Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivi...Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivity in tropical forests throughout the 21st century due to CO_(2)fertilization.However,phosphorus(P)liaitations on vegetation photosynthesis and productivity could significantly reduce the CO_(2)fertilization effect.Here,we used a carbon-nitrogen-phosphorus coupled model(Dynamic Land Ecosystem Model;DLEM-CNP)with heterogeneous maximum carboxylation rates to examine how P limitation has affected C fluxes in tropical forests during1860-2018.Our model results showed that the inclusion of the P processes enhanced model performance in simulating ecosystem productivity.We further compared the simulations from DLEM-CNP,DLEM-CN,and DLEMC and the results showed that the inclusion of P processes reduced the CO_(2)fertilization effect on gross primary production(GPP)by 25%and 45%,and net ecosystem production(NEP)by 28%and 41%,respectively,relative to CN-only and C-on ly models.From the 1860s to the 2010s,the DLEM-CNP estimated that in tropical forests GPP increased by 17%,plant respiration(Ra)increased by 18%,ecosystem respiration(Rh)increased by 13%,NEP increased by 121%per unit area,respectively.Additionally,factorial experiments with DLEM-CNP showed that the enhanced NPP benefiting from the CO_(2) fertilization effect had been offset by 135%due to deforestation from the 1860s to the 2010s.Our study highlights the importance of P limitation on the C cycle and the weakened CO_(2)fertilization effect resulting from P limitation in tropical forests.展开更多
从资料分析和实际模拟两个方面,对中国区域气候模拟中的首要问题——模拟区域的选取进行了研究。首先,采用相关分析确定大尺度环流因子影响中国区域降水的关键区,以保证行星及天气尺度系统能够有效地通过区域气候模式的侧边界传入模拟区...从资料分析和实际模拟两个方面,对中国区域气候模拟中的首要问题——模拟区域的选取进行了研究。首先,采用相关分析确定大尺度环流因子影响中国区域降水的关键区,以保证行星及天气尺度系统能够有效地通过区域气候模式的侧边界传入模拟区域,同时依靠自身的物理机制使中尺度系统在模拟区域内部发展;其次,利用NRA(NCEP-NCAR Reanalysis II)和ERA(ECMWF Reanalysis 40)两再分析资料的相关性,对侧边界场资料的可信性进行分析,结果表明南部赤道洋面附近和青藏高原地区两种再分析资料的相关系数很低,表明资料的可信度低,因此侧边界的位置要尽量避开这些地区。根据以上分析结果,确定了中国区域气候模拟的最佳区域,在此基础上利用实际个例模拟对模拟区域的优化结果进行验证。将美国伊利诺伊州立大学水文研究所开发的CWRF(Cli-mate-Weather Research and Forecasting Model)应用于中国季风区,选取1998年夏季的极端洪涝事件作为验证个例,结果表明:模拟区域对区域气候模式的模拟性能有决定性的作用,资料分析确定的最佳模拟区域能够较好地再现1998年长江流域的极端洪涝事件。当模拟区域扩大,南部缓冲区位于赤道,东西侧边界远离环流因子影响关键区时,模拟结果急剧下降,基本无法再现实测降水。当模拟区域仅在东西方向扩大时,模拟结果略好于上述扩大的区域,但仍然远低于资料分析确定的最佳区域,表明有效地抓住主控环流因子对区域气候模拟的重要影响。资料分析和实际模拟的一致结论确定了中国区域气候模拟的最佳区域,实现了CWRF对中国季风区模拟区域的优化。展开更多
气候变化通过大气CO_(2)浓度、温度和降雨的改变,直接或间接影响农田温室气体排放,研究未来气候情景下农田温室气体排放对实现农业碳减排具有重要意义。为探究气候变化背景下农田温室气体排放特征,该研究在长期田间定位试验基础上,利用...气候变化通过大气CO_(2)浓度、温度和降雨的改变,直接或间接影响农田温室气体排放,研究未来气候情景下农田温室气体排放对实现农业碳减排具有重要意义。为探究气候变化背景下农田温室气体排放特征,该研究在长期田间定位试验基础上,利用当前大气CO_(2)浓度与CO_(2)浓度升高条件下旱作玉米农田温室气体排放通量的田间观测数据,采用“试错法”对DayCent模型进行校验,并利用校验后的模型,根据第六次国际耦合模式比较计划(Coupled Model Intercomparison Project phase 6,CMIP6)气候情景数据,预测未来SSP126(低排放水平)与SSP245(中等排放水平)气候情景下旱地玉米农田温室气体排放通量。结果表明,DayCent模型对不同大气CO_(2)浓度下N_(2)O、CH_(4)和CO_(2)排放通量的模拟值与观测值高度一致,模拟效率(modeling efficiency,EF)分别为0.58~0.87、0.45~0.65和0.25~0.62,均方根误差(root mean square error,RMSE)分别为0.83~1.33 g/(hm^(2)·d)、0.67~0.82 g/(hm^(2)·d)和0.58~0.80 g/(m^(2)·d),决定系数(coefficient of determination,R^(2))分别为0.80~0.91、0.53~0.80和0.53~0.85。SSP126和SSP245气候情景下,在玉米单作种植模式下旱地农田N_(2)O和CO_(2)年排放量均呈现上升趋势,以2001—2020年农田温室气体排放通量为基准,到2060年N_(2)O年排放量分别增加22.8%和24.9%,CO_(2)年排放量分别增加6.7%和8.0%;旱地农田CH_(4)年吸收量呈下降趋势,两个气候情景下分别减少13.6%和13.4%。未来气候情景下旱地农田仍是温室气体排放源,优化氮肥管理和农田耕作措施对实现温室气体减排具有重要意义,模拟结果可以为制定农业适应气候变化对策提供基础数据支持。展开更多
Background: Soil organic carbon(SOC) is a large reservoir of terrestrial carbon(C); it consists of different fractions of varying complexity and stability. Partitioning SOC into different pools of decomposability help...Background: Soil organic carbon(SOC) is a large reservoir of terrestrial carbon(C); it consists of different fractions of varying complexity and stability. Partitioning SOC into different pools of decomposability help better predict the trend of changes in SOC dynamics under climate change. Information on how physical fractions and chemical structures of SOC are related to climate and vegetation types is essential for spatial model ing of SOC processes and responses to global change factors.Method: Soil samples were col ected from multiple representative forest sites of three contrasting climatic zones(i.e. cool temperate, warm temperate, and subtropical) in eastern China. Measurements were made on SOC contents and physical fractions of the 0–20 cm soil layer, and the chemical composition of SOC of the 0–5 cm soil layer, along with measurements and compilation of the basic site and forest stand variables. The long-term effects of temperature, litter inputs, soil characteristics and vegetation type on the SOC contents and factions were examined by means of "space for time substitution" approach and statistical analysis.Result: Mean annual temperature(MAT) varied from 2.1 °C at the cool temperate sites to 20.8 °C at the subtropical sites. Total SOC of the 0–20 cm soil layer decreased with increasing MAT, ranging from 89.2 g·kg^(-1) in cool temperate forests to 57.7 g·kg^(-1) in subtropical forests, at an average rate of 1.87% reduction in SOC with a 1 °C increase in MAT.With increasing MAT, the proportions of aromatic C and phenolic C displayed a tendency of decreases, whereas the proportion of alkyl C and A/O-A value(the ratio of alkyl C to the sum of O-alkyl C and acetal C) displayed a tendency of increases. Overall, there were no significant changes with MAT and forest type in either the physical fractions or the chemical composition. Based on the relationship between the SOC content and MAT, we estimate that SOC in the top 20 soil layer of forests potentially contribute 6.58–26.3 Pg C globally to the atmosphere if global MAT increases by 1 °C–4 °C by the end of the twenty-first century, with nearly half of which(cf. 2.87–11.5 Pg C) occurring in the 0–5 cm mineral soils.Conclusion: Forest topsoil SOC content decreased and became chemical y more recalcitrant with increasing MAT,without apparent changes in the physical fractions of SOC.展开更多
Carbon(C) storage has received significant attention for its relevance to agricultural security and climate change. Afforestation can increase C storage in terrestrial ecosystems, and has been recognized as an impor...Carbon(C) storage has received significant attention for its relevance to agricultural security and climate change. Afforestation can increase C storage in terrestrial ecosystems, and has been recognized as an important measure to offset CO_2 emissions. In order to analyze the C benefits of planting wolfberry(Lycium barbarum L.) on the secondary saline lands in arid areas, we conducted a case study on the dynamics of biomass carbon(BC) storage and soil organic carbon(SOC) storage in different-aged wolfberry plantations(4-, 7-and 11-year-old) established on a secondary saline land as well as on the influence of wolfberry plantations on C storage in the plant-soil system in an arid irrigated area(Jingtai County) of Gansu Province, China. The C sequestration and its potential in the wolfberry plantations of Gansu Province were also evaluated. An intact secondary saline land was selected as control. Results show that wolfberry planting could decrease soil salinity, and increase BC, SOC and litter C storage of the secondary saline land significantly, especially in the first 4 years after planting. The aboveground and belowground BC storage values in the intact secondary saline land(control) accounted for only 1.0% and 1.2% of those in the wolfberry plantations, respectively. Compared to the intact secondary saline land, the SOC storage values in the 4-, 7-and 11-year-old wolfberry plantations increased by 36.4%, 37.3% and 43.3%, respectively, and the SOC storage in the wolfberry plantations occupied more than 92% of the ecosystem C storage. The average BC and SOC sequestration rates of the wolfberry plantations for the age group of 0–11 years were 0.73 and 3.30 Mg C/(hm^2·a), respectively. There were no significant difference in BC and SOC storage between the 7-year-old and 11-year-old wolfberry plantations, which may be due in part to the large amounts of C offtakes in new branches and fruits. In Gansu Province, the C storage in the wolfberry plantations has reached up to 3.574 Tg in 2013, and the C sequestration potential of the existing wolfberry plantations was 0.134 Tg C/a. These results indicate that wolfberry planting is an ideal agricultural model to restore the degraded saline lands and increase the C sequestration capacity of agricultural lands in arid areas.展开更多
Private comparison is the basis of many encryption technologies,and several related Quantum Private Comparison(QPC)protocols have been published in recent years.In these existing protocols,secret information is encode...Private comparison is the basis of many encryption technologies,and several related Quantum Private Comparison(QPC)protocols have been published in recent years.In these existing protocols,secret information is encoded by using conjugate coding or orthogonal states,and all users are quantum participants.In this paper,a novel semi-quantum private comparison scheme is proposed,which employs Bell entangled states as quantum resources.Two semi-quantum participants compare the equivalence of their private information with the help of a semi-honest third party(TP).Compared with the previous classical protocols,these two semi-quantum users can only make some particular action,such as to measure,prepare and reflect quantum qubits only in the classical basis fj0i;j1ig,and TP needs to perform Bell basis measurement on reflecting qubits to obtain the results of the comparison.Further,analysis results show that this scheme can avoid outside and participant attacks and its’qubit efficiency is better than the other two protocols mentioned in the paper.展开更多
Quantum secure direct communication(QSDC)can transmit secret messages directly from one user to another without first establishing a shared secret key,which is different from quantum key distribution.In this paper,we ...Quantum secure direct communication(QSDC)can transmit secret messages directly from one user to another without first establishing a shared secret key,which is different from quantum key distribution.In this paper,we propose a novel quantum secure direct communication protocol based on signal photons and Bell states.Before the execution of the proposed protocol,two participants Alice and Bob exchange their corresponding identity IDA and IDB through quantum key distribution and keep them secret,respectively.Then the message sender,Alice,encodes each secret message bit into two single photons(|01>or|10>)or a Bell state(1|φ^(+)>=1/√2(|0>|-|1>1>)),and composes an ordered secret message sequence.To insure the security of communication,Alice also prepares the decoy photons and inserts them into secret message sequence on the basis of the values of IDA and IDB.By the secret identity IDA and IDB,both sides of the communication can check eavesdropping and identify each other.The proposed protocol not only completes secure direct communication,but also realizes the mutual authentication.The security analysis of the proposed protocol is presented in the paper.The analysis results show that this protocol is secure against some common attacks,and no secret message leaks even if the messages are broken.Compared with the two-way QSDC protocols,the presented protocol is a one-way quantum communication protocol which has the immunity to Trojan horse attack.Furthermore,our proposed protocol can be realized without quantum memory.展开更多
S-metolachlor is used to control/suppress yellow nutsedge, annual grasses and several broadleaf weeds in sweetpotato. However, a decline in storage root quality is suspected when excessive rainfall occurs within 24-h ...S-metolachlor is used to control/suppress yellow nutsedge, annual grasses and several broadleaf weeds in sweetpotato. However, a decline in storage root quality is suspected when excessive rainfall occurs within 24-h after application. A greenhouse study was conducted to determine the effect of S-metolachlor application timing on sweetpotato growth and development. S-metolachlor treatments (0 and 1 kg·ha-1) were applied over-the-top at 0, 5 and ten days after transplanting (DAT) and a simulated rainfall treatment delivered 25 mm of rain, 51 mm·h-1 intensity, immediately after herbicide application. Plants were harvested at 5, 10, 15, 20 and 80 DAT. During the first four harvests, roots were scanned and analyzed with WinRHIZO-Pro image analysis system to estimate root number, length, volume, and surface area along with aboveground growth parameters. At the final harvest, plant growth and biomass components, and quality of storage roots were recorded. Plants treated with S-metolachlor on day 0 and 5 DAT were significantly less than those of 10 DAT and untreated control for all measured parameters for the initial 20 days of plant growth. Even though vine length, leaf number, stem biomass, and total storage roots were not different among the treatments at 80 DAT, all other plant components and total biomass production and leaf area development for plants treated at 0 and 5 DAT were significantly (P < 0.05) less than from those of 10 DAT and the untreated control. Marketable storage root conversion efficiency declined by 18% and 16% for plants treated at 0 and 5 DAT, respectively, relative to the untreated check. These results indicate that delaying S-metolachlor application to 10 DAT will be less damaging to sweetpotato growth and development, particularly marketable storage roots and yield.展开更多
In this study, we measured the stocks and pool sizes of soil organic carbon (SOC) and total soil nitrogen (TN), and their natural 13C and 15N abundance across a wide range of temperate European ecosystems. The objecti...In this study, we measured the stocks and pool sizes of soil organic carbon (SOC) and total soil nitrogen (TN), and their natural 13C and 15N abundance across a wide range of temperate European ecosystems. The objectives were to examine any distinct isotope patterns with land use or climate, and how C and N in these different ecosystems are distributed among soil organic matter (SOM) fractions to better predict soil C and N dynamics and longer term persistence. Soils were sampled to 30 cm depth at 11 sites of the Nitro Europe (NEU) network and included four forests, three grasslands and four croplands. Surface soil samples were fractionated using a combined size-density fractionation protocol separating light (LF) from heavy particulate organic matter (hPOM) by density and silt-from-clay-associated SOM by size. Down-profile natural abundance 15N patterns pointed towards a closed N cycle in the forest sites, while 13C patterns suggested differences in plant water use efficiency across the C3 grassland sites. The forests and grassland sites stored the majority of surface SOC and TN in the LF and hPOM pools. Sustained sequestration of C and N in these rather labile pools will rely on management practices that minimize soil disturbance and increase C input. We also found that the mineral fraction (silt and clay) in the cropland soils stored less C and N per unit of fraction mass compared to the forests and grasslands, which points towards a lower mineral-OM stabilization efficiency of cropland soils. Finally, our study revealed total POM (LF plus hPOM) as a strong predictor of SOC and TN differences, particularly among the non-cropped sites. This study shows that these sites, independent of soil type and climate, store a large fraction of C and N in POM pools that are particularly vulnerable to soil disturbance such as caused by land use change.展开更多
Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. ...Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species' niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate.展开更多
叶面积指数LAI(Leaf Area Index)是表征植被冠层结构的重要参数,然而由于云等大气因素的影响,MODISLAI时间序列产品在时间与空间尺度的连续性仍存在问题。随着先验知识在遥感反演中的地位不断得到加强,本文将多年LAI历史数据作为先验知...叶面积指数LAI(Leaf Area Index)是表征植被冠层结构的重要参数,然而由于云等大气因素的影响,MODISLAI时间序列产品在时间与空间尺度的连续性仍存在问题。随着先验知识在遥感反演中的地位不断得到加强,本文将多年LAI历史数据作为先验知识,用以建立LAI背景库,并提出了基于LAI背景库的Savitzky-Golay(SG)滤波算法来实现LAI时间序列数据的降噪工作。结果表明,与传统SG滤波相比,新算法能够更加客观有效地重建LAI时间序列。展开更多
Dramatic changes in land use have occurred in arid and semi-arid landsof Asia during the 20th century. Grassland conversion into croplands and ecosystem degradation is widespread due to the high growth rate of human p...Dramatic changes in land use have occurred in arid and semi-arid landsof Asia during the 20th century. Grassland conversion into croplands and ecosystem degradation is widespread due to the high growth rate of human population and political reforms of pastoral systems. Rangeland degradation made many parts of this region vulnerable to environmental and political changes. The collapse of the livestock sector in some states of central Asia, expansion of livestock inChina and intensive degradation of grasslands in China are examples of the responses of pastoral systems to these changes over the past decades. Carbon dynamics in this region is highly variable in space and time. Land use/cover changes with widespread reduction of forest and grasslands increased carbon emission from the region.展开更多
Climate change is altering the timing and magnitude of biogeochemical fluxes in many high- elevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale res...Climate change is altering the timing and magnitude of biogeochemical fluxes in many high- elevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing tempera- tures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.展开更多
This paper represents the first national effort of its kind to systematically investigate the impact of changes in climate and land use and land cover (LULC) on the carbon cycle with high-resolution dynamic LULC dat...This paper represents the first national effort of its kind to systematically investigate the impact of changes in climate and land use and land cover (LULC) on the carbon cycle with high-resolution dynamic LULC data at the decadal scale (1990s and 2000s). Based on simulations using well calibrated and validated Carbon Exchanges in the Vegetation-Soil-Atmosphere (CEVSA) model, tem- poral and spatial variations in carbon storage and fluxes in China may be generated empower us to relate these variations to climate variability and LULC with respect to net primary productivity (NPP), heterotrophic respiration (HR), net ecosystem productivity (NEP), storage and soil carbon (SOC), and vegetation carbon (VEGC) individually or collectively. Overall, the increases in NPP were greater than HR in most cases due to the effect of global warming with more precipitation in China from 1981 to 2000. With this trend, the NEP remained positive during that period, resulting in a net increase of total amount of carbon being stored by about 0.296 PgC within a 20-year time frame. Because the climate effect was much greater than that of changes of LULC, the total carbon storage in China actually increased by about 0.17 PgC within the 20-year time period. Such findings will contribute to the generation of carbon emissions control policies under global climate change impacts.展开更多
This article describes a global consistency check of CO2 satellite retrieval products from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) using statistical analysis...This article describes a global consistency check of CO2 satellite retrieval products from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) using statistical analysis and data from the World Data Centre for Greenhouse Gases (WDCGG). We use the correlation coefficient (r), relative difference (RD), root mean square errors (RMSE), and mean bias error (MBE) as evaluation indicators for this study. Statistical results show that a linear positive correlation between AIRS/IASI and WDCGG data occurs for most regions around the world. Temporal and spatial variations of these statistical quantities reflect obvious differences between satellite-derived and ground-based data based on geographic position, especially for stations near areas of intense human activities in the Northern Hemisphere. It is noteworthy that there appears to be a very weak correlation between AIRS/IASI data and ten ground- based observation stations in Europe, Asia, and North America. These results indicate that retrieval products from the two satellite-based instruments studied should be used with great caution.展开更多
We use the aerosol optical depth (AOD) measured by the moderate resolution imaging spectrometer (MOD1S) onboard the Terra satellite, air pollution index (API) daily data measured by the Shanghai Environmental Mo...We use the aerosol optical depth (AOD) measured by the moderate resolution imaging spectrometer (MOD1S) onboard the Terra satellite, air pollution index (API) daily data measured by the Shanghai Environmental Monitoring Center (SEMC), and the ensemble empirical mode decomposition (EEMD) method to analyze the air quality variability in Shanghai in the recent decade. The results indicate that a trend with amplitude of 1.0 is a dominant component for the AOD variability in the recent decade. During the World Expo 2010, the average AOD level reduced 30% in comparison to the long-term trend. Two dominant annual components decreased 80% and 100%. This implies that the air quality in Shanghai was remarkably improved, and environmental initiatives and comprehensive actions for effective. AOD and API reducing air pollution are variability analysis results indicate that semi-annual and annual signals are dominant components implying that the monsoon weather is a dominant factor in modulating the AOD and API variability. The variability of AOD and API in selected districts located in both downtown and suburban areas shows similar trends; i.e., in 2000 the AOD began a monotonic increase, reached the maxima around 2006, then monotonically decreased to 2011 and from around 2006 the API started to decrease till 2011. This indicates that the air quality in the entire Shanghai area, whether urban or suburban areas, has remarkably been improved. The AOD improved degrees (IDS) in all the selected districts are (8.6±1.9)%, and API IDS are (9.2±7.1)%, ranging from a minimum value of 1.5% for Putuo District to a maximum value of 22% for Xuhui District.展开更多
基金partially supported by the US National Science Foundation(1903722,1243232)。
文摘Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivity in tropical forests throughout the 21st century due to CO_(2)fertilization.However,phosphorus(P)liaitations on vegetation photosynthesis and productivity could significantly reduce the CO_(2)fertilization effect.Here,we used a carbon-nitrogen-phosphorus coupled model(Dynamic Land Ecosystem Model;DLEM-CNP)with heterogeneous maximum carboxylation rates to examine how P limitation has affected C fluxes in tropical forests during1860-2018.Our model results showed that the inclusion of the P processes enhanced model performance in simulating ecosystem productivity.We further compared the simulations from DLEM-CNP,DLEM-CN,and DLEMC and the results showed that the inclusion of P processes reduced the CO_(2)fertilization effect on gross primary production(GPP)by 25%and 45%,and net ecosystem production(NEP)by 28%and 41%,respectively,relative to CN-only and C-on ly models.From the 1860s to the 2010s,the DLEM-CNP estimated that in tropical forests GPP increased by 17%,plant respiration(Ra)increased by 18%,ecosystem respiration(Rh)increased by 13%,NEP increased by 121%per unit area,respectively.Additionally,factorial experiments with DLEM-CNP showed that the enhanced NPP benefiting from the CO_(2) fertilization effect had been offset by 135%due to deforestation from the 1860s to the 2010s.Our study highlights the importance of P limitation on the C cycle and the weakened CO_(2)fertilization effect resulting from P limitation in tropical forests.
文摘从资料分析和实际模拟两个方面,对中国区域气候模拟中的首要问题——模拟区域的选取进行了研究。首先,采用相关分析确定大尺度环流因子影响中国区域降水的关键区,以保证行星及天气尺度系统能够有效地通过区域气候模式的侧边界传入模拟区域,同时依靠自身的物理机制使中尺度系统在模拟区域内部发展;其次,利用NRA(NCEP-NCAR Reanalysis II)和ERA(ECMWF Reanalysis 40)两再分析资料的相关性,对侧边界场资料的可信性进行分析,结果表明南部赤道洋面附近和青藏高原地区两种再分析资料的相关系数很低,表明资料的可信度低,因此侧边界的位置要尽量避开这些地区。根据以上分析结果,确定了中国区域气候模拟的最佳区域,在此基础上利用实际个例模拟对模拟区域的优化结果进行验证。将美国伊利诺伊州立大学水文研究所开发的CWRF(Cli-mate-Weather Research and Forecasting Model)应用于中国季风区,选取1998年夏季的极端洪涝事件作为验证个例,结果表明:模拟区域对区域气候模式的模拟性能有决定性的作用,资料分析确定的最佳模拟区域能够较好地再现1998年长江流域的极端洪涝事件。当模拟区域扩大,南部缓冲区位于赤道,东西侧边界远离环流因子影响关键区时,模拟结果急剧下降,基本无法再现实测降水。当模拟区域仅在东西方向扩大时,模拟结果略好于上述扩大的区域,但仍然远低于资料分析确定的最佳区域,表明有效地抓住主控环流因子对区域气候模拟的重要影响。资料分析和实际模拟的一致结论确定了中国区域气候模拟的最佳区域,实现了CWRF对中国季风区模拟区域的优化。
文摘气候变化通过大气CO_(2)浓度、温度和降雨的改变,直接或间接影响农田温室气体排放,研究未来气候情景下农田温室气体排放对实现农业碳减排具有重要意义。为探究气候变化背景下农田温室气体排放特征,该研究在长期田间定位试验基础上,利用当前大气CO_(2)浓度与CO_(2)浓度升高条件下旱作玉米农田温室气体排放通量的田间观测数据,采用“试错法”对DayCent模型进行校验,并利用校验后的模型,根据第六次国际耦合模式比较计划(Coupled Model Intercomparison Project phase 6,CMIP6)气候情景数据,预测未来SSP126(低排放水平)与SSP245(中等排放水平)气候情景下旱地玉米农田温室气体排放通量。结果表明,DayCent模型对不同大气CO_(2)浓度下N_(2)O、CH_(4)和CO_(2)排放通量的模拟值与观测值高度一致,模拟效率(modeling efficiency,EF)分别为0.58~0.87、0.45~0.65和0.25~0.62,均方根误差(root mean square error,RMSE)分别为0.83~1.33 g/(hm^(2)·d)、0.67~0.82 g/(hm^(2)·d)和0.58~0.80 g/(m^(2)·d),决定系数(coefficient of determination,R^(2))分别为0.80~0.91、0.53~0.80和0.53~0.85。SSP126和SSP245气候情景下,在玉米单作种植模式下旱地农田N_(2)O和CO_(2)年排放量均呈现上升趋势,以2001—2020年农田温室气体排放通量为基准,到2060年N_(2)O年排放量分别增加22.8%和24.9%,CO_(2)年排放量分别增加6.7%和8.0%;旱地农田CH_(4)年吸收量呈下降趋势,两个气候情景下分别减少13.6%和13.4%。未来气候情景下旱地农田仍是温室气体排放源,优化氮肥管理和农田耕作措施对实现温室气体减排具有重要意义,模拟结果可以为制定农业适应气候变化对策提供基础数据支持。
基金supported by the National Natural Science Foundation of China(Grant No.31470623)the National Basic Research Program of China(Grant No.2011CB403205)
文摘Background: Soil organic carbon(SOC) is a large reservoir of terrestrial carbon(C); it consists of different fractions of varying complexity and stability. Partitioning SOC into different pools of decomposability help better predict the trend of changes in SOC dynamics under climate change. Information on how physical fractions and chemical structures of SOC are related to climate and vegetation types is essential for spatial model ing of SOC processes and responses to global change factors.Method: Soil samples were col ected from multiple representative forest sites of three contrasting climatic zones(i.e. cool temperate, warm temperate, and subtropical) in eastern China. Measurements were made on SOC contents and physical fractions of the 0–20 cm soil layer, and the chemical composition of SOC of the 0–5 cm soil layer, along with measurements and compilation of the basic site and forest stand variables. The long-term effects of temperature, litter inputs, soil characteristics and vegetation type on the SOC contents and factions were examined by means of "space for time substitution" approach and statistical analysis.Result: Mean annual temperature(MAT) varied from 2.1 °C at the cool temperate sites to 20.8 °C at the subtropical sites. Total SOC of the 0–20 cm soil layer decreased with increasing MAT, ranging from 89.2 g·kg^(-1) in cool temperate forests to 57.7 g·kg^(-1) in subtropical forests, at an average rate of 1.87% reduction in SOC with a 1 °C increase in MAT.With increasing MAT, the proportions of aromatic C and phenolic C displayed a tendency of decreases, whereas the proportion of alkyl C and A/O-A value(the ratio of alkyl C to the sum of O-alkyl C and acetal C) displayed a tendency of increases. Overall, there were no significant changes with MAT and forest type in either the physical fractions or the chemical composition. Based on the relationship between the SOC content and MAT, we estimate that SOC in the top 20 soil layer of forests potentially contribute 6.58–26.3 Pg C globally to the atmosphere if global MAT increases by 1 °C–4 °C by the end of the twenty-first century, with nearly half of which(cf. 2.87–11.5 Pg C) occurring in the 0–5 cm mineral soils.Conclusion: Forest topsoil SOC content decreased and became chemical y more recalcitrant with increasing MAT,without apparent changes in the physical fractions of SOC.
基金supported by the National Natural Science Foundation of China(31660232,41061030)the Carbon Benefits Project(G-4280-3)+1 种基金the Global Environmental Facility(GEF)Co-financed Project,the Foundation for Innovative Research Groups of Gansu Province(145RJIA335)the National Science and Technology Program for People's Livelihood(2013GS620202)
文摘Carbon(C) storage has received significant attention for its relevance to agricultural security and climate change. Afforestation can increase C storage in terrestrial ecosystems, and has been recognized as an important measure to offset CO_2 emissions. In order to analyze the C benefits of planting wolfberry(Lycium barbarum L.) on the secondary saline lands in arid areas, we conducted a case study on the dynamics of biomass carbon(BC) storage and soil organic carbon(SOC) storage in different-aged wolfberry plantations(4-, 7-and 11-year-old) established on a secondary saline land as well as on the influence of wolfberry plantations on C storage in the plant-soil system in an arid irrigated area(Jingtai County) of Gansu Province, China. The C sequestration and its potential in the wolfberry plantations of Gansu Province were also evaluated. An intact secondary saline land was selected as control. Results show that wolfberry planting could decrease soil salinity, and increase BC, SOC and litter C storage of the secondary saline land significantly, especially in the first 4 years after planting. The aboveground and belowground BC storage values in the intact secondary saline land(control) accounted for only 1.0% and 1.2% of those in the wolfberry plantations, respectively. Compared to the intact secondary saline land, the SOC storage values in the 4-, 7-and 11-year-old wolfberry plantations increased by 36.4%, 37.3% and 43.3%, respectively, and the SOC storage in the wolfberry plantations occupied more than 92% of the ecosystem C storage. The average BC and SOC sequestration rates of the wolfberry plantations for the age group of 0–11 years were 0.73 and 3.30 Mg C/(hm^2·a), respectively. There were no significant difference in BC and SOC storage between the 7-year-old and 11-year-old wolfberry plantations, which may be due in part to the large amounts of C offtakes in new branches and fruits. In Gansu Province, the C storage in the wolfberry plantations has reached up to 3.574 Tg in 2013, and the C sequestration potential of the existing wolfberry plantations was 0.134 Tg C/a. These results indicate that wolfberry planting is an ideal agricultural model to restore the degraded saline lands and increase the C sequestration capacity of agricultural lands in arid areas.
基金the National Natural Science Foundation of China(Grant Nos.61402058,61572086)Major Project of Education Department in Sichuan(Grant No.18ZA0109)Web Culture Project Sponsored by the Humanities and Social Science Research Base of the Sichuan Provincial Education Department(Grant No.WLWH18-22).
文摘Private comparison is the basis of many encryption technologies,and several related Quantum Private Comparison(QPC)protocols have been published in recent years.In these existing protocols,secret information is encoded by using conjugate coding or orthogonal states,and all users are quantum participants.In this paper,a novel semi-quantum private comparison scheme is proposed,which employs Bell entangled states as quantum resources.Two semi-quantum participants compare the equivalence of their private information with the help of a semi-honest third party(TP).Compared with the previous classical protocols,these two semi-quantum users can only make some particular action,such as to measure,prepare and reflect quantum qubits only in the classical basis fj0i;j1ig,and TP needs to perform Bell basis measurement on reflecting qubits to obtain the results of the comparison.Further,analysis results show that this scheme can avoid outside and participant attacks and its’qubit efficiency is better than the other two protocols mentioned in the paper.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61572086,61402058)Major Project of Education Department in Sichuan(Grant No.18ZA0109)+5 种基金Planning project of Sichuan Network Culture Research Center(Grant No.WLWH18-22)Key Research and Development Project of Sichuan Province(No.20ZDYF2324,No.2019ZYD027,No.2018TJPT0012)Innovation Team of Quantum Security Communication of Sichuan Province(No.17TD0009)Academic and Technical Leaders Training Funding Support Projects of Sichuan Province(No.2016120080102643)Application Foundation Project of Sichuan Province(No.2017JY0168)Science and Technology Support Project of Sichuan Province(No.2018GZ0204,No.2016FZ0112).
文摘Quantum secure direct communication(QSDC)can transmit secret messages directly from one user to another without first establishing a shared secret key,which is different from quantum key distribution.In this paper,we propose a novel quantum secure direct communication protocol based on signal photons and Bell states.Before the execution of the proposed protocol,two participants Alice and Bob exchange their corresponding identity IDA and IDB through quantum key distribution and keep them secret,respectively.Then the message sender,Alice,encodes each secret message bit into two single photons(|01>or|10>)or a Bell state(1|φ^(+)>=1/√2(|0>|-|1>1>)),and composes an ordered secret message sequence.To insure the security of communication,Alice also prepares the decoy photons and inserts them into secret message sequence on the basis of the values of IDA and IDB.By the secret identity IDA and IDB,both sides of the communication can check eavesdropping and identify each other.The proposed protocol not only completes secure direct communication,but also realizes the mutual authentication.The security analysis of the proposed protocol is presented in the paper.The analysis results show that this protocol is secure against some common attacks,and no secret message leaks even if the messages are broken.Compared with the two-way QSDC protocols,the presented protocol is a one-way quantum communication protocol which has the immunity to Trojan horse attack.Furthermore,our proposed protocol can be realized without quantum memory.
文摘S-metolachlor is used to control/suppress yellow nutsedge, annual grasses and several broadleaf weeds in sweetpotato. However, a decline in storage root quality is suspected when excessive rainfall occurs within 24-h after application. A greenhouse study was conducted to determine the effect of S-metolachlor application timing on sweetpotato growth and development. S-metolachlor treatments (0 and 1 kg·ha-1) were applied over-the-top at 0, 5 and ten days after transplanting (DAT) and a simulated rainfall treatment delivered 25 mm of rain, 51 mm·h-1 intensity, immediately after herbicide application. Plants were harvested at 5, 10, 15, 20 and 80 DAT. During the first four harvests, roots were scanned and analyzed with WinRHIZO-Pro image analysis system to estimate root number, length, volume, and surface area along with aboveground growth parameters. At the final harvest, plant growth and biomass components, and quality of storage roots were recorded. Plants treated with S-metolachlor on day 0 and 5 DAT were significantly less than those of 10 DAT and untreated control for all measured parameters for the initial 20 days of plant growth. Even though vine length, leaf number, stem biomass, and total storage roots were not different among the treatments at 80 DAT, all other plant components and total biomass production and leaf area development for plants treated at 0 and 5 DAT were significantly (P < 0.05) less than from those of 10 DAT and the untreated control. Marketable storage root conversion efficiency declined by 18% and 16% for plants treated at 0 and 5 DAT, respectively, relative to the untreated check. These results indicate that delaying S-metolachlor application to 10 DAT will be less damaging to sweetpotato growth and development, particularly marketable storage roots and yield.
文摘In this study, we measured the stocks and pool sizes of soil organic carbon (SOC) and total soil nitrogen (TN), and their natural 13C and 15N abundance across a wide range of temperate European ecosystems. The objectives were to examine any distinct isotope patterns with land use or climate, and how C and N in these different ecosystems are distributed among soil organic matter (SOM) fractions to better predict soil C and N dynamics and longer term persistence. Soils were sampled to 30 cm depth at 11 sites of the Nitro Europe (NEU) network and included four forests, three grasslands and four croplands. Surface soil samples were fractionated using a combined size-density fractionation protocol separating light (LF) from heavy particulate organic matter (hPOM) by density and silt-from-clay-associated SOM by size. Down-profile natural abundance 15N patterns pointed towards a closed N cycle in the forest sites, while 13C patterns suggested differences in plant water use efficiency across the C3 grassland sites. The forests and grassland sites stored the majority of surface SOC and TN in the LF and hPOM pools. Sustained sequestration of C and N in these rather labile pools will rely on management practices that minimize soil disturbance and increase C input. We also found that the mineral fraction (silt and clay) in the cropland soils stored less C and N per unit of fraction mass compared to the forests and grasslands, which points towards a lower mineral-OM stabilization efficiency of cropland soils. Finally, our study revealed total POM (LF plus hPOM) as a strong predictor of SOC and TN differences, particularly among the non-cropped sites. This study shows that these sites, independent of soil type and climate, store a large fraction of C and N in POM pools that are particularly vulnerable to soil disturbance such as caused by land use change.
基金Funding and support was provided by the National Science Foundation (Macrobiology Grant 1241583). My thanks to the Guest Editor, G. Wang, for his assistance and thanks to 2 anonymous reviewers, whose comments helped improve the manuscript.
文摘Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species' niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate.
文摘叶面积指数LAI(Leaf Area Index)是表征植被冠层结构的重要参数,然而由于云等大气因素的影响,MODISLAI时间序列产品在时间与空间尺度的连续性仍存在问题。随着先验知识在遥感反演中的地位不断得到加强,本文将多年LAI历史数据作为先验知识,用以建立LAI背景库,并提出了基于LAI背景库的Savitzky-Golay(SG)滤波算法来实现LAI时间序列数据的降噪工作。结果表明,与传统SG滤波相比,新算法能够更加客观有效地重建LAI时间序列。
基金the NASA-EOS Program and the National Science Foundation-Long-Term Studies Program.
文摘Dramatic changes in land use have occurred in arid and semi-arid landsof Asia during the 20th century. Grassland conversion into croplands and ecosystem degradation is widespread due to the high growth rate of human population and political reforms of pastoral systems. Rangeland degradation made many parts of this region vulnerable to environmental and political changes. The collapse of the livestock sector in some states of central Asia, expansion of livestock inChina and intensive degradation of grasslands in China are examples of the responses of pastoral systems to these changes over the past decades. Carbon dynamics in this region is highly variable in space and time. Land use/cover changes with widespread reduction of forest and grasslands increased carbon emission from the region.
文摘Climate change is altering the timing and magnitude of biogeochemical fluxes in many high- elevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing tempera- tures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.
文摘This paper represents the first national effort of its kind to systematically investigate the impact of changes in climate and land use and land cover (LULC) on the carbon cycle with high-resolution dynamic LULC data at the decadal scale (1990s and 2000s). Based on simulations using well calibrated and validated Carbon Exchanges in the Vegetation-Soil-Atmosphere (CEVSA) model, tem- poral and spatial variations in carbon storage and fluxes in China may be generated empower us to relate these variations to climate variability and LULC with respect to net primary productivity (NPP), heterotrophic respiration (HR), net ecosystem productivity (NEP), storage and soil carbon (SOC), and vegetation carbon (VEGC) individually or collectively. Overall, the increases in NPP were greater than HR in most cases due to the effect of global warming with more precipitation in China from 1981 to 2000. With this trend, the NEP remained positive during that period, resulting in a net increase of total amount of carbon being stored by about 0.296 PgC within a 20-year time frame. Because the climate effect was much greater than that of changes of LULC, the total carbon storage in China actually increased by about 0.17 PgC within the 20-year time period. Such findings will contribute to the generation of carbon emissions control policies under global climate change impacts.
基金Acknowledgements This project was supported by the National Basic Research Program of China (No. 2010CB951603) and the Major Program of National Social Science Foundation of China (No.13&ZD161). We thank Prof. Jietai Mao of the Department of Atmospheric & Oceanic Sciences, Peking University, China for providing expert advice and assistance. We also thank the WDCGG for providing the CO2 data. Many thanks to NASA for providing AIRS CO2 data and NOAA for providing IASI CO2 data.
文摘This article describes a global consistency check of CO2 satellite retrieval products from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) using statistical analysis and data from the World Data Centre for Greenhouse Gases (WDCGG). We use the correlation coefficient (r), relative difference (RD), root mean square errors (RMSE), and mean bias error (MBE) as evaluation indicators for this study. Statistical results show that a linear positive correlation between AIRS/IASI and WDCGG data occurs for most regions around the world. Temporal and spatial variations of these statistical quantities reflect obvious differences between satellite-derived and ground-based data based on geographic position, especially for stations near areas of intense human activities in the Northern Hemisphere. It is noteworthy that there appears to be a very weak correlation between AIRS/IASI data and ten ground- based observation stations in Europe, Asia, and North America. These results indicate that retrieval products from the two satellite-based instruments studied should be used with great caution.
文摘We use the aerosol optical depth (AOD) measured by the moderate resolution imaging spectrometer (MOD1S) onboard the Terra satellite, air pollution index (API) daily data measured by the Shanghai Environmental Monitoring Center (SEMC), and the ensemble empirical mode decomposition (EEMD) method to analyze the air quality variability in Shanghai in the recent decade. The results indicate that a trend with amplitude of 1.0 is a dominant component for the AOD variability in the recent decade. During the World Expo 2010, the average AOD level reduced 30% in comparison to the long-term trend. Two dominant annual components decreased 80% and 100%. This implies that the air quality in Shanghai was remarkably improved, and environmental initiatives and comprehensive actions for effective. AOD and API reducing air pollution are variability analysis results indicate that semi-annual and annual signals are dominant components implying that the monsoon weather is a dominant factor in modulating the AOD and API variability. The variability of AOD and API in selected districts located in both downtown and suburban areas shows similar trends; i.e., in 2000 the AOD began a monotonic increase, reached the maxima around 2006, then monotonically decreased to 2011 and from around 2006 the API started to decrease till 2011. This indicates that the air quality in the entire Shanghai area, whether urban or suburban areas, has remarkably been improved. The AOD improved degrees (IDS) in all the selected districts are (8.6±1.9)%, and API IDS are (9.2±7.1)%, ranging from a minimum value of 1.5% for Putuo District to a maximum value of 22% for Xuhui District.