data collection and analysis.However,the student expresses their feedback opinions on online social media sites,which need to be analyzed.This study aims at the development of fuzzy-based sentiment analysis system for analyzing student feedback and satisfaction by assigning proper sentiment score to opinion words and polarity shifters present in the input reviews.Our technique computes the sentiment score of student feedback reviews and then applies a fuzzy-logic module to analyze and quantify student’s satisfaction at the fine-grained level.The experimental results reveal that the proposed work has outperformed the baseline studies as well as state-of-the-art machine learning classifiers.展开更多
The Internet of Things(IoT)is gaining attention because of its broad applicability,especially by integrating smart devices for massive communication during sensing tasks.IoT-assisted Wireless Sensor Networks(WSN)are s...The Internet of Things(IoT)is gaining attention because of its broad applicability,especially by integrating smart devices for massive communication during sensing tasks.IoT-assisted Wireless Sensor Networks(WSN)are suitable for various applications like industrial monitoring,agriculture,and transportation.In this regard,routing is challenging to nd an efcient path using smart devices for transmitting the packets towards big data repositories while ensuring efcient energy utilization.This paper presents the Robust Cluster Based Routing Protocol(RCBRP)to identify the routing paths where less energy is consumed to enhances the network lifespan.The scheme is presented in six phases to explore ow and communication.We propose the two algorithms:(i)energy-efcient clustering and routing algorithm and (ii)distance and energy consumption calculation algorithm.The scheme consumes less energy and balances the load by clustering the smart devices.Our work is validated through extensive simulation using Matlab.Results elucidate the dominance of the proposed scheme is compared to counterparts in terms of energy consumption,the number of packets received at BS and the number of active and dead nodes.In the future,we shall consider edge computing to analyze the performance of robust clustering.展开更多
With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the ou...With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the outdoor environment,the lack of line-of-sight propagation in an indoor environment keeps the interest of the researchers to develop efcient and precise positioning systems that can later be incorporated in numerous applications involving Internet of Things(IoTs)and green computing.In this paper,we have proposed a technique that combines the capabilities of multiple algorithms to overcome the complexities experienced indoors.Initially,in the database development phase,Motley Kennan propagation model is used with Hough transformation to classify,detect,and assign different attenuation factors related to the types of walls.Furthermore,important parameters for system accuracy,such as,placement and geometry of Access Points(APs)in the coverage area are also considered.New algorithm for deployment of an additional AP to an already existing infrastructure is proposed by using Genetic Algorithm(GA)coupled with Enhanced Dilution of Precision(EDOP).Moreover,classication algorithm based on k-Nearest Neighbors(k-NN)is used to nd the position of a stationary or mobile user inside the given coverage area.For k-NN to provide low localization error and reduced space dimensionality,three APs are required to be selected optimally.In this paper,we have suggested an idea to select APs based on Position Vectors(PV)as an input to the localization algorithm.Deducing from our comprehensive investigations,it is revealed that the accuracy of indoor positioning system using the proposed technique unblemished the existing solutions with signicant improvements.展开更多
Throughout the use of the small battery-operated sensor nodes encou-rage us to develop an energy-efficient routing protocol for wireless sensor networks(WSNs).The development of an energy-efficient routing protocol is...Throughout the use of the small battery-operated sensor nodes encou-rage us to develop an energy-efficient routing protocol for wireless sensor networks(WSNs).The development of an energy-efficient routing protocol is a mainly adopted technique to enhance the lifetime of WSN.Many routing protocols are available,but the issue is still alive.Clustering is one of the most important techniques in the existing routing protocols.In the clustering-based model,the important thing is the selection of the cluster heads.In this paper,we have proposed a scheme that uses the bubble sort algorithm for cluster head selection by considering the remaining energy and the distance of the nodes in each cluster.Initially,the bubble sort algorithm chose the two nodes with the maximum remaining energy in the cluster and chose a cluster head with a small distance.The proposed scheme performs hierarchal routing and direct routing with some energy thresholds.The simulation will be performed in MATLAB to justify its performance and results and compared with the ECHERP model to justify its performance.Moreover,the simulations will be performed in two scenarios,gate-way-based and without gateway to achieve more energy-efficient results.展开更多
Requirements elicitation is a fundamental phase of software development in which an analyst discovers the needs of different stakeholders and transforms them into requirements.This phase is cost-and time-intensive,and...Requirements elicitation is a fundamental phase of software development in which an analyst discovers the needs of different stakeholders and transforms them into requirements.This phase is cost-and time-intensive,and a project may fail if there are excessive costs and schedule overruns.COVID-19 has affected the software industry by reducing interactions between developers and customers.Such a lack of interaction is a key reason for the failure of software projects.Projects can also fail when customers do not know precisely what they want.Furthermore,selecting the unsuitable elicitation technique can also cause project failure.The present study,therefore,aimed to identify which requirements elicitation technique is the most cost-effective for large-scale projects when time to market is a critical issue or when the customer is not available.To that end,we conducted a systematic literature review on requirements elicitation techniques.Most primary studies identified introspection as the best technique,followed by survey and brainstorming.This finding suggests that introspection should be the first choice of elicitation technique,especially when the customer is not available or the project has strict time and cost constraints.Moreover,introspection should also be used as the starting point in the elicitation process of a large-scale project,and all known requirements should be elicited using this technique.展开更多
Due to the inability of the Global Positioning System(GPS)signals to penetrate through surfaces like roofs,walls,and other objects in indoor environments,numerous alternative methods for user positioning have been pre...Due to the inability of the Global Positioning System(GPS)signals to penetrate through surfaces like roofs,walls,and other objects in indoor environments,numerous alternative methods for user positioning have been presented.Amongst those,the Wi-Fi fingerprinting method has gained considerable interest in Indoor Positioning Systems(IPS)as the need for lineof-sight measurements is minimal,and it achieves better efficiency in even complex indoor environments.Offline and online are the two phases of the fingerprinting method.Many researchers have highlighted the problems in the offline phase as it deals with huge datasets and validation of Fingerprints without pre-processing of data becomes a concern.Machine learning is used for the model training in the offline phase while the locations are estimated in the online phase.Many researchers have considered the concerns in the offline phase as it deals with huge datasets and validation of Fingerprints becomes an issue.Machine learning algorithms are a natural solution for winnowing through large datasets and determining the significant fragments of information for localization,creating precise models to predict an indoor location.Large training sets are a key for obtaining better results in machine learning problems.Therefore,an existing WLAN fingerprinting-based multistory building location database has been used with 21049 samples including 19938 training and 1111 testing samples.The proposed model consists of mean and median filtering as pre-processing techniques applied to the database for enhancing the accuracy by mitigating the impact of environmental dispersion and investigated machine learning algorithms(kNN,WkNN,FSkNN,and SVM)for estimating the location.The proposed SVM with median filtering algorithm gives a reduced mean positioning error of 0.7959 m and an improved efficiency of 92.84%as compared to all variants of the proposed method for 108703 m^(2) area.展开更多
The deep learning model encompasses a powerful learning ability that integrates the feature extraction,and classification method to improve accuracy.Convolutional Neural Networks(CNN)perform well in machine learning a...The deep learning model encompasses a powerful learning ability that integrates the feature extraction,and classification method to improve accuracy.Convolutional Neural Networks(CNN)perform well in machine learning and image processing tasks like segmentation,classification,detection,identification,etc.The CNN models are still sensitive to noise and attack.The smallest change in training images as in an adversarial attack can greatly decrease the accuracy of the CNN model.This paper presents an alpha fusion attack analysis and generates defense against adversarial attacks.The proposed work is divided into three phases:firstly,an MLSTM-based CNN classification model is developed for classifying COVID-CT images.Secondly,an alpha fusion attack is generated to fool the classification model.The alpha fusion attack is tested in the last phase on a modified LSTM-based CNN(CNN-MLSTM)model and other pre-trained models.The results of CNN models show that the accuracy of these models dropped greatly after the alpha-fusion attack.The highest F1 score before the attack was achieved is 97.45 And after the attack lowest F1 score recorded is 22%.Results elucidate the performance in terms of accuracy,precision,F1 score and Recall.展开更多
The Internet of Things(IoT)and cloud technologies have encouraged massive data storage at central repositories.Software-defined networks(SDN)support the processing of data and restrict the transmission of duplicate va...The Internet of Things(IoT)and cloud technologies have encouraged massive data storage at central repositories.Software-defined networks(SDN)support the processing of data and restrict the transmission of duplicate values.It is necessary to use a data de-duplication mechanism to reduce communication costs and storage overhead.Existing State of the art schemes suffer from computational overhead due to deterministic or random tree-based tags generation which further increases as the file size grows.This paper presents an efficient file-level de-duplication scheme(EFDS)where the cost of creating tags is reduced by employing a hash table with key-value pair for each block of the file.Further,an algorithm for hash table-based duplicate block identification and storage(HDBIS)is presented based on fingerprints that maintain a linked list of similar duplicate blocks on the same index.Hash tables normally have a consistent time complexity for lookup,generating,and deleting stored data regardless of the input size.The experiential results show that the proposed EFDS scheme performs better compared to its counterparts.展开更多
Green environmental technologies,renewable energy and globalization are interconnected pillars that impact economies and societies.By effectively fostering these resources,environmental policies can help achieve econo...Green environmental technologies,renewable energy and globalization are interconnected pillars that impact economies and societies.By effectively fostering these resources,environmental policies can help achieve economic prosperity,sustainable development and environmental protection.The current study seeks to address environmental and economic predicaments by empirically examining the role of green technology and renewable energy in influencing the load capacity factor and ecological footprint with the highest ecological impact.Given that these nations are also significant players in the global economy,we also examine the impact of Globalization and economic growth within econometric investigation.The current study uses moments quantile regression(MMQR)as an econometric strategy to report that while innovations in green technology and renewable energy positively influence load factor capacity and help reduce ecological footprint,certain facets of globalization worsen the ecological footprint,thereby unsettling its load factor capacity.These findings underscore the pressing need for policymakers to prioritize integrating environmental and trade policy agreements to ensure progress towards long-term environmental goals。展开更多
基金Project(IFP-A-2022-2-5-24) supported by Institutional Fund Projects,University of Hafr Al Batin,Saudi Arabia。
文摘This article studies the influence of polymers on drag reduction and heat transfer enhancement of a nanofluid past a uniformly heated permeable vertically stretching surface. Our prime focus is on analyzing the possible effects of polymer inclusion in the nanofluid on drag coefficient, Nusselt number and Sherwood number. Dispersion model is considered to study the behavior of fluid flow and heat transfer in the presence of nanoparticles. Molecular approach is opted to explore polymer addition in the base fluid. An extra stress arises in the momentum equation as an outcome of polymer stretching. The governing boundary layer equations are solved numerically. Dependence of physical quantities of engineering interest on different flow parameters is studied. Reduction in drag coefficient, Nusselt number and Sherwood number is noticed because of polymer additives.
基金This research is funded by Taif University, TURSP-2020/115.
文摘:Social media data are rapidly increasing and constitute a source of user opinions and tips on a wide range of products and services.The increasing availability of such big data on biased reviews and blogs creates challenges for customers and businesses in reviewing all content in their decision-making process.To overcome this challenge,extracting suggestions from opinionated text is a possible solution.In this study,the characteristics of suggestions are analyzed and a suggestion mining extraction process is presented for classifying suggestive sentences from online customers’reviews.A classification using a word-embedding approach is used via the XGBoost classifier.The two datasets used in this experiment relate to online hotel reviews and Microsoft Windows App Studio discussion reviews.F1,precision,recall,and accuracy scores are calculated.The results demonstrated that the XGBoost classifier outperforms—with an accuracy of more than 80%.Moreover,the results revealed that suggestion keywords and phrases are the predominant features for suggestion extraction.Thus,this study contributes to knowledge and practice by comparing feature extraction classifiers and identifying XGBoost as a better suggestion mining process for identifying online reviews.
基金‘This research is funded by Taif University,TURSP-2020/115’.
文摘Software crowdsourcing(SW CS)is an evolving software development paradigm,in which crowds of people are asked to solve various problems through an open call(with the encouragement of prizes for the top solutions).Because of its dynamic nature,SW CS has been progressively accepted and adopted in the software industry.However,issues pertinent to the understanding of requirements among crowds of people and requirements engineers are yet to be clarified and explained.If the requirements are not clear to the development team,it has a significant effect on the quality of the software product.This study aims to identify the potential challenges faced by requirements engineers when conducting the SW–CS based requirements engineering(RE)process.Moreover,solutions to overcome these challenges are also identified.Qualitative data analysis is performed on the interview data collected from software industry professionals.Consequently,20 SW–CS based RE challenges and their subsequent proposed solutions are devised,which are further grouped under seven categories.This study is beneficial for academicians,researchers and practitioners by providing detailed SW–CS based RE challenges and subsequent solutions that could eventually guide them to understand and effectively implement RE in SW CS.
基金This work has partially been sponsored by the Hungarian National Scientific Fund under contract OTKA 129374the Research&Development Operational Program for the project“Modernization and Improvement of Technical Infrastructure for Research and Development of J.Selye University in the Fields of Nanotechnology and Intelligent Space”,ITMS 26210120042,co-funded by the European Regional Development Fund.
文摘Emotion detection from the text is a challenging problem in the text analytics.The opinion mining experts are focusing on the development of emotion detection applications as they have received considerable attention of online community including users and business organization for collecting and interpreting public emotions.However,most of the existing works on emotion detection used less efficient machine learning classifiers with limited datasets,resulting in performance degradation.To overcome this issue,this work aims at the evaluation of the performance of different machine learning classifiers on a benchmark emotion dataset.The experimental results show the performance of different machine learning classifiers in terms of different evaluation metrics like precision,recall ad f-measure.Finally,a classifier with the best performance is recommended for the emotion classification.
基金the Natural Science Foundation of China(Grant Nos.61673169,11301127,11701176,11626101,and 11601485)The Natural Science Foundation of Huzhou City(Grant No.2018YZ07).
文摘In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Convergence analysis proved that the order of convergence of the family of derivative free simultaneous iterative method is nine.Our main aim is to check out the most regularly used simultaneous iterative methods for finding all roots of non-linear equations by studying their dynamical planes,numerical experiments and CPU time-methodology.Dynamical planes of iterative methods are drawn by using MATLAB for the comparison of global convergence properties of simultaneous iterative methods.Convergence behavior of the higher order simultaneous iterative methods are also illustrated by residual graph obtained from some numerical test examples.Numerical test examples,dynamical behavior and computational efficiency are provided to present the performance and dominant efficiency of the newly constructed derivative free family of simultaneous iterative method over existing higher order simultaneous methods in literature.
基金This research is funded by Deanship of Scientific Research at Umm Al-Qura University,Grant Code:22UQU4281755DSR03.
文摘Sentiment Analysis(SA)is often referred to as opinion mining.It is defined as the extraction,identification,or characterization of the sentiment from text.Generally,the sentiment of a textual document is classified into binary classes i.e.,positive and negative.However,fine-grained classification provides a better insight into the sentiments.The downside is that fine-grained classification is more challenging as compared to binary.On the contrary,performance deteriorates significantly in the case of multi-class classification.In this study,pre-processing techniques and machine learning models for the multi-class classification of sentiments were explored.To augment the performance,a multi-layer classification model has been proposed.Owing to similitude with social media text,the movie reviews dataset has been used for the implementation.Supervised machine learning models namely Decision Tree,Support Vector Machine,and Naive Bayes models have been implemented for the task of sentiment classification.We have compared the models of single-layer architecture with multi-tier model.The results of Multi-tier model have slight improvement over the single-layer architecture.Moreover,multi-tier models have better recall which allow our proposed model to learn more context.We have discussed certain shortcomings of the model that will help researchers to design multi-tier models with more contextual information.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no.RG-1441-490.
文摘There is an emerging interest in using agile methodologies in Global Software Development(GSD)to get the mutual benefits of both methods.Scrum is currently admired by many development teams as an agile most known meth-odology and considered adequate for collocated teams.At the same time,stake-holders in GSD are dispersed by geographical,temporal,and socio-cultural distances.Due to the controversial nature of Scrum and GSD,many significant challenges arise that might restrict the use of Scrum in GSD.We conducted a Sys-tematic Literature Review(SLR)by following Kitchenham guidelines to identify the challenges that limit the use of Scrum in GSD and to explore the mitigation strategies adopted by practitioners to resolve the challenges.To validate our reviewfindings,we conducted an industrial survey of 305 practitioners.The results of our study are consolidated into a research framework.The framework represents current best practices and recommendations to mitigate the identified distributed scrum challenges and is validated byfive experts of distributed Scrum.Results of the expert review were found supportive,reflecting that the framework will help the stakeholders deliver sustainable products by effectively mitigating the identified challenges.
文摘Teachers are the obligatory ingredients in enhancing the effective learning process at university through their keen potential for quality of teaching, research, and management. The faculty of agricultural universities in Pakistan is striving for productive agriculture education and research. Teachers possessing prevailing sense of self-efficacy are intrinsically motivated and additionally challenge themselves by multifarious tasks. The study was conducted to observe the self-efficacy levels of agricultural universities teachers at Faisalabad and Rawalpindi with respect to three particular domains named as teaching, research, and management. Stratified random sampling technique was used. From target population four strata, i.e., professors, associate professors, assistant professors, and lecturers were considered. As a result, 100 (59%) teachers from University of Agriculture Faisalabad and 67 (40.1%) teachers from PirMehr Ali Shah Arid Agriculture University Rawalpindi participated in the study as respondents. Data were collected through a questionnaire as an instrument of research. Pilot study was done on a sample of 24 teachers. Data were analyzed by using t-test and ANOVA test. High level of efficacy in terms of teaching, research, and management was found;teachers were fully confident in their beliefs to accomplish intended tasks. Teachers having less administrative tasks reported better performance in related tasks.
文摘This study explores the practices of the Holy Prophet Muhammad ■ to establish a peaceful and diverse society with special reference to Methāq-e-Madīnah and its significance and application in contemporary socio-political context. Theoretically, the effort and dream to establish a peaceful and diverse society have been a matter of concern for the humanity from the ancient times. But it has become the most significant and burning issue of the contemporary global scenario. Ultimately, the human intellectual and physical development is based upon peace and peaceful coexistence. Therefore, a number of religious and socio-political scholars have been tried to establish a peaceful and diverse society in different phases of the human history. Practically, the Prophet Muhammad (■ )has made a unique and distinct contribution towards developing a peaceful and diverse society for 1,400 years ago, though he led or had been the part of multiethnic society of different faiths in the state of Madīnah. In order to establish a peaceful and pleasant relationship between Muslims and other communities of Madīnah, an agreement was signed which was titled Methāq-e-Madīnah. The Charter of Madīnah contained certain principles and regulations that are mandatory for a peaceful living in a diverse state or society. This charter is an excellent model for peace, prosperity, religious freedom, and human rights in the human history. According to this charter, all groups were free to exercise their religious beliefs and social and economic interests. According to this agreement, Madīnah was declared a federal capital of the state. This agreement had provided equal rights, religious autonomy, and socio-cultural freedom to all other groups of the Madīnah (Jews, Christians, and polytheists). Therefore, it is perceived that the Charter of Madīnah may become a preamble for peaceful coexistence in this multicultural and multipath world of the contemporary era. In this study, analytical research methodology has been adopted with qualitative approach.
文摘In the contemporary era,the death rate is increasing due to lung cancer.However,technology is continuously enhancing the quality of well-being.To improve the survival rate,radiologists rely on Computed Tomography(CT)scans for early detection and diagnosis of lung nodules.This paper presented a detailed,systematic review of several identification and categorization techniques for lung nodules.The analysis of the report explored the challenges,advancements,and future opinions in computer-aided diagnosis CAD systems for detecting and classifying lung nodules employing the deep learning(DL)algorithm.The findings also highlighted the usefulness of DL networks,especially convolutional neural networks(CNNs)in elevating sensitivity,accuracy,and specificity as well as overcoming false positives in the initial stages of lung cancer detection.This paper further presented the integral nodule classification stage,which stressed the importance of differentiating between benign and malignant nodules for initial cancer diagnosis.Moreover,the findings presented a comprehensive analysis of multiple techniques and studies for nodule classification,highlighting the evolution of methodologies from conventional machine learning(ML)classifiers to transfer learning and integrated CNNs.Interestingly,while accepting the strides formed by CAD systems,the review addressed persistent challenges.
文摘The feedback collection and analysis has remained an important subject matter for long.The traditional techniques for student feedback analysis are based on questionnaire-based data collection and analysis.However,the student expresses their feedback opinions on online social media sites,which need to be analyzed.This study aims at the development of fuzzy-based sentiment analysis system for analyzing student feedback and satisfaction by assigning proper sentiment score to opinion words and polarity shifters present in the input reviews.Our technique computes the sentiment score of student feedback reviews and then applies a fuzzy-logic module to analyze and quantify student’s satisfaction at the fine-grained level.The experimental results reveal that the proposed work has outperformed the baseline studies as well as state-of-the-art machine learning classifiers.
文摘The Internet of Things(IoT)is gaining attention because of its broad applicability,especially by integrating smart devices for massive communication during sensing tasks.IoT-assisted Wireless Sensor Networks(WSN)are suitable for various applications like industrial monitoring,agriculture,and transportation.In this regard,routing is challenging to nd an efcient path using smart devices for transmitting the packets towards big data repositories while ensuring efcient energy utilization.This paper presents the Robust Cluster Based Routing Protocol(RCBRP)to identify the routing paths where less energy is consumed to enhances the network lifespan.The scheme is presented in six phases to explore ow and communication.We propose the two algorithms:(i)energy-efcient clustering and routing algorithm and (ii)distance and energy consumption calculation algorithm.The scheme consumes less energy and balances the load by clustering the smart devices.Our work is validated through extensive simulation using Matlab.Results elucidate the dominance of the proposed scheme is compared to counterparts in terms of energy consumption,the number of packets received at BS and the number of active and dead nodes.In the future,we shall consider edge computing to analyze the performance of robust clustering.
基金The authors extend their appreciation to National University of Sciences and Technology for funding this work through Researchers Supporting Grant,National University of Sciences and Technology,Islamabad,Pakistan.
文摘With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the outdoor environment,the lack of line-of-sight propagation in an indoor environment keeps the interest of the researchers to develop efcient and precise positioning systems that can later be incorporated in numerous applications involving Internet of Things(IoTs)and green computing.In this paper,we have proposed a technique that combines the capabilities of multiple algorithms to overcome the complexities experienced indoors.Initially,in the database development phase,Motley Kennan propagation model is used with Hough transformation to classify,detect,and assign different attenuation factors related to the types of walls.Furthermore,important parameters for system accuracy,such as,placement and geometry of Access Points(APs)in the coverage area are also considered.New algorithm for deployment of an additional AP to an already existing infrastructure is proposed by using Genetic Algorithm(GA)coupled with Enhanced Dilution of Precision(EDOP).Moreover,classication algorithm based on k-Nearest Neighbors(k-NN)is used to nd the position of a stationary or mobile user inside the given coverage area.For k-NN to provide low localization error and reduced space dimensionality,three APs are required to be selected optimally.In this paper,we have suggested an idea to select APs based on Position Vectors(PV)as an input to the localization algorithm.Deducing from our comprehensive investigations,it is revealed that the accuracy of indoor positioning system using the proposed technique unblemished the existing solutions with signicant improvements.
文摘Throughout the use of the small battery-operated sensor nodes encou-rage us to develop an energy-efficient routing protocol for wireless sensor networks(WSNs).The development of an energy-efficient routing protocol is a mainly adopted technique to enhance the lifetime of WSN.Many routing protocols are available,but the issue is still alive.Clustering is one of the most important techniques in the existing routing protocols.In the clustering-based model,the important thing is the selection of the cluster heads.In this paper,we have proposed a scheme that uses the bubble sort algorithm for cluster head selection by considering the remaining energy and the distance of the nodes in each cluster.Initially,the bubble sort algorithm chose the two nodes with the maximum remaining energy in the cluster and chose a cluster head with a small distance.The proposed scheme performs hierarchal routing and direct routing with some energy thresholds.The simulation will be performed in MATLAB to justify its performance and results and compared with the ECHERP model to justify its performance.Moreover,the simulations will be performed in two scenarios,gate-way-based and without gateway to achieve more energy-efficient results.
基金funding this work through research group no.RG-1441-490.
文摘Requirements elicitation is a fundamental phase of software development in which an analyst discovers the needs of different stakeholders and transforms them into requirements.This phase is cost-and time-intensive,and a project may fail if there are excessive costs and schedule overruns.COVID-19 has affected the software industry by reducing interactions between developers and customers.Such a lack of interaction is a key reason for the failure of software projects.Projects can also fail when customers do not know precisely what they want.Furthermore,selecting the unsuitable elicitation technique can also cause project failure.The present study,therefore,aimed to identify which requirements elicitation technique is the most cost-effective for large-scale projects when time to market is a critical issue or when the customer is not available.To that end,we conducted a systematic literature review on requirements elicitation techniques.Most primary studies identified introspection as the best technique,followed by survey and brainstorming.This finding suggests that introspection should be the first choice of elicitation technique,especially when the customer is not available or the project has strict time and cost constraints.Moreover,introspection should also be used as the starting point in the elicitation process of a large-scale project,and all known requirements should be elicited using this technique.
基金The authors extend their appreciation to the National University of Sciences and Technology for funding this work through the Researchers Supporting Grant,National University of Sciences and Technology,Islamabad,Pakistan.
文摘Due to the inability of the Global Positioning System(GPS)signals to penetrate through surfaces like roofs,walls,and other objects in indoor environments,numerous alternative methods for user positioning have been presented.Amongst those,the Wi-Fi fingerprinting method has gained considerable interest in Indoor Positioning Systems(IPS)as the need for lineof-sight measurements is minimal,and it achieves better efficiency in even complex indoor environments.Offline and online are the two phases of the fingerprinting method.Many researchers have highlighted the problems in the offline phase as it deals with huge datasets and validation of Fingerprints without pre-processing of data becomes a concern.Machine learning is used for the model training in the offline phase while the locations are estimated in the online phase.Many researchers have considered the concerns in the offline phase as it deals with huge datasets and validation of Fingerprints becomes an issue.Machine learning algorithms are a natural solution for winnowing through large datasets and determining the significant fragments of information for localization,creating precise models to predict an indoor location.Large training sets are a key for obtaining better results in machine learning problems.Therefore,an existing WLAN fingerprinting-based multistory building location database has been used with 21049 samples including 19938 training and 1111 testing samples.The proposed model consists of mean and median filtering as pre-processing techniques applied to the database for enhancing the accuracy by mitigating the impact of environmental dispersion and investigated machine learning algorithms(kNN,WkNN,FSkNN,and SVM)for estimating the location.The proposed SVM with median filtering algorithm gives a reduced mean positioning error of 0.7959 m and an improved efficiency of 92.84%as compared to all variants of the proposed method for 108703 m^(2) area.
基金This work was supported by the Taif University Researchers Supporting Project number(TURSP-2020/79)Taif University,Taif,Saudi Arabia。
文摘The deep learning model encompasses a powerful learning ability that integrates the feature extraction,and classification method to improve accuracy.Convolutional Neural Networks(CNN)perform well in machine learning and image processing tasks like segmentation,classification,detection,identification,etc.The CNN models are still sensitive to noise and attack.The smallest change in training images as in an adversarial attack can greatly decrease the accuracy of the CNN model.This paper presents an alpha fusion attack analysis and generates defense against adversarial attacks.The proposed work is divided into three phases:firstly,an MLSTM-based CNN classification model is developed for classifying COVID-CT images.Secondly,an alpha fusion attack is generated to fool the classification model.The alpha fusion attack is tested in the last phase on a modified LSTM-based CNN(CNN-MLSTM)model and other pre-trained models.The results of CNN models show that the accuracy of these models dropped greatly after the alpha-fusion attack.The highest F1 score before the attack was achieved is 97.45 And after the attack lowest F1 score recorded is 22%.Results elucidate the performance in terms of accuracy,precision,F1 score and Recall.
基金supported in part by Hankuk University of Foreign Studies’Research Fund for 2023 and in part by the National Research Foundation of Korea(NRF)grant funded by the Ministry of Science and ICT Korea No.2021R1F1A1045933.
文摘The Internet of Things(IoT)and cloud technologies have encouraged massive data storage at central repositories.Software-defined networks(SDN)support the processing of data and restrict the transmission of duplicate values.It is necessary to use a data de-duplication mechanism to reduce communication costs and storage overhead.Existing State of the art schemes suffer from computational overhead due to deterministic or random tree-based tags generation which further increases as the file size grows.This paper presents an efficient file-level de-duplication scheme(EFDS)where the cost of creating tags is reduced by employing a hash table with key-value pair for each block of the file.Further,an algorithm for hash table-based duplicate block identification and storage(HDBIS)is presented based on fingerprints that maintain a linked list of similar duplicate blocks on the same index.Hash tables normally have a consistent time complexity for lookup,generating,and deleting stored data regardless of the input size.The experiential results show that the proposed EFDS scheme performs better compared to its counterparts.
文摘Green environmental technologies,renewable energy and globalization are interconnected pillars that impact economies and societies.By effectively fostering these resources,environmental policies can help achieve economic prosperity,sustainable development and environmental protection.The current study seeks to address environmental and economic predicaments by empirically examining the role of green technology and renewable energy in influencing the load capacity factor and ecological footprint with the highest ecological impact.Given that these nations are also significant players in the global economy,we also examine the impact of Globalization and economic growth within econometric investigation.The current study uses moments quantile regression(MMQR)as an econometric strategy to report that while innovations in green technology and renewable energy positively influence load factor capacity and help reduce ecological footprint,certain facets of globalization worsen the ecological footprint,thereby unsettling its load factor capacity.These findings underscore the pressing need for policymakers to prioritize integrating environmental and trade policy agreements to ensure progress towards long-term environmental goals。