BACKGROUND Accurate condition assessment is critical for improving the prognosis of neonatal respiratory distress syndrome(RDS),but current assessment methods for RDS pose a cumulative risk of harm to neonates.Thus,a ...BACKGROUND Accurate condition assessment is critical for improving the prognosis of neonatal respiratory distress syndrome(RDS),but current assessment methods for RDS pose a cumulative risk of harm to neonates.Thus,a less harmful method for assessing the health of neonates with RDS is needed.AIM To analyze the relationships between pulmonary ultrasonography and respiratory distress scores,oxygenation index,and chest X-ray grade of neonatal RDS to identify predictors of neonatal RDS severity.METHODS This retrospective study analyzed the medical information of 73 neonates with RDS admitted to the neonatal intensive care unit of Liupanshui Maternal and Child Care Service Center between April and December 2022.The pulmonary ultrasonography score,respiratory distress score,oxygenation index,and chest Xray grade of each newborn before and after treatment were collected.Spearman correlation analysis was performed to determine the relationships among these values and neonatal RDS severity.RESULTS The pulmonary ultrasonography score,respiratory distress score,oxygenation index,and chest X-ray RDS grade of the neonates were significantly lower after treatment than before treatment(P<0.05).Spearman correlation analysis showed that before and after treatment,the pulmonary ultrasonography score of neonates with RDS was positively correlated with the respiratory distress score,oxygenation index,and chest X-ray grade(ρ=0.429–0.859,P<0.05).Receiver operating characteristic curve analysis indicated that pulmonary ultrasonography screening effectively predicted the severity of neonatal RDS(area under the curve=0.805–1.000,P<0.05).CONCLUSION The pulmonary ultrasonography score was significantly associated with the neonatal RDS score,oxygenation index,and chest X-ray grade.The pulmonary ultrasonography score was an effective predictor of neonatal RDS severity.展开更多
Regenerative capacity is weak after central nervous system injury because of the absence of an enhancing microenvironment and presence of an inhibitory microenvironment for neuronal and axonal repair. In addition to t...Regenerative capacity is weak after central nervous system injury because of the absence of an enhancing microenvironment and presence of an inhibitory microenvironment for neuronal and axonal repair. In addition to the Nogo receptor(Ng R), the paired immunoglobulin-like receptor B(Pir B) is a recently discovered coreceptor of Nogo, myelin-associated glycoprotein, and myelin oligodendrocyte glycoprotein. Concurrent blocking of Ng R and Pir B almost completely eliminates the inhibitory effect of myelin-associated inhibitory molecules on axonal regeneration. Pir B participates in a key pathological process of the nervous system, specifically axonal regeneration inhibition. Pir B is an inhibitory receptor similar to Ng R, but their effects are not identical. This study summarizes the structure, distribution, relationship with common nervous system diseases, and known mechanisms of Pir B, and concludes that Pir B is also distributed in cells of the immune and hematopoietic systems. Further investigations are needed to determine if immunomodulation and blood cell migration involve inhibition of axonal regeneration.展开更多
基金Guizhou Provincial Science and Technology Department,Technology Achievement Application and Industrialization Plan,Applied Fundamental Research,No.Qianke Synthetic Fruit[2022]004.
文摘BACKGROUND Accurate condition assessment is critical for improving the prognosis of neonatal respiratory distress syndrome(RDS),but current assessment methods for RDS pose a cumulative risk of harm to neonates.Thus,a less harmful method for assessing the health of neonates with RDS is needed.AIM To analyze the relationships between pulmonary ultrasonography and respiratory distress scores,oxygenation index,and chest X-ray grade of neonatal RDS to identify predictors of neonatal RDS severity.METHODS This retrospective study analyzed the medical information of 73 neonates with RDS admitted to the neonatal intensive care unit of Liupanshui Maternal and Child Care Service Center between April and December 2022.The pulmonary ultrasonography score,respiratory distress score,oxygenation index,and chest Xray grade of each newborn before and after treatment were collected.Spearman correlation analysis was performed to determine the relationships among these values and neonatal RDS severity.RESULTS The pulmonary ultrasonography score,respiratory distress score,oxygenation index,and chest X-ray RDS grade of the neonates were significantly lower after treatment than before treatment(P<0.05).Spearman correlation analysis showed that before and after treatment,the pulmonary ultrasonography score of neonates with RDS was positively correlated with the respiratory distress score,oxygenation index,and chest X-ray grade(ρ=0.429–0.859,P<0.05).Receiver operating characteristic curve analysis indicated that pulmonary ultrasonography screening effectively predicted the severity of neonatal RDS(area under the curve=0.805–1.000,P<0.05).CONCLUSION The pulmonary ultrasonography score was significantly associated with the neonatal RDS score,oxygenation index,and chest X-ray grade.The pulmonary ultrasonography score was an effective predictor of neonatal RDS severity.
基金supported by the National Natural Science Foundation of China,No.81170577
文摘Regenerative capacity is weak after central nervous system injury because of the absence of an enhancing microenvironment and presence of an inhibitory microenvironment for neuronal and axonal repair. In addition to the Nogo receptor(Ng R), the paired immunoglobulin-like receptor B(Pir B) is a recently discovered coreceptor of Nogo, myelin-associated glycoprotein, and myelin oligodendrocyte glycoprotein. Concurrent blocking of Ng R and Pir B almost completely eliminates the inhibitory effect of myelin-associated inhibitory molecules on axonal regeneration. Pir B participates in a key pathological process of the nervous system, specifically axonal regeneration inhibition. Pir B is an inhibitory receptor similar to Ng R, but their effects are not identical. This study summarizes the structure, distribution, relationship with common nervous system diseases, and known mechanisms of Pir B, and concludes that Pir B is also distributed in cells of the immune and hematopoietic systems. Further investigations are needed to determine if immunomodulation and blood cell migration involve inhibition of axonal regeneration.