Native orchid species of Singapore in their natural conditions experience stress from high irradiance, high temperatures and periods of extended low rainfall, which impact orchid plant physiology and lead to reduced g...Native orchid species of Singapore in their natural conditions experience stress from high irradiance, high temperatures and periods of extended low rainfall, which impact orchid plant physiology and lead to reduced growth and productivity. In this study, it was found that there was a reduction in photochemical efficiency of photosystem II (PSII) in 6 native orchid species under high light (HL) and Bulbophyllum membranaceum under low light (LL). There was chronic photoinhibition in these 6 orchid species over a period of 3 months after transplanting onto the tree trunks without watering and fertilization, especially in Coelogynes mayeriana and Bulbophyllum membranaceum under both HL and LL. This chronic photoinhibition caused by sustained period of water deficit in their natural conditions was later reversed by natural re-watering conditions from higher rainfall. These results indicate that water deficit has a greater impact on photosynthetic light utilization efficiency than excess light. The present study also showed that after natural rewatering, relative water content (RWC) of leaves and pseudobulbs generally increased. During the natural re-watering, total leaf area also gradually increased and reached maximum expansion after 7 weeks under both HL and LL, with some exceptions due to leaf abscission or decline in total leaf area, possibly a strategy for water conservation.展开更多
A major challenge for growing vegetables in an indoor vertical farming system will be supplying not only sufficient quantity but also quality of light. It has been reported that yield of crops is enhanced under approp...A major challenge for growing vegetables in an indoor vertical farming system will be supplying not only sufficient quantity but also quality of light. It has been reported that yield of crops is enhanced under appropriate combination of red and blue light compared with red light alone. This project aims to investigate the effects of different combinations of red and blue. Plants were cultured for a 12-h photoperiod at 210 μmol·m–2·s–1 photosynthetic photon flux density (PPFD) under different combinations of red (R) and blue (B) light-emitting diodes (LED). The R:B-LED ratios are: 1) 100:0 (0B);2) 92:8 (8B);3) 84:16 (16B) and;4) 76:24 (24B). All combined RB-LEDs significantly increased light-saturated photosynthetic CO2 assimilation rate (Asat), stomatal conductance (gs sat) and productivity compared with those under 0B. Results suggested that 16B was the most suitable combination of LEDs to achieve the highest productivity for B. alboglabra. To further substantiate these results, comparative studies were conducted under equal photoperiod and PPFD among 16B (RB-LED), white LED (RBW-LED) and high-pressure sodium (HPS) lamps. Shoot, root biomass, leaf number, leaf mass per area and Asat were higher in plants under HPS lamps and RB-LED, than under RBW-LED. However, gs sat was lower under RB-LED and RBW-LED, than under HPS lamps. Plants under RB-LED had higher electron transport rate and photochemical quenching but lower non-photochemical quenching than those under RBW-LED and HPS lamps. Thus, these results more conclusively affirmed that 16B was the most suitable light source to achieve the highest photosynthetic capacities. The findings of this study could also be used in vertical farming to achieve the highest productivity of vegetable crops such as B. alboglabra within the shortest growth cycle with reduced energy consumption.展开更多
This paper investigated the effects of root-zone (RZ) CO<sub>2</sub> concentration ([CO<sub>2</sub>]) on root morphology and growth, nitrate (NO<sub>3</sub>-</sup>) uptake and...This paper investigated the effects of root-zone (RZ) CO<sub>2</sub> concentration ([CO<sub>2</sub>]) on root morphology and growth, nitrate (NO<sub>3</sub>-</sup>) uptake and assimilation of lettuce plants at different root-zone temperatures (RZT). Elevated RZ [CO<sub>2</sub>] stimulated root development, root and shoot growth compared to ambient RZ [CO<sub>2</sub>]. The greatest increase in root growth was observed in plants grown under elevated RZ [CO<sub>2</sub>] of 50,000 ppm. However, RZ [CO<sub>2</sub>] of 10,000 ppm was sufficient to achieve the maximal leaf area and shoot productivity. Lettuce plants exhibited faster shoot and root growth at 20°C-RZT than at ambient (A)-RZT. However, under elevated RZ [CO<sub>2</sub>], the magnitude of increased growth was greater at A-RZT than at 20°C-RZT. Compared to RZ [CO<sub>2</sub>] of 360 ppm, elevated RZ [CO<sub>2</sub>] of 10,000 ppm increased NO<sub>3</sub>-</sup> accumulation and nitrate reductase activity (NRA) in both leaves and roots. NO<sub>3</sub>-</sup> concentrations of leaf and root were higher at 20°C-RZT than at A-RZT in all plants. NRA was higher in root than in leaf especially under A-RZT. The total reduced nitrogen (TRN) concentration was significantly higher in plants grown under elevated RZ [CO<sub>2</sub>] of 10,000 ppm than under ambient RZ [CO<sub>2</sub>] of 360 ppm with greater concentration in 20°C-RZT plants than in A-RZT plants. These results imply that elevated RZ [CO<sub>2</sub>] significantly affected root morphology, root and shoot growth and N metabolism of temperate lettuce with greater impacts at A-RZT than at 20°C-RZT. These findings have practical significance to vegetable production by growing the vegetable crops at cool-RZT with elevated RZ [CO<sub>2</sub>] to enhance its productivity.展开更多
Ganoderma lucidum(G. lucidum) spores as a valuable Chinese herbal medicine have vast marketable prospect for its bioactivities and medicinal efficacy. This study aims at the development of an effective and simple anal...Ganoderma lucidum(G. lucidum) spores as a valuable Chinese herbal medicine have vast marketable prospect for its bioactivities and medicinal efficacy. This study aims at the development of an effective and simple analytical method to distinguish G. lucidum spores from its fruiting body, which is of essential importance for the quality control and fast discrimination of raw materials of Chinese herbal medicine. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy combined with the appropriate chemometric methods including penalized discriminant analysis, principal component discriminant analysis and partial least squares discriminant analysis has been proven to be a rapid and powerful tool for discrimination of G. lucidum spores and its fruiting body with classification accuracy of 99%. The model leads to a well-performed selection of informative spectral absorption bands which improve the classification accuracy, reduce the model complexity and enhance the quantitative interpretations of the chemical constituents of G. lucidum spores regarding its anticancer effects.展开更多
Wild-grown Ganoderma lucidum (G. lucidum), a traditional Chinese herbal medicine, is highly cherished and expensive for its medicinal efficiency. This study targets the development of an accurate and effective analyti...Wild-grown Ganoderma lucidum (G. lucidum), a traditional Chinese herbal medicine, is highly cherished and expensive for its medicinal efficiency. This study targets the development of an accurate and effective analytical method to distinguish wild-grown G. lucidum from cultivated ones, which are of essential importance for the quality assurance and estimation of its medicinal value. Furthermore, different parts of G. lucidum have been studied to examine the differences between wild-grown and cultivated ones. Fourier transform infrared (FTIR) diffuse reflectance spectroscopy combined with the appropriate chemometric method has been proven to be a rapid and powerful tool for discrimination of wild-grown and cultivated G. lucidum with classification accuracy of 98%. The informative spectral absorption bands for discrimination emphasized by the linear diagnostic rule have provided quantitative interpretations of the chemical constituents of wild-grown G. lucidum regarding its anticancer effects.展开更多
Although tropical high ambient temperature and humidity severely reduced the productivity of temperate plants, temperate vegetable crops such as lettuce have been successfully grown in Singapore by only cooling its ro...Although tropical high ambient temperature and humidity severely reduced the productivity of temperate plants, temperate vegetable crops such as lettuce have been successfully grown in Singapore by only cooling its root-zone. In this paper, a cool Meditteranean vegetable, Eruca sativa, was studied to understand how different RZTs can impact its shoot productivity, photosynthesis and nutritional quality. All plants were cultivated using aeroponic systems in a tropical greenhouse under hot ambient conditions where roots were subjected to four different root-zone temperatures (RZTs) of 20°C-RZT, 25°C-RZT, 30°C-RZT and fluctuating ambient temperatures ranged from 25°C to 38°C [25°C/38°C (ambient)]-RZT. Parameters studied include shoot fresh weight (FW), photosynthetic gas exchange, midday chlorophyll (Chl) fluorescence F<sub>v</sub>/F<sub>m</sub> ratio, Chl fluorescence photochemical quenching (qP), non-photochemical quenching (qN) and electron transport rate (ETR), total phenolic compounds and mineral content such as potassium (K), calcium (Ca), magnesium (Mg) and iron (Fe). Among the 4 different RZT treatments, E. sativa plants grown under ambient-RZT (25/38°C-RZT) had the lowest shoot and root FW while those plants grown under 20°C-RZT had highest productivity of shoot and root. However, there were no significant differences in shoot and root FW in plants grown at 25°C- and 30°C-RZT. Compared to plants grown under 25°C/38°C (ambient-RZT), light-saturated photosynthetic CO<sub>2</sub> assimilation rate (A<sub>sat</sub>) and stomatal conductance (g<sub>ssat</sub>) were similarly higher in 20°C-, 25°C- and 30°C-RZT. All plants had midday Chl fluorescence F<sub>v</sub>/F<sub>m</sub> ratio lower than <0.8 ranged from 0.785 to 0.606 with the highest and lowest ratios recorded in 20°C-RZT and ambient-RZT plants, respectively. These results indicate that cooling the RZ of E. sativa plants protected their PS II from photoinactivation during midday in the greenhouse. There were no significant differences observed in photochemical quenching (qP), non-photochemical quenching (qN) and electron transport rate among plants grown under 20°C-, 25°C- and 30°C-RZT. However, plants grown under ambient-RZT had lower qP, qN and ETR compared to all other plants. E. sativa at 20°C-RZT with the best developed roots had the highest dietary mineral (K, Mg, Ca and Fe) contents but lower total phenolics content. In contrast, ambient-RZT, plants with poorly developed roots had the lowest mineral content but highest total phenolic content. The results of this study suggest that cooling of roots is a feasible method for the cultivation of E. sativa in the tropic, which enhances the content of dietary minerals in shoots.展开更多
In face of climate change catastrophes, understanding the thermal limits and optimal physiological thermal window food crop is of particular urgency. This research aims to evaluate: 1) how physiological performances o...In face of climate change catastrophes, understanding the thermal limits and optimal physiological thermal window food crop is of particular urgency. This research aims to evaluate: 1) how physiological performances of plant will change with increasing chronic and acute heat stress;2) if the examined parameters form a hierarchy in terms of thermal tolerance;and 3) the optimal thermal window and critical temperatures of the examined plants with response to chronic and acute heat stress. Six temperate vegetables were subjected to chronic and acute heat stress and a suite of physiological parameters were evaluated. Dose responses were observed in shoot fresh weight, photosynthetic gas exchange, photosynthetic oxygen evolution, electron transfer rate, photo- and non-photochemical quenching with significant drop in performance as early as 28°C for selected species. Conversely, ratio of variable to maximum fluorescence (F<sub>v</sub>/F<sub>m</sub>) was not affected by heat stress until 46°C in chronic heat stress. Examining the temperature at which a measured parameter’s performance dropped by 50% compared to control (LT<sub>50</sub>), a distinct hierarchy of the indices was observed for Canasta, recombinant inbred line 141, Lactuca serriola and Lactuca sativa (L. “Salinas”): shoot fresh weight, representing the highest integrated level of photosynthesis was the most sensitive to thermal stress (28°C - 30°C), followed by oxygen evolution (35°C - 45°C) while non-photochemical and photochemical quenching which is subcellular function of stress alleviation had a much higher capacity failure temperature (47°C - 60°C). It is expected that F<sub>v</sub>/F<sub>m</sub> ratio, a measurement of sub-cellular structural integrity, will approach that of non-photochemical and photochemical quenching, if not exceeding it. By examining the photosynthetic parameters via their hierarchy of biological organization, it can be inferred that plants like Arugula and recombinant inbred line 192 are already operating near their thermal limit and have less energetic investment into heat stress mediation whereas L. serriola prioritizes thermal tolerance at the expense of photosynthesis efficiency.展开更多
Aqueous zinc-ion batteries possess substantial potential for energy storage applications;however,they are hampered by challenges such as dendrite formation and uncontrolled side reactions occurring at the zinc anode.I...Aqueous zinc-ion batteries possess substantial potential for energy storage applications;however,they are hampered by challenges such as dendrite formation and uncontrolled side reactions occurring at the zinc anode.In our investigation,we sought to mitigate these issues through the utilization of in situ zinc complex formation reactions to engineer hydrophobic protective layers on the zinc anode surface.These robust interfacial layers serve as effective barriers,isolating the zinc anode from the electrolyte and active water molecules and thereby preventing hydrogen evolution and the generation of undesirable byproducts.Additionally,the presence of numerous zincophilic sites within these protective layers facilitates uniform zinc deposition while concurrently inhibiting dendrite growth.Through comprehensive evaluation of functional anodes featuring diverse functional groups and alkyl chain lengths,we meticulously scrutinized the underlying mechanisms influencing performance variations.This analysis involved precise modulation of interfacial hydrophobicity,rapid Zn^(2+)ion transport,and ordered deposition of Zn^(2+)ions.Notably,the optimized anode,fabricated with octadecylphosphate(OPA),demonstrated exceptional performance characteristics.The Zn//Zn symmetric cell exhibited remarkable longevity,exceeding 4000 h under a current density of 2 mA cm^(-2)and a capacity density of 2 mA h cm^(-2),Furthermore,when integrated with a VOH cathode,the complete cell exhibited superior capacity retention compared to anodes modified with alternative organic molecules.展开更多
The number of lithium-ion batteries(LIBs)is steadily increasing in order to meet the ever-growing demand for sustainable energy and a high quality of life for humankind.At the same time,the resulting large number of L...The number of lithium-ion batteries(LIBs)is steadily increasing in order to meet the ever-growing demand for sustainable energy and a high quality of life for humankind.At the same time,the resulting large number of LIB waste certainly poses safety hazards if it is not properly disposed of and will seriously harm the environment due to its inherent toxicity due to the use of toxic substances.Moreover,the consumption of many scarce precious metal resources is behind the mass production of batteries.In the light of severe environmental,resources,safety and recycling problems,recycling spent LIBs have become an essential urgently needed action to achieve sustainable social development.This review therefore critically analyses the value and the need for recycling of spent LIBs from a variety of resources and the environment.A range of existing technologies for recycling and reusing spent LIBs,such as pretreatment,pyrometallurgy,hydrometallurgy,and direct recycled methods,is subsequently summarized exclusively.In addition,the benefits and problems of the methods described above are analyzed in detail.It also introduces recycling progress of other LIB components,such as anodes,separators,and electrolytes,as well as the high-value cathode.Finally,the prospects for recycling LIBs are addressed in four ways(government,users,battery manufacturers,and recyclers).This review should contribute to the development of the recycling of used LIBs,particularly in support of industrialization and recycling processes.展开更多
Zinc metal is a promising anode material for next-generation aqueous batteries,but its practical application is limited by the formation of zinc dendrite.To prevent zinc dendrite growth,various Zn^(2+)-conducting but ...Zinc metal is a promising anode material for next-generation aqueous batteries,but its practical application is limited by the formation of zinc dendrite.To prevent zinc dendrite growth,various Zn^(2+)-conducting but water-isolating solid-electrolyte interphase(SEI)films have been developed,however,the required high-purity chemical materials are extremely expensive.In this work,phosphogypsum(PG),an industrial byproduct produced from the phosphoric acid industry,is employed as a multifunctional protective layer to navigate uniform zinc deposition.Theoretical and experimental results demonstrate that PG-derived CaSO_(4)2H_(2)O can act as an artificial SEI layer to provide fast channels for Zn^(2+)transport.Moreover,CaSO_(4)2H_(2)O could release calcium ions(Ca^(2+))due to its relatively high Kspvalue,which have a higher binding energy than that of Zn^(2+)on the Zn surface,thus preferentially adsorbing to the tips of the protuberances to force zinc ions to nucleate at inert region.As a result,the Zn@PG anode achieves a high Coulombic efficiency of 99.5%during 500 cycles and long-time stability over 1000 hours at 1 m A cm^(-2).Our findings will not only construct a low-cost artificial SEI film for practical metal batteries,but also achieve a high-value utilization of phosphogypsum waste.展开更多
Solid‐state Zn–air batteries(ZABs)hold great potential for application in wearable and flexible electronics.However,further commercialization of current ZABs is still limited by the poor stability and low energy eff...Solid‐state Zn–air batteries(ZABs)hold great potential for application in wearable and flexible electronics.However,further commercialization of current ZABs is still limited by the poor stability and low energy efficiency.It is,thus,crucial to develop efficient catalysts as well as optimize the solid electrolyte system to unveil potential of the ZAB technology.Due to the low cost and versatility in tailoring the structures and properties,carbon materials have been extensively used as the conductive substrates,catalytic air electrodes,and important components in the electrolytes for the solid‐state ZABs.Within this context,we discuss the challenges facing current solid‐state ZABs and summarize the strategies developed to modify properties of carbon‐based electrodes and electrolytes.We highlight the metal−organic framework/covalent organic framework‐based electrodes,heteroatom‐doped carbon,and the composites formed of carbon with metal oxides/sulfides/phosphides.We also briefly discuss the progress of graphene oxide‐based solid electrolyte.展开更多
The carburizing of titanium (Ti) is accomplished by utilizing energetic ion pulses of a 1.5 kJ Mather type dense plasma focus (DPF) device operated in methane discharge. X-ray diffraction (XRD) analysis confirms...The carburizing of titanium (Ti) is accomplished by utilizing energetic ion pulses of a 1.5 kJ Mather type dense plasma focus (DPF) device operated in methane discharge. X-ray diffraction (XRD) analysis confirms the deposition of polycrystalline titanium carbide (TIC). The samples carburized at lower axial and angular positions show an improved texture for a typical (200)TIC plane. The Williamson-Hall method is employed to estimate average crystallite size and microstrains in the carburized Ti surface. Crystallite size is found to vary from - 50 to 100 nm, depending on the deposition parameters. Microstrains vary with the sample position and hence ion flux, and are converted from tensile to compressive by increasing the flux. The carburizing of Ti is confirmed by two major doublets extending from 300 to 390 cm^-1 and from 560 to 620 cm^-1 corresponding to acoustic and optical active modes in Raman spectra, respectively. Analyses by scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS) have provided qualitative and quantitative profiles of the carburized surface. The Vickers microhardness of Ti is significantly improved after carburizing.展开更多
Arabidopsis thaliana (L.) Heyhn. is a well known model plant in plant research. However, its growth conditions and diminutive stature associated with low biomass at maturity make it a challenging species for physiolog...Arabidopsis thaliana (L.) Heyhn. is a well known model plant in plant research. However, its growth conditions and diminutive stature associated with low biomass at maturity make it a challenging species for physiological studies. While in the tropical countries, it can only be grown either by tissue cultures or in growth chambers under controlled conditions. An aeroponic technique with 20°C ± 2°C and 30°C ± 2°C root-zone temperatures (RZT) was used to grow Arabidopsis (Columbia ecotype) in a tropical greenhouse with natural irradiance and high ambient temperature (38°C/28°C day/night). Seedlings germinated in growth chambers at 20°C or 30°C. At 6 to 8 leaf stage, they were transferred to the aeroponic troughs with their roots exposed to constant temperature of 20°C ± 2°C and 30°C ± 2°C while their aerial parts were subjected to fluctuating ambient temperature from 28°C to 38°C. After a week, plants have acclimatised to both RZTs and started developing normal rosettes, bolted and yielded viable seeds. However, 20°C ± 2°C RZT allowed them to recover from turgor pressure despite of wilting, and significantly increased biomass. Mature plants grown in each RZTs were compared morphologically and physiologically to the plants grown in growth chamber (GC) at 20°C (root and shoot) temperature with 60% relative humidity. Aeroponically grown plants did not experience photoinhibition, and also exhibited higher photosynthetic light usage efficiency and higher capacities of heat dissipation, compared to GC plants. This aeroponics with cool RZTs can allow the use of Arabidopsis as a model plant even under tropical climate.展开更多
All food systems will continue to be affected by disasters and extreme climate events. Triggered by recent food crises around the world and climate change concerns,some governments have been trying to develop more rob...All food systems will continue to be affected by disasters and extreme climate events. Triggered by recent food crises around the world and climate change concerns,some governments have been trying to develop more robust and resilient food systems. One of the oldest options for many governments is to stockpile emergency food reserves for the purpose of food security and disaster preparedness. In the aftermath of the world food price crises in2007–2008 and 2011, some governments in Asia have been maintaining emergency food reserves to ensure greater supply and price stability. Disasters and extreme climate events help governments to justify emergency food reserves. This research examined emergency food reserve policies in Indonesia, the Philippines, and Malaysia.Emergency food reserves emerged as a practice where the shared objectives of development, disaster risk reduction,and climate change adaptation have been demonstrated by governments. The findings suggest that most governments maintain the strong view that adequate emergency food reserves can buffer national food price shocks and shocks from disasters and climate change, and soften disruptions in trade due to export bans during times of disasters and climate emergencies.Under global climate change scenarios, food security is at risk and volatile(Porter et al. 2014). The expected increase in climate extremes has generated anticipatory actions from governments, including a new push for EFR policy adoption. Triggered by recent disasters and climate change concerns, some governments have been trying to develop more robust and resilient food systems(Fan and Brzeska 2014; Porter et al. 2014). For many countries in Asia, this means the renewed adoption of EFR. Unfortunately, we argue that this is not well understood in climate change adaptation studies as well as contemporary disaster studies.The Association of Southeast Asian Nations(ASEAN)first initiated a Food Security Reserve Agreement in 1979,with the purpose of meeting emergency requirements(ASEAN 1979). Policymakers have been aware of the susceptibility of the region to natural hazards and the possibility of food shortages. But it took 30 years, until soon after the world food crisis in 2007–2008(Hadley and Fan 2010), for the association plus three additional East Asian nations(China, Japan, South Korea) to establish the ASEAN Plus Three Emergency Rice Reserve(APTERR)in 2009, as a mechanism to address potential food shortages in the region in the light of climate and market uncertainties. The final formal agreement was signed in October 2011 in Jakarta(APTERR 2017).The Association of Southeast Asian Nations also established the ASEAN Food Security Information System(AFSIS) that functions as a central information repository for five commodities—rice, maize, soybeans, sugar, and cassava. AFSIS not only monitors and analyzes production,import, export, inventory stock, price, food security ratio,and self-sufficiency ratio for these commodities but also provides data on losses from both floods and droughts in every member state(Lassa et al. 2016). In theory, AFSIS serves as an early warning mechanism for ASEAN to trigger the activation of APTERR's response mechanism(Saengbangka 2014, personal interview; AFSIS 2017).This article argues that EFR can function as a means of disaster risk reduction, including climate change adaptation, and aims to understand why governments in Asia are readopting emergency food reserves as national policies,with a focus on Indonesia, the Philippines, and Malaysia.We also explore how disasters and climate change strengthen or weaken government narratives in support of emergency food reserves.展开更多
Anions in the electrolyte are usually ignored in conventional"rocking-chair"batteries because only cationic de-/intercalation is considered.An ingenious scheme combining LiMn_(0.7)Fe_(0.3)PO_(4)(LMFP@C)and g...Anions in the electrolyte are usually ignored in conventional"rocking-chair"batteries because only cationic de-/intercalation is considered.An ingenious scheme combining LiMn_(0.7)Fe_(0.3)PO_(4)(LMFP@C)and graphite as a hybrid cathode for lithium-ion batteries(LIBs)is elaborately designed in order to exploit the potential value of anions for battery performance.The hybrid cathode has a higher conductivity and energy density than any of the individual components,allowing for the co-utilization of cations and an-ions through the de-/intercalation of Li^(+)and PF_(6)−over a wide voltage range.The optimal compound with a weight mix ratio of LMFP@C:graphite=5:1 can deliver the highest specific capacity of nearly 140 mA h/g at 0.1 C and the highest voltage plateau of around 4.95 V by adjusting the appropriate mixing ratio.In addition,cyclic voltammetry was used to investigate the electrode kinetics of Li^(+)and PF_(6)−dif-fusion in the hybrid compound at various scan rates.In situ X-ray diffraction is also performed to further demonstrate the structural evolution of the hybrid cathode during the charge/discharge process.展开更多
The accelerating electrification has sparked an explosion in lithium-ion batteries(LIBs)consumption.As the lifespan declines,the substantial LIBs will flow into the recycling market and promise to spawn a giant recycl...The accelerating electrification has sparked an explosion in lithium-ion batteries(LIBs)consumption.As the lifespan declines,the substantial LIBs will flow into the recycling market and promise to spawn a giant recycling system.Nonetheless,since the lack of unified guiding standard and nontraceability,the recycling of end-of-life LIBs has fallen into the dilemma of low recycling rate,poor recycling efficiency,and insignificant benefits.Herein,tapping into summarizing and analyzing the current status and challenges of recycling LIBs,this outlook provides insights for the future course of full lifecycle management of LIBs,proposing gradient utilization and recycling-target predesign strategy.Further,we acknowledge some recommendations for recycling waste LIBs and anticipate a collaborative effort to advance sustainable and reliable recycling routes.展开更多
Hard carbon(HC)is broadly recognized as an exceptionally prospective candidate for the anodes of sodium-ion batteries(SIBs),but their practical implementation faces substantial limitations linked to precursor factors,...Hard carbon(HC)is broadly recognized as an exceptionally prospective candidate for the anodes of sodium-ion batteries(SIBs),but their practical implementation faces substantial limitations linked to precursor factors,such as reduced carbon yield and increased cost.Herein,a cost-effective approach is proposed to prepare a coal-derived HC anode with simple pre-oxidation followed by a post-carbonization process which effectively expands the d_(002)layer spacing,generates closed pores and increases defect sites.Through these modifications,the resulting HC anode attains a delicate equilibrium between plateau capacity and sloping capacity,showcasing a remarkable reversible capacity of 306.3 mAh·g^(-1)at 0.03 A·g^(-1).Furthermore,the produ ced HC exhibits fast reaction kinetics and exceptional rate performance,achieving a capacity of 289 mAh·g^(-1)at 0.1 A·g^(-1),equivalent to~94.5%of that at 0.03 A·g^(-1).When implemented in a full cell configuration,the impressive electrochemical performance is evident,with a notable energy density of 410.6 Wh·kg^(-1)(based on cathode mass).In short,we provide a straightforward yet efficient method for regulating coal-derived HC,which is crucial for the widespread use of SIBs anodes.展开更多
The facile reconfiguration of phases plays a pivotal role in enhancing the electrocatalytic production of H2 through heterostructure formation.While chemical methods have been explored extensively for this purpose,pla...The facile reconfiguration of phases plays a pivotal role in enhancing the electrocatalytic production of H2 through heterostructure formation.While chemical methods have been explored extensively for this purpose,plasma-based techniques offer a promising avenue for achieving heterostructured nano-frameworks.However,the conventional plasma approach introduces complexities,leading to a multi-step fabrication process and challenges in precisely controlling partial surface structure modulation due to the intricate interaction environment.In our pursuit of heterostructures with optimized oxygen evolution reaction(OER)behavior,we have designed a facile auxiliary insulator-confined plasma system to directly attain a Ni_(3)N-NiO heterostructure(hNiNO).By meticulously controlling the surface heating process during plasma processing,such approach allows for the streamlined fabrication of hNiNO nano-frameworks.The resulting nano-framework exhibits outstanding catalytic performance,as evidenced by its overpotential of 320 mV at a current density of 10 mA·cm^(-2),in an alkaline environment.This stands in stark contrast to the performance of NiO-covered Ni_(3)N fabricated using the conventional plasma method(sNiNO).Operando plasma diagnostics,coupled with numerical simulations,further substantiates the influence of surface heating due to auxiliary insulator confinement of the substrate on typical plasma parameters and the formation of the Ni_(3)N-NiO nanostructure,highlighting the pivotal role of controlled surface temperature in creating a high-performance heterostructured electrocatalyst.展开更多
Tailoring the nanostructure and composition of transition metal nitrides is highly important for their use as potent low-cost electrocatalysts. Cobalt nitride(CoN) exhibits strong catalytic activity for oxygen evoluti...Tailoring the nanostructure and composition of transition metal nitrides is highly important for their use as potent low-cost electrocatalysts. Cobalt nitride(CoN) exhibits strong catalytic activity for oxygen evolution reaction(OER). However, its poor catalytic efficiency for oxygen reduction reaction(ORR) hinders its application in rechargeable zinc-air batteries(ZABs) as the air cathode. In this work, we deploy the effective strategy of Mn doping to improve both OER and ORR activity of CoN nanowires as the cathode material for ZAB. Theoretical calculation predicts that moderate Mn doping in cobalt nitride results in a downshift of the d-band center and reduces the adsorption energy of reaction intermediates. With ~10 at% Mn dopants, stronger catalysis activities for both OER and ORR are achieved compared to pure CoN nanowires. Subsequently, both aqueous and flexible quasi-solid-state ZABs are constructed using the Mn-doped CoN nanowires array as additive-free air cathode. Both types of devices present large open circuit potential, high power density and long-cycle stability. This work pushes forward the progress in developing cost-effective ZABs.展开更多
文摘Native orchid species of Singapore in their natural conditions experience stress from high irradiance, high temperatures and periods of extended low rainfall, which impact orchid plant physiology and lead to reduced growth and productivity. In this study, it was found that there was a reduction in photochemical efficiency of photosystem II (PSII) in 6 native orchid species under high light (HL) and Bulbophyllum membranaceum under low light (LL). There was chronic photoinhibition in these 6 orchid species over a period of 3 months after transplanting onto the tree trunks without watering and fertilization, especially in Coelogynes mayeriana and Bulbophyllum membranaceum under both HL and LL. This chronic photoinhibition caused by sustained period of water deficit in their natural conditions was later reversed by natural re-watering conditions from higher rainfall. These results indicate that water deficit has a greater impact on photosynthetic light utilization efficiency than excess light. The present study also showed that after natural rewatering, relative water content (RWC) of leaves and pseudobulbs generally increased. During the natural re-watering, total leaf area also gradually increased and reached maximum expansion after 7 weeks under both HL and LL, with some exceptions due to leaf abscission or decline in total leaf area, possibly a strategy for water conservation.
文摘A major challenge for growing vegetables in an indoor vertical farming system will be supplying not only sufficient quantity but also quality of light. It has been reported that yield of crops is enhanced under appropriate combination of red and blue light compared with red light alone. This project aims to investigate the effects of different combinations of red and blue. Plants were cultured for a 12-h photoperiod at 210 μmol·m–2·s–1 photosynthetic photon flux density (PPFD) under different combinations of red (R) and blue (B) light-emitting diodes (LED). The R:B-LED ratios are: 1) 100:0 (0B);2) 92:8 (8B);3) 84:16 (16B) and;4) 76:24 (24B). All combined RB-LEDs significantly increased light-saturated photosynthetic CO2 assimilation rate (Asat), stomatal conductance (gs sat) and productivity compared with those under 0B. Results suggested that 16B was the most suitable combination of LEDs to achieve the highest productivity for B. alboglabra. To further substantiate these results, comparative studies were conducted under equal photoperiod and PPFD among 16B (RB-LED), white LED (RBW-LED) and high-pressure sodium (HPS) lamps. Shoot, root biomass, leaf number, leaf mass per area and Asat were higher in plants under HPS lamps and RB-LED, than under RBW-LED. However, gs sat was lower under RB-LED and RBW-LED, than under HPS lamps. Plants under RB-LED had higher electron transport rate and photochemical quenching but lower non-photochemical quenching than those under RBW-LED and HPS lamps. Thus, these results more conclusively affirmed that 16B was the most suitable light source to achieve the highest photosynthetic capacities. The findings of this study could also be used in vertical farming to achieve the highest productivity of vegetable crops such as B. alboglabra within the shortest growth cycle with reduced energy consumption.
文摘This paper investigated the effects of root-zone (RZ) CO<sub>2</sub> concentration ([CO<sub>2</sub>]) on root morphology and growth, nitrate (NO<sub>3</sub>-</sup>) uptake and assimilation of lettuce plants at different root-zone temperatures (RZT). Elevated RZ [CO<sub>2</sub>] stimulated root development, root and shoot growth compared to ambient RZ [CO<sub>2</sub>]. The greatest increase in root growth was observed in plants grown under elevated RZ [CO<sub>2</sub>] of 50,000 ppm. However, RZ [CO<sub>2</sub>] of 10,000 ppm was sufficient to achieve the maximal leaf area and shoot productivity. Lettuce plants exhibited faster shoot and root growth at 20°C-RZT than at ambient (A)-RZT. However, under elevated RZ [CO<sub>2</sub>], the magnitude of increased growth was greater at A-RZT than at 20°C-RZT. Compared to RZ [CO<sub>2</sub>] of 360 ppm, elevated RZ [CO<sub>2</sub>] of 10,000 ppm increased NO<sub>3</sub>-</sup> accumulation and nitrate reductase activity (NRA) in both leaves and roots. NO<sub>3</sub>-</sup> concentrations of leaf and root were higher at 20°C-RZT than at A-RZT in all plants. NRA was higher in root than in leaf especially under A-RZT. The total reduced nitrogen (TRN) concentration was significantly higher in plants grown under elevated RZ [CO<sub>2</sub>] of 10,000 ppm than under ambient RZ [CO<sub>2</sub>] of 360 ppm with greater concentration in 20°C-RZT plants than in A-RZT plants. These results imply that elevated RZ [CO<sub>2</sub>] significantly affected root morphology, root and shoot growth and N metabolism of temperate lettuce with greater impacts at A-RZT than at 20°C-RZT. These findings have practical significance to vegetable production by growing the vegetable crops at cool-RZT with elevated RZ [CO<sub>2</sub>] to enhance its productivity.
文摘Ganoderma lucidum(G. lucidum) spores as a valuable Chinese herbal medicine have vast marketable prospect for its bioactivities and medicinal efficacy. This study aims at the development of an effective and simple analytical method to distinguish G. lucidum spores from its fruiting body, which is of essential importance for the quality control and fast discrimination of raw materials of Chinese herbal medicine. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy combined with the appropriate chemometric methods including penalized discriminant analysis, principal component discriminant analysis and partial least squares discriminant analysis has been proven to be a rapid and powerful tool for discrimination of G. lucidum spores and its fruiting body with classification accuracy of 99%. The model leads to a well-performed selection of informative spectral absorption bands which improve the classification accuracy, reduce the model complexity and enhance the quantitative interpretations of the chemical constituents of G. lucidum spores regarding its anticancer effects.
文摘Wild-grown Ganoderma lucidum (G. lucidum), a traditional Chinese herbal medicine, is highly cherished and expensive for its medicinal efficiency. This study targets the development of an accurate and effective analytical method to distinguish wild-grown G. lucidum from cultivated ones, which are of essential importance for the quality assurance and estimation of its medicinal value. Furthermore, different parts of G. lucidum have been studied to examine the differences between wild-grown and cultivated ones. Fourier transform infrared (FTIR) diffuse reflectance spectroscopy combined with the appropriate chemometric method has been proven to be a rapid and powerful tool for discrimination of wild-grown and cultivated G. lucidum with classification accuracy of 98%. The informative spectral absorption bands for discrimination emphasized by the linear diagnostic rule have provided quantitative interpretations of the chemical constituents of wild-grown G. lucidum regarding its anticancer effects.
文摘Although tropical high ambient temperature and humidity severely reduced the productivity of temperate plants, temperate vegetable crops such as lettuce have been successfully grown in Singapore by only cooling its root-zone. In this paper, a cool Meditteranean vegetable, Eruca sativa, was studied to understand how different RZTs can impact its shoot productivity, photosynthesis and nutritional quality. All plants were cultivated using aeroponic systems in a tropical greenhouse under hot ambient conditions where roots were subjected to four different root-zone temperatures (RZTs) of 20°C-RZT, 25°C-RZT, 30°C-RZT and fluctuating ambient temperatures ranged from 25°C to 38°C [25°C/38°C (ambient)]-RZT. Parameters studied include shoot fresh weight (FW), photosynthetic gas exchange, midday chlorophyll (Chl) fluorescence F<sub>v</sub>/F<sub>m</sub> ratio, Chl fluorescence photochemical quenching (qP), non-photochemical quenching (qN) and electron transport rate (ETR), total phenolic compounds and mineral content such as potassium (K), calcium (Ca), magnesium (Mg) and iron (Fe). Among the 4 different RZT treatments, E. sativa plants grown under ambient-RZT (25/38°C-RZT) had the lowest shoot and root FW while those plants grown under 20°C-RZT had highest productivity of shoot and root. However, there were no significant differences in shoot and root FW in plants grown at 25°C- and 30°C-RZT. Compared to plants grown under 25°C/38°C (ambient-RZT), light-saturated photosynthetic CO<sub>2</sub> assimilation rate (A<sub>sat</sub>) and stomatal conductance (g<sub>ssat</sub>) were similarly higher in 20°C-, 25°C- and 30°C-RZT. All plants had midday Chl fluorescence F<sub>v</sub>/F<sub>m</sub> ratio lower than <0.8 ranged from 0.785 to 0.606 with the highest and lowest ratios recorded in 20°C-RZT and ambient-RZT plants, respectively. These results indicate that cooling the RZ of E. sativa plants protected their PS II from photoinactivation during midday in the greenhouse. There were no significant differences observed in photochemical quenching (qP), non-photochemical quenching (qN) and electron transport rate among plants grown under 20°C-, 25°C- and 30°C-RZT. However, plants grown under ambient-RZT had lower qP, qN and ETR compared to all other plants. E. sativa at 20°C-RZT with the best developed roots had the highest dietary mineral (K, Mg, Ca and Fe) contents but lower total phenolics content. In contrast, ambient-RZT, plants with poorly developed roots had the lowest mineral content but highest total phenolic content. The results of this study suggest that cooling of roots is a feasible method for the cultivation of E. sativa in the tropic, which enhances the content of dietary minerals in shoots.
文摘In face of climate change catastrophes, understanding the thermal limits and optimal physiological thermal window food crop is of particular urgency. This research aims to evaluate: 1) how physiological performances of plant will change with increasing chronic and acute heat stress;2) if the examined parameters form a hierarchy in terms of thermal tolerance;and 3) the optimal thermal window and critical temperatures of the examined plants with response to chronic and acute heat stress. Six temperate vegetables were subjected to chronic and acute heat stress and a suite of physiological parameters were evaluated. Dose responses were observed in shoot fresh weight, photosynthetic gas exchange, photosynthetic oxygen evolution, electron transfer rate, photo- and non-photochemical quenching with significant drop in performance as early as 28°C for selected species. Conversely, ratio of variable to maximum fluorescence (F<sub>v</sub>/F<sub>m</sub>) was not affected by heat stress until 46°C in chronic heat stress. Examining the temperature at which a measured parameter’s performance dropped by 50% compared to control (LT<sub>50</sub>), a distinct hierarchy of the indices was observed for Canasta, recombinant inbred line 141, Lactuca serriola and Lactuca sativa (L. “Salinas”): shoot fresh weight, representing the highest integrated level of photosynthesis was the most sensitive to thermal stress (28°C - 30°C), followed by oxygen evolution (35°C - 45°C) while non-photochemical and photochemical quenching which is subcellular function of stress alleviation had a much higher capacity failure temperature (47°C - 60°C). It is expected that F<sub>v</sub>/F<sub>m</sub> ratio, a measurement of sub-cellular structural integrity, will approach that of non-photochemical and photochemical quenching, if not exceeding it. By examining the photosynthetic parameters via their hierarchy of biological organization, it can be inferred that plants like Arugula and recombinant inbred line 192 are already operating near their thermal limit and have less energetic investment into heat stress mediation whereas L. serriola prioritizes thermal tolerance at the expense of photosynthesis efficiency.
基金financially supported by the Jiangsu Distinguished Professors Project (No.1711510024)the Funding for Scientific Research Startup of Jiangsu University (No.4111510015,19JDG044)+5 种基金the Jiangsu Provincial Program for High-Level Innovative and Entrepreneurial Talents Introductionthe National Natural Science Foundation of China (No.22008091)the Jiangsu Agriculture Science and Technology Innovation Fund (No.CX (21)1007)the Natural Science Foundation of Guangdong Province (2023A1515010894)the Open Project of Luzhou Key Laboratory of Fine Chemical Application Technology (HYJH-2302-A)the National Institute of Education,Singapore,under its Academic Research Fund (RI 1/21 EAH)。
文摘Aqueous zinc-ion batteries possess substantial potential for energy storage applications;however,they are hampered by challenges such as dendrite formation and uncontrolled side reactions occurring at the zinc anode.In our investigation,we sought to mitigate these issues through the utilization of in situ zinc complex formation reactions to engineer hydrophobic protective layers on the zinc anode surface.These robust interfacial layers serve as effective barriers,isolating the zinc anode from the electrolyte and active water molecules and thereby preventing hydrogen evolution and the generation of undesirable byproducts.Additionally,the presence of numerous zincophilic sites within these protective layers facilitates uniform zinc deposition while concurrently inhibiting dendrite growth.Through comprehensive evaluation of functional anodes featuring diverse functional groups and alkyl chain lengths,we meticulously scrutinized the underlying mechanisms influencing performance variations.This analysis involved precise modulation of interfacial hydrophobicity,rapid Zn^(2+)ion transport,and ordered deposition of Zn^(2+)ions.Notably,the optimized anode,fabricated with octadecylphosphate(OPA),demonstrated exceptional performance characteristics.The Zn//Zn symmetric cell exhibited remarkable longevity,exceeding 4000 h under a current density of 2 mA cm^(-2)and a capacity density of 2 mA h cm^(-2),Furthermore,when integrated with a VOH cathode,the complete cell exhibited superior capacity retention compared to anodes modified with alternative organic molecules.
基金financially supported by the National Natural Science Foundation of China(No.52173246)the 111 Project(B13013).
文摘The number of lithium-ion batteries(LIBs)is steadily increasing in order to meet the ever-growing demand for sustainable energy and a high quality of life for humankind.At the same time,the resulting large number of LIB waste certainly poses safety hazards if it is not properly disposed of and will seriously harm the environment due to its inherent toxicity due to the use of toxic substances.Moreover,the consumption of many scarce precious metal resources is behind the mass production of batteries.In the light of severe environmental,resources,safety and recycling problems,recycling spent LIBs have become an essential urgently needed action to achieve sustainable social development.This review therefore critically analyses the value and the need for recycling of spent LIBs from a variety of resources and the environment.A range of existing technologies for recycling and reusing spent LIBs,such as pretreatment,pyrometallurgy,hydrometallurgy,and direct recycled methods,is subsequently summarized exclusively.In addition,the benefits and problems of the methods described above are analyzed in detail.It also introduces recycling progress of other LIB components,such as anodes,separators,and electrolytes,as well as the high-value cathode.Finally,the prospects for recycling LIBs are addressed in four ways(government,users,battery manufacturers,and recyclers).This review should contribute to the development of the recycling of used LIBs,particularly in support of industrialization and recycling processes.
基金financially supported by the National Natural Science Foundation of China (22279122,52042403)the Zhejiang Provincial Natural Science Foundation of China (LZ22B030004)+2 种基金the Ministry of Education,Singapore,under its Academic Research Fund Tier 1 (RG10/22)the National Institute of Education,Singapore,under its Academic Research Fund (RI 1/21 EAH)National Institute of Education,Singapore,under its Start-Up Grant (NIE-SUG4/20AHX)。
文摘Zinc metal is a promising anode material for next-generation aqueous batteries,but its practical application is limited by the formation of zinc dendrite.To prevent zinc dendrite growth,various Zn^(2+)-conducting but water-isolating solid-electrolyte interphase(SEI)films have been developed,however,the required high-purity chemical materials are extremely expensive.In this work,phosphogypsum(PG),an industrial byproduct produced from the phosphoric acid industry,is employed as a multifunctional protective layer to navigate uniform zinc deposition.Theoretical and experimental results demonstrate that PG-derived CaSO_(4)2H_(2)O can act as an artificial SEI layer to provide fast channels for Zn^(2+)transport.Moreover,CaSO_(4)2H_(2)O could release calcium ions(Ca^(2+))due to its relatively high Kspvalue,which have a higher binding energy than that of Zn^(2+)on the Zn surface,thus preferentially adsorbing to the tips of the protuberances to force zinc ions to nucleate at inert region.As a result,the Zn@PG anode achieves a high Coulombic efficiency of 99.5%during 500 cycles and long-time stability over 1000 hours at 1 m A cm^(-2).Our findings will not only construct a low-cost artificial SEI film for practical metal batteries,but also achieve a high-value utilization of phosphogypsum waste.
基金This study was financially supported by the National Key R&D Research Program of China(Grant No.2018YFB0905400)National Natural Science Foundationof China(Grant Nos.,51925207,U1910210,51972067,51802044,and 51872277)+2 种基金Guangdong Natural Science Funds for Distinguished Young Scholar(Grant No.2019B151502039)Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140026)the DNL Cooperation Fund,CAS(Grant No.DNL180310).
文摘Solid‐state Zn–air batteries(ZABs)hold great potential for application in wearable and flexible electronics.However,further commercialization of current ZABs is still limited by the poor stability and low energy efficiency.It is,thus,crucial to develop efficient catalysts as well as optimize the solid electrolyte system to unveil potential of the ZAB technology.Due to the low cost and versatility in tailoring the structures and properties,carbon materials have been extensively used as the conductive substrates,catalytic air electrodes,and important components in the electrolytes for the solid‐state ZABs.Within this context,we discuss the challenges facing current solid‐state ZABs and summarize the strategies developed to modify properties of carbon‐based electrodes and electrolytes.We highlight the metal−organic framework/covalent organic framework‐based electrodes,heteroatom‐doped carbon,and the composites formed of carbon with metal oxides/sulfides/phosphides.We also briefly discuss the progress of graphene oxide‐based solid electrolyte.
基金Project partially supported by the HEC research project at QAU Islamabadthe NESCOM for providing financial support for his M. Phil studies
文摘The carburizing of titanium (Ti) is accomplished by utilizing energetic ion pulses of a 1.5 kJ Mather type dense plasma focus (DPF) device operated in methane discharge. X-ray diffraction (XRD) analysis confirms the deposition of polycrystalline titanium carbide (TIC). The samples carburized at lower axial and angular positions show an improved texture for a typical (200)TIC plane. The Williamson-Hall method is employed to estimate average crystallite size and microstrains in the carburized Ti surface. Crystallite size is found to vary from - 50 to 100 nm, depending on the deposition parameters. Microstrains vary with the sample position and hence ion flux, and are converted from tensile to compressive by increasing the flux. The carburizing of Ti is confirmed by two major doublets extending from 300 to 390 cm^-1 and from 560 to 620 cm^-1 corresponding to acoustic and optical active modes in Raman spectra, respectively. Analyses by scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS) have provided qualitative and quantitative profiles of the carburized surface. The Vickers microhardness of Ti is significantly improved after carburizing.
文摘Arabidopsis thaliana (L.) Heyhn. is a well known model plant in plant research. However, its growth conditions and diminutive stature associated with low biomass at maturity make it a challenging species for physiological studies. While in the tropical countries, it can only be grown either by tissue cultures or in growth chambers under controlled conditions. An aeroponic technique with 20°C ± 2°C and 30°C ± 2°C root-zone temperatures (RZT) was used to grow Arabidopsis (Columbia ecotype) in a tropical greenhouse with natural irradiance and high ambient temperature (38°C/28°C day/night). Seedlings germinated in growth chambers at 20°C or 30°C. At 6 to 8 leaf stage, they were transferred to the aeroponic troughs with their roots exposed to constant temperature of 20°C ± 2°C and 30°C ± 2°C while their aerial parts were subjected to fluctuating ambient temperature from 28°C to 38°C. After a week, plants have acclimatised to both RZTs and started developing normal rosettes, bolted and yielded viable seeds. However, 20°C ± 2°C RZT allowed them to recover from turgor pressure despite of wilting, and significantly increased biomass. Mature plants grown in each RZTs were compared morphologically and physiologically to the plants grown in growth chamber (GC) at 20°C (root and shoot) temperature with 60% relative humidity. Aeroponically grown plants did not experience photoinhibition, and also exhibited higher photosynthetic light usage efficiency and higher capacities of heat dissipation, compared to GC plants. This aeroponics with cool RZTs can allow the use of Arabidopsis as a model plant even under tropical climate.
基金supported and funded by the S.Rajaratnam School of International Studies (RSIS) Singapore during 2013–2015
文摘All food systems will continue to be affected by disasters and extreme climate events. Triggered by recent food crises around the world and climate change concerns,some governments have been trying to develop more robust and resilient food systems. One of the oldest options for many governments is to stockpile emergency food reserves for the purpose of food security and disaster preparedness. In the aftermath of the world food price crises in2007–2008 and 2011, some governments in Asia have been maintaining emergency food reserves to ensure greater supply and price stability. Disasters and extreme climate events help governments to justify emergency food reserves. This research examined emergency food reserve policies in Indonesia, the Philippines, and Malaysia.Emergency food reserves emerged as a practice where the shared objectives of development, disaster risk reduction,and climate change adaptation have been demonstrated by governments. The findings suggest that most governments maintain the strong view that adequate emergency food reserves can buffer national food price shocks and shocks from disasters and climate change, and soften disruptions in trade due to export bans during times of disasters and climate emergencies.Under global climate change scenarios, food security is at risk and volatile(Porter et al. 2014). The expected increase in climate extremes has generated anticipatory actions from governments, including a new push for EFR policy adoption. Triggered by recent disasters and climate change concerns, some governments have been trying to develop more robust and resilient food systems(Fan and Brzeska 2014; Porter et al. 2014). For many countries in Asia, this means the renewed adoption of EFR. Unfortunately, we argue that this is not well understood in climate change adaptation studies as well as contemporary disaster studies.The Association of Southeast Asian Nations(ASEAN)first initiated a Food Security Reserve Agreement in 1979,with the purpose of meeting emergency requirements(ASEAN 1979). Policymakers have been aware of the susceptibility of the region to natural hazards and the possibility of food shortages. But it took 30 years, until soon after the world food crisis in 2007–2008(Hadley and Fan 2010), for the association plus three additional East Asian nations(China, Japan, South Korea) to establish the ASEAN Plus Three Emergency Rice Reserve(APTERR)in 2009, as a mechanism to address potential food shortages in the region in the light of climate and market uncertainties. The final formal agreement was signed in October 2011 in Jakarta(APTERR 2017).The Association of Southeast Asian Nations also established the ASEAN Food Security Information System(AFSIS) that functions as a central information repository for five commodities—rice, maize, soybeans, sugar, and cassava. AFSIS not only monitors and analyzes production,import, export, inventory stock, price, food security ratio,and self-sufficiency ratio for these commodities but also provides data on losses from both floods and droughts in every member state(Lassa et al. 2016). In theory, AFSIS serves as an early warning mechanism for ASEAN to trigger the activation of APTERR's response mechanism(Saengbangka 2014, personal interview; AFSIS 2017).This article argues that EFR can function as a means of disaster risk reduction, including climate change adaptation, and aims to understand why governments in Asia are readopting emergency food reserves as national policies,with a focus on Indonesia, the Philippines, and Malaysia.We also explore how disasters and climate change strengthen or weaken government narratives in support of emergency food reserves.
基金financially supported by the National Natural Science Foundation of China(No.91963118,and No.52173246)the Science Technology Program of Jilin Province(No.20200201066JC)the 111 Project(No.B13013)。
文摘Anions in the electrolyte are usually ignored in conventional"rocking-chair"batteries because only cationic de-/intercalation is considered.An ingenious scheme combining LiMn_(0.7)Fe_(0.3)PO_(4)(LMFP@C)and graphite as a hybrid cathode for lithium-ion batteries(LIBs)is elaborately designed in order to exploit the potential value of anions for battery performance.The hybrid cathode has a higher conductivity and energy density than any of the individual components,allowing for the co-utilization of cations and an-ions through the de-/intercalation of Li^(+)and PF_(6)−over a wide voltage range.The optimal compound with a weight mix ratio of LMFP@C:graphite=5:1 can deliver the highest specific capacity of nearly 140 mA h/g at 0.1 C and the highest voltage plateau of around 4.95 V by adjusting the appropriate mixing ratio.In addition,cyclic voltammetry was used to investigate the electrode kinetics of Li^(+)and PF_(6)−dif-fusion in the hybrid compound at various scan rates.In situ X-ray diffraction is also performed to further demonstrate the structural evolution of the hybrid cathode during the charge/discharge process.
基金National Natural Science Foundation of China,Grant/Award Numbers:52173246,91963118。
文摘The accelerating electrification has sparked an explosion in lithium-ion batteries(LIBs)consumption.As the lifespan declines,the substantial LIBs will flow into the recycling market and promise to spawn a giant recycling system.Nonetheless,since the lack of unified guiding standard and nontraceability,the recycling of end-of-life LIBs has fallen into the dilemma of low recycling rate,poor recycling efficiency,and insignificant benefits.Herein,tapping into summarizing and analyzing the current status and challenges of recycling LIBs,this outlook provides insights for the future course of full lifecycle management of LIBs,proposing gradient utilization and recycling-target predesign strategy.Further,we acknowledge some recommendations for recycling waste LIBs and anticipate a collaborative effort to advance sustainable and reliable recycling routes.
基金financially supported by the National Natural Science Foundation of China(No.52173246)111 project(No.B13013)Shccig-Qinling Program(No.SMYJY20220574)。
文摘Hard carbon(HC)is broadly recognized as an exceptionally prospective candidate for the anodes of sodium-ion batteries(SIBs),but their practical implementation faces substantial limitations linked to precursor factors,such as reduced carbon yield and increased cost.Herein,a cost-effective approach is proposed to prepare a coal-derived HC anode with simple pre-oxidation followed by a post-carbonization process which effectively expands the d_(002)layer spacing,generates closed pores and increases defect sites.Through these modifications,the resulting HC anode attains a delicate equilibrium between plateau capacity and sloping capacity,showcasing a remarkable reversible capacity of 306.3 mAh·g^(-1)at 0.03 A·g^(-1).Furthermore,the produ ced HC exhibits fast reaction kinetics and exceptional rate performance,achieving a capacity of 289 mAh·g^(-1)at 0.1 A·g^(-1),equivalent to~94.5%of that at 0.03 A·g^(-1).When implemented in a full cell configuration,the impressive electrochemical performance is evident,with a notable energy density of 410.6 Wh·kg^(-1)(based on cathode mass).In short,we provide a straightforward yet efficient method for regulating coal-derived HC,which is crucial for the widespread use of SIBs anodes.
基金supported by the National Natural Science Foundation of China(Nos.12304020,21905118,and 22378204)National Science Fund for Distinguished Young Scholars(No.T2125004)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20230909)Fundamental Research Funds for the Central Universities(No.30923011013)。
文摘The facile reconfiguration of phases plays a pivotal role in enhancing the electrocatalytic production of H2 through heterostructure formation.While chemical methods have been explored extensively for this purpose,plasma-based techniques offer a promising avenue for achieving heterostructured nano-frameworks.However,the conventional plasma approach introduces complexities,leading to a multi-step fabrication process and challenges in precisely controlling partial surface structure modulation due to the intricate interaction environment.In our pursuit of heterostructures with optimized oxygen evolution reaction(OER)behavior,we have designed a facile auxiliary insulator-confined plasma system to directly attain a Ni_(3)N-NiO heterostructure(hNiNO).By meticulously controlling the surface heating process during plasma processing,such approach allows for the streamlined fabrication of hNiNO nano-frameworks.The resulting nano-framework exhibits outstanding catalytic performance,as evidenced by its overpotential of 320 mV at a current density of 10 mA·cm^(-2),in an alkaline environment.This stands in stark contrast to the performance of NiO-covered Ni_(3)N fabricated using the conventional plasma method(sNiNO).Operando plasma diagnostics,coupled with numerical simulations,further substantiates the influence of surface heating due to auxiliary insulator confinement of the substrate on typical plasma parameters and the formation of the Ni_(3)N-NiO nanostructure,highlighting the pivotal role of controlled surface temperature in creating a high-performance heterostructured electrocatalyst.
基金supported by the Singapore MOE AcRF Tier 2 Grant (MOE2017-T2-1-073)AME Individual Research Grant (A1983c0026)Agency for Science, Technology, and Research (A*STAR)。
文摘Tailoring the nanostructure and composition of transition metal nitrides is highly important for their use as potent low-cost electrocatalysts. Cobalt nitride(CoN) exhibits strong catalytic activity for oxygen evolution reaction(OER). However, its poor catalytic efficiency for oxygen reduction reaction(ORR) hinders its application in rechargeable zinc-air batteries(ZABs) as the air cathode. In this work, we deploy the effective strategy of Mn doping to improve both OER and ORR activity of CoN nanowires as the cathode material for ZAB. Theoretical calculation predicts that moderate Mn doping in cobalt nitride results in a downshift of the d-band center and reduces the adsorption energy of reaction intermediates. With ~10 at% Mn dopants, stronger catalysis activities for both OER and ORR are achieved compared to pure CoN nanowires. Subsequently, both aqueous and flexible quasi-solid-state ZABs are constructed using the Mn-doped CoN nanowires array as additive-free air cathode. Both types of devices present large open circuit potential, high power density and long-cycle stability. This work pushes forward the progress in developing cost-effective ZABs.