Nowadays,there is tremendous growth in biometric authentication and cybersecurity applications.Thus,the efficient way of storing and securing personal biometric patterns is mandatory in most governmental and private s...Nowadays,there is tremendous growth in biometric authentication and cybersecurity applications.Thus,the efficient way of storing and securing personal biometric patterns is mandatory in most governmental and private sectors.Therefore,designing and implementing robust security algorithms for users’biometrics is still a hot research area to be investigated.This work presents a powerful biometric security system(BSS)to protect different biometric modalities such as faces,iris,and fingerprints.The proposed BSSmodel is based on hybridizing auto-encoder(AE)network and a chaos-based ciphering algorithm to cipher the details of the stored biometric patterns and ensures their secrecy.The employed AE network is unsupervised deep learning(DL)structure used in the proposed BSS model to extract main biometric features.These obtained features are utilized to generate two random chaos matrices.The first random chaos matrix is used to permute the pixels of biometric images.In contrast,the second random matrix is used to further cipher and confuse the resulting permuted biometric pixels using a two-dimensional(2D)chaotic logisticmap(CLM)algorithm.To assess the efficiency of the proposed BSS,(1)different standardized color and grayscale images of the examined fingerprint,faces,and iris biometrics were used(2)comprehensive security and recognition evaluation metrics were measured.The assessment results have proven the authentication and robustness superiority of the proposed BSSmodel compared to other existing BSSmodels.For example,the proposed BSS succeeds in getting a high area under the receiver operating characteristic(AROC)value that reached 99.97%and low rates of 0.00137,0.00148,and 3516 CMC,2023,vol.74,no.20.00157 for equal error rate(EER),false reject rate(FRR),and a false accept rate(FAR),respectively.展开更多
The query optimizer uses cost-based optimization to create an execution plan with the least cost,which also consumes the least amount of resources.The challenge of query optimization for relational database systems is...The query optimizer uses cost-based optimization to create an execution plan with the least cost,which also consumes the least amount of resources.The challenge of query optimization for relational database systems is a combinatorial optimization problem,which renders exhaustive search impossible as query sizes rise.Increases in CPU performance have surpassed main memory,and disk access speeds in recent decades,allowing data compression to be used—strategies for improving database performance systems.For performance enhancement,compression and query optimization are the two most factors.Compression reduces the volume of data,whereas query optimization minimizes execution time.Compressing the database reduces memory requirement,data takes less time to load into memory,fewer buffer missing occur,and the size of intermediate results is more diminutive.This paper performed query optimization on the graph database in a cloud dew environment by considering,which requires less time to execute a query.The factors compression and query optimization improve the performance of the databases.This research compares the performance of MySQL and Neo4j databases in terms of memory usage and execution time running on cloud dew servers.展开更多
Fungal disease affects more than a billion people worldwide,resulting in different types of fungus diseases facing life-threatening infections.The outer layer of your body is called the integumentary system.Your skin,...Fungal disease affects more than a billion people worldwide,resulting in different types of fungus diseases facing life-threatening infections.The outer layer of your body is called the integumentary system.Your skin,hair,nails,and glands are all part of it.These organs and tissues serve as your first line of defence against bacteria while protecting you from harm and the sun.The It serves as a barrier between the outside world and the regulated environment inside our bodies and a regulating effect.Heat,light,damage,and illness are all protected by it.Fungi-caused infections are found in almost every part of the natural world.When an invasive fungus takes over a body region and overwhelms the immune system,it causes fungal infections in people.Another primary goal of this study was to create a Convolutional Neural Network(CNN)-based technique for detecting and classifying various types of fungal diseases.There are numerous fungal illnesses,but only two have been identified and classified using the proposed Innovative Fungal Disease Diagnosis(IFDD)system of Candidiasis and Tinea Infections.This paper aims to detect infected skin issues and provide treatment recommendations based on proposed system findings.To identify and categorize fungal infections,deep machine learning techniques are utilized.A CNN architecture was created,and it produced a promising outcome to improve the proposed system accuracy.The collected findings demonstrated that CNN might be used to identify and classify numerous species of fungal spores early and estimate all conceivable fungus hazards.Our CNN-Based can detect fungal diseases through medical images;earmarked IFDD system has a predictive performance of 99.6%accuracy.展开更多
In the cloud environment,the transfer of data from one cloud server to another cloud server is called migration.Data can be delivered in various ways,from one data centre to another.This research aims to increase the ...In the cloud environment,the transfer of data from one cloud server to another cloud server is called migration.Data can be delivered in various ways,from one data centre to another.This research aims to increase the migration performance of the virtual machine(VM)in the cloud environment.VMs allow cloud customers to store essential data and resources.However,server usage has grown dramatically due to the virtualization of computer systems,resulting in higher data centre power consumption,storage needs,and operating expenses.Multiple VMs on one data centre manage share resources like central processing unit(CPU)cache,network bandwidth,memory,and application bandwidth.Inmulti-cloud,VMmigration addresses the performance degradation due to cloud server configuration,unbalanced traffic load,resource load management,and fault situations during data transfer.VMmigration speed is influenced by the size of the VM,the dirty rate of the running application,and the latency ofmigration iterations.As a result,evaluating VM migration performance while considering all of these factors becomes a difficult task.Themain effort of this research is to assess migration problems on performance.The simulation results in Matlab show that if the VMsize grows,themigration time of VMs and the downtime can be impacted by three orders ofmagnitude.The dirty page rate decreases,themigration time and the downtime grow,and the latency time decreases as network bandwidth increases during the migration time and post-migration overhead calculation when the VMtransfer is completed.All the simulated cases of VMs migration were performed in a fuzzy inference system with performance graphs.展开更多
In recent years,wireless networks are widely used in different domains.This phenomenon has increased the number of Internet of Things(IoT)devices and their applications.Though IoT has numerous advantages,the commonly-...In recent years,wireless networks are widely used in different domains.This phenomenon has increased the number of Internet of Things(IoT)devices and their applications.Though IoT has numerous advantages,the commonly-used IoT devices are exposed to cyber-attacks periodically.This scenario necessitates real-time automated detection and the mitigation of different types of attacks in high-traffic networks.The Software-Defined Networking(SDN)technique and the Machine Learning(ML)-based intrusion detection technique are effective tools that can quickly respond to different types of attacks in the IoT networks.The Intrusion Detection System(IDS)models can be employed to secure the SDN-enabled IoT environment in this scenario.The current study devises a Harmony Search algorithmbased Feature Selection with Optimal Convolutional Autoencoder(HSAFSOCAE)for intrusion detection in the SDN-enabled IoT environment.The presented HSAFS-OCAE method follows a three-stage process in which the Harmony Search Algorithm-based FS(HSAFS)technique is exploited at first for feature selection.Next,the CAE method is leveraged to recognize and classify intrusions in the SDN-enabled IoT environment.Finally,the Artificial Fish SwarmAlgorithm(AFSA)is used to fine-tune the hyperparameters.This process improves the outcomes of the intrusion detection process executed by the CAE algorithm and shows the work’s novelty.The proposed HSAFSOCAE technique was experimentally validated under different aspects,and the comparative analysis results established the supremacy of the proposed model.展开更多
Emerging technologies such as edge computing,Internet of Things(IoT),5G networks,big data,Artificial Intelligence(AI),and Unmanned Aerial Vehicles(UAVs)empower,Industry 4.0,with a progressive production methodology th...Emerging technologies such as edge computing,Internet of Things(IoT),5G networks,big data,Artificial Intelligence(AI),and Unmanned Aerial Vehicles(UAVs)empower,Industry 4.0,with a progressive production methodology that shows attention to the interaction between machine and human beings.In the literature,various authors have focused on resolving security problems in UAV communication to provide safety for vital applications.The current research article presents a Circle Search Optimization with Deep Learning Enabled Secure UAV Classification(CSODL-SUAVC)model for Industry 4.0 environment.The suggested CSODL-SUAVC methodology is aimed at accomplishing two core objectives such as secure communication via image steganography and image classification.Primarily,the proposed CSODL-SUAVC method involves the following methods such as Multi-Level Discrete Wavelet Transformation(ML-DWT),CSO-related Optimal Pixel Selection(CSO-OPS),and signcryption-based encryption.The proposed model deploys the CSO-OPS technique to select the optimal pixel points in cover images.The secret images,encrypted by signcryption technique,are embedded into cover images.Besides,the image classification process includes three components namely,Super-Resolution using Convolution Neural Network(SRCNN),Adam optimizer,and softmax classifier.The integration of the CSO-OPS algorithm and Adam optimizer helps in achieving the maximum performance upon UAV communication.The proposed CSODLSUAVC model was experimentally validated using benchmark datasets and the outcomes were evaluated under distinct aspects.The simulation outcomes established the supreme better performance of the CSODL-SUAVC model over recent approaches.展开更多
文摘Nowadays,there is tremendous growth in biometric authentication and cybersecurity applications.Thus,the efficient way of storing and securing personal biometric patterns is mandatory in most governmental and private sectors.Therefore,designing and implementing robust security algorithms for users’biometrics is still a hot research area to be investigated.This work presents a powerful biometric security system(BSS)to protect different biometric modalities such as faces,iris,and fingerprints.The proposed BSSmodel is based on hybridizing auto-encoder(AE)network and a chaos-based ciphering algorithm to cipher the details of the stored biometric patterns and ensures their secrecy.The employed AE network is unsupervised deep learning(DL)structure used in the proposed BSS model to extract main biometric features.These obtained features are utilized to generate two random chaos matrices.The first random chaos matrix is used to permute the pixels of biometric images.In contrast,the second random matrix is used to further cipher and confuse the resulting permuted biometric pixels using a two-dimensional(2D)chaotic logisticmap(CLM)algorithm.To assess the efficiency of the proposed BSS,(1)different standardized color and grayscale images of the examined fingerprint,faces,and iris biometrics were used(2)comprehensive security and recognition evaluation metrics were measured.The assessment results have proven the authentication and robustness superiority of the proposed BSSmodel compared to other existing BSSmodels.For example,the proposed BSS succeeds in getting a high area under the receiver operating characteristic(AROC)value that reached 99.97%and low rates of 0.00137,0.00148,and 3516 CMC,2023,vol.74,no.20.00157 for equal error rate(EER),false reject rate(FRR),and a false accept rate(FAR),respectively.
文摘The query optimizer uses cost-based optimization to create an execution plan with the least cost,which also consumes the least amount of resources.The challenge of query optimization for relational database systems is a combinatorial optimization problem,which renders exhaustive search impossible as query sizes rise.Increases in CPU performance have surpassed main memory,and disk access speeds in recent decades,allowing data compression to be used—strategies for improving database performance systems.For performance enhancement,compression and query optimization are the two most factors.Compression reduces the volume of data,whereas query optimization minimizes execution time.Compressing the database reduces memory requirement,data takes less time to load into memory,fewer buffer missing occur,and the size of intermediate results is more diminutive.This paper performed query optimization on the graph database in a cloud dew environment by considering,which requires less time to execute a query.The factors compression and query optimization improve the performance of the databases.This research compares the performance of MySQL and Neo4j databases in terms of memory usage and execution time running on cloud dew servers.
文摘Fungal disease affects more than a billion people worldwide,resulting in different types of fungus diseases facing life-threatening infections.The outer layer of your body is called the integumentary system.Your skin,hair,nails,and glands are all part of it.These organs and tissues serve as your first line of defence against bacteria while protecting you from harm and the sun.The It serves as a barrier between the outside world and the regulated environment inside our bodies and a regulating effect.Heat,light,damage,and illness are all protected by it.Fungi-caused infections are found in almost every part of the natural world.When an invasive fungus takes over a body region and overwhelms the immune system,it causes fungal infections in people.Another primary goal of this study was to create a Convolutional Neural Network(CNN)-based technique for detecting and classifying various types of fungal diseases.There are numerous fungal illnesses,but only two have been identified and classified using the proposed Innovative Fungal Disease Diagnosis(IFDD)system of Candidiasis and Tinea Infections.This paper aims to detect infected skin issues and provide treatment recommendations based on proposed system findings.To identify and categorize fungal infections,deep machine learning techniques are utilized.A CNN architecture was created,and it produced a promising outcome to improve the proposed system accuracy.The collected findings demonstrated that CNN might be used to identify and classify numerous species of fungal spores early and estimate all conceivable fungus hazards.Our CNN-Based can detect fungal diseases through medical images;earmarked IFDD system has a predictive performance of 99.6%accuracy.
文摘In the cloud environment,the transfer of data from one cloud server to another cloud server is called migration.Data can be delivered in various ways,from one data centre to another.This research aims to increase the migration performance of the virtual machine(VM)in the cloud environment.VMs allow cloud customers to store essential data and resources.However,server usage has grown dramatically due to the virtualization of computer systems,resulting in higher data centre power consumption,storage needs,and operating expenses.Multiple VMs on one data centre manage share resources like central processing unit(CPU)cache,network bandwidth,memory,and application bandwidth.Inmulti-cloud,VMmigration addresses the performance degradation due to cloud server configuration,unbalanced traffic load,resource load management,and fault situations during data transfer.VMmigration speed is influenced by the size of the VM,the dirty rate of the running application,and the latency ofmigration iterations.As a result,evaluating VM migration performance while considering all of these factors becomes a difficult task.Themain effort of this research is to assess migration problems on performance.The simulation results in Matlab show that if the VMsize grows,themigration time of VMs and the downtime can be impacted by three orders ofmagnitude.The dirty page rate decreases,themigration time and the downtime grow,and the latency time decreases as network bandwidth increases during the migration time and post-migration overhead calculation when the VMtransfer is completed.All the simulated cases of VMs migration were performed in a fuzzy inference system with performance graphs.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Small Groups Project under Grant Number(168/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R237)+1 种基金Princess Nourah bint Abdulrahman University,Riyadh,Saudi ArabiaThe authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4320484DSR01).
文摘In recent years,wireless networks are widely used in different domains.This phenomenon has increased the number of Internet of Things(IoT)devices and their applications.Though IoT has numerous advantages,the commonly-used IoT devices are exposed to cyber-attacks periodically.This scenario necessitates real-time automated detection and the mitigation of different types of attacks in high-traffic networks.The Software-Defined Networking(SDN)technique and the Machine Learning(ML)-based intrusion detection technique are effective tools that can quickly respond to different types of attacks in the IoT networks.The Intrusion Detection System(IDS)models can be employed to secure the SDN-enabled IoT environment in this scenario.The current study devises a Harmony Search algorithmbased Feature Selection with Optimal Convolutional Autoencoder(HSAFSOCAE)for intrusion detection in the SDN-enabled IoT environment.The presented HSAFS-OCAE method follows a three-stage process in which the Harmony Search Algorithm-based FS(HSAFS)technique is exploited at first for feature selection.Next,the CAE method is leveraged to recognize and classify intrusions in the SDN-enabled IoT environment.Finally,the Artificial Fish SwarmAlgorithm(AFSA)is used to fine-tune the hyperparameters.This process improves the outcomes of the intrusion detection process executed by the CAE algorithm and shows the work’s novelty.The proposed HSAFSOCAE technique was experimentally validated under different aspects,and the comparative analysis results established the supremacy of the proposed model.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the small Groups Project under grant number(168/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R151),Princess Nourah bint Abdulrahman University,Riyadh,Saudi ArabiaThe authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR59).
文摘Emerging technologies such as edge computing,Internet of Things(IoT),5G networks,big data,Artificial Intelligence(AI),and Unmanned Aerial Vehicles(UAVs)empower,Industry 4.0,with a progressive production methodology that shows attention to the interaction between machine and human beings.In the literature,various authors have focused on resolving security problems in UAV communication to provide safety for vital applications.The current research article presents a Circle Search Optimization with Deep Learning Enabled Secure UAV Classification(CSODL-SUAVC)model for Industry 4.0 environment.The suggested CSODL-SUAVC methodology is aimed at accomplishing two core objectives such as secure communication via image steganography and image classification.Primarily,the proposed CSODL-SUAVC method involves the following methods such as Multi-Level Discrete Wavelet Transformation(ML-DWT),CSO-related Optimal Pixel Selection(CSO-OPS),and signcryption-based encryption.The proposed model deploys the CSO-OPS technique to select the optimal pixel points in cover images.The secret images,encrypted by signcryption technique,are embedded into cover images.Besides,the image classification process includes three components namely,Super-Resolution using Convolution Neural Network(SRCNN),Adam optimizer,and softmax classifier.The integration of the CSO-OPS algorithm and Adam optimizer helps in achieving the maximum performance upon UAV communication.The proposed CSODLSUAVC model was experimentally validated using benchmark datasets and the outcomes were evaluated under distinct aspects.The simulation outcomes established the supreme better performance of the CSODL-SUAVC model over recent approaches.