In the Acknowledgments Section,please replace“Shell oil”for“TotalEnergies”.The authors would like to apologise for any inconvenience caused.For the sake of clarity(“Shell oil”should be removed and in boldblack“...In the Acknowledgments Section,please replace“Shell oil”for“TotalEnergies”.The authors would like to apologise for any inconvenience caused.For the sake of clarity(“Shell oil”should be removed and in boldblack“TotalEnergies”inserted),this section should say:The authors would like to thank Moura Batteries for the financial support.展开更多
In this work, we choose Nb3Al/Nb3Sn as a new test case for flat/steep band model of superconductivity. Based on the density functional theory in the generalized gradient approximation, the electronic structure of Nb3A...In this work, we choose Nb3Al/Nb3Sn as a new test case for flat/steep band model of superconductivity. Based on the density functional theory in the generalized gradient approximation, the electronic structure of Nb3Al/ Nb3Sn has been studied. The obtained results agree well with those of the earlier studies and show clearly fiat bands around the Fermi level. The steep bands as characterized in this work locate around the M point in the first Brillouin zone. The obtained results reveal that Nb3Al/Nb3Sn fits more to the "Flat/steep" band model than to the van-Hove singularity scenario. The fiat/steep band condition for superconductivity implies a different thermodynamic behavior of superconductors other than that predicted from the conventional BCS theory. This observation sets up an indicator for selecting a suitable superconductor when its large-scale industrial use is needed, for example, in superconducting maglev system or ITER project.展开更多
When a gas-liquid two-phase flow(GLTPF)enters a parallel separator through a T-junction,it generally splits unevenly.This phenomenon can seriously affect the operation efficiency and safety of the equipment located do...When a gas-liquid two-phase flow(GLTPF)enters a parallel separator through a T-junction,it generally splits unevenly.This phenomenon can seriously affect the operation efficiency and safety of the equipment located downstream.In order to investigate these aspects and,more specifically,the so-called bias phenomenon(all gas and liquid flowing to one pipe,while the other pipe is a liquid column that fluctuates up and down),laboratory experiments were carried out by using a T-junction connected to two parallel vertical pipes.Moreover,a GLTPF prediction model based on the principle of minimum potential energy was introduced.The research results indicate that this model can accurately predict the GLTPF state in parallel risers.The boundary of the slug flow and the churn flow in the opposite pipe can be predicted.Overall,according to the results,the pressure drop curves of the two-phase flow in the parallel risers are basically the same when there is no bias phenomenon,but the pressure drop in the parallel riser displays a large deviation when there is a slug flow-churn flow.Only when the parallel riser is in a state of asymmetric flow and one of the risers produces churn flow,the two-phase flow is prone to produce the bias phenomenon.展开更多
Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a s...Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons.展开更多
It is a complicated problem for the bottom-to-top adaptive conceptual design of complicated products between structure and function. Reliable theories demand to be found in order to determine whether the structure acc...It is a complicated problem for the bottom-to-top adaptive conceptual design of complicated products between structure and function. Reliable theories demand to be found in order to determine whether the structure accords with the requirement of design. For the requirement generally is dynamic variety as time passes, new requirements will come, and some initial requirements can no longer be used. The number of product requirements, the gene length expressing requirements, the structure of the product, and the correlation matrix are varied with individuation of customer requirements of the product. By researching on the calculation mechanisms of dynamic variety, the approaches of gene expression and variable length gene expression are proposed. According to the diversity of structure selection in conceptual design and mutual relations between structure and function as well as structure and structure, the correlation matrixes between structure and function as well as structure and structure are defined. By the approach of making the sum of the elements of correlation matrix maximum, the mathematical models of multi-object optimization for structure design are provided based on variable requirements. An improved genetic algorithm called segment genetic algorithm is proposed based on optimization preservation simple genetic algorithm. The models of multi-object optimization are calculated by the segment genetic algorithm and hybrid genetic algorithm. An example for the conceptual design of a washing machine is given to show that the proposed method is able to realize the optimization structure design fitting for variable requirements. In addition, the proposed approach can provide good Pareto optimization solutions, and the individuation customer requirements for structures of products are able to be resolved effectively.展开更多
The present study involves the fabrication of tungsten trioxide(WO3) nanofibers by an electrospinning technique using polyvinyl pyrrolidone(PVP)/citric acid/tungstic acid as precursor solution. It was found that the P...The present study involves the fabrication of tungsten trioxide(WO3) nanofibers by an electrospinning technique using polyvinyl pyrrolidone(PVP)/citric acid/tungstic acid as precursor solution. It was found that the PVP concentration was one of the most crucial processing parameters determining the final properties of WO3 nanofibers. The optimum concentration of PVP was from 75 to 94 g L-1. The average diameter of the nanofibers increases with increasing the PVP concentration, whereas it is decreased after sintering and orthorhombic structure were formed at 500 °C. The photocatalytic properties of the as-synthesized nanofibers were also investigated by degrading methylene blue and twofold efficiency was obtained compared with that of commercial WO3 microparticles.展开更多
Based on the Navier-Stokes (N-S) equations of incompressible viscous fluids and the standard k-ε turbu- lence model with assumptions of steady state and two dimensional conditions, a simulation of the aerodynamic d...Based on the Navier-Stokes (N-S) equations of incompressible viscous fluids and the standard k-ε turbu- lence model with assumptions of steady state and two dimensional conditions, a simulation of the aerodynamic drag on a maglev train in an evacuated tube was made with ANSYS/FLOTRAN software under different vacuum pressures, blockage ratios, and shapes of train head and tail. The pressure flow fields of the evacuated tube maglev train under different vacuum pressures were analyzed, and then compared under the same blockage ratio condition. The results show that the environmental pressure of 1 000 Pa in the tube is the best to achieve the effect of aerodynamic drag reduction, and there are no obvious differences in the aerodynamic drag reduction among different streamline head shapes. Overall, the blunt-shape tail and the blockage ratio of 0.25 are more efficient for drag reduction of the train at the tube pressure of 1 000 Pa.展开更多
A theoretical model of describing the electromagnetic and thermal dynamics of high-Tc superconducting bulks in a high-Tc superconducting Maglev system is built up.The model contains the effects of hysteresis-type loss...A theoretical model of describing the electromagnetic and thermal dynamics of high-Tc superconducting bulks in a high-Tc superconducting Maglev system is built up.The model contains the effects of hysteresis-type loss,flux flow,flux creep,and thermal diffusion on the superconducting bulks in the Maglev system.As the first stage of this study,the behavior of magnetic and electric fields,as well as the distribution energy flow density in the superconducting bulk is studied.The results show that the flux flow and thermal diffusion affect the behaviors of the electromagnetic field in the high-Tc superconducting bulks in different ways;however,both of them contribute significantly to the energy dissipation of the superconducting bulks when they are used in the Maglev train.展开更多
In order to study the relationships between the aerodynamic drag of maglev and other factors in the evacuated tube, the formula of aerodynamic drag was deduced based on the basic equations of aerodynamics and then the...In order to study the relationships between the aerodynamic drag of maglev and other factors in the evacuated tube, the formula of aerodynamic drag was deduced based on the basic equations of aerodynamics and then the calculated result was confirmed at a low speed on an experimental system developed by Superconductivity and New Energy R&D Center of South Jiaotong University. With regard to this system a high temperature superconducting magnetic levitation vehicle was motivated by a linear induction motor (LIM) fixed on the permanent magnetic guideway. When the vehicle reached an expected speed, the LIM was stopped. Then the damped speed was recorded and used to calculate the experimental drag. The two results show the approximately same relationship between the aerodynamic drag on the maglev and the other factors such as the pressure in the tube, the velocity of the maglev and the blockage ratio. Thus, the pressure, the velocity, and the blockage ratio are viewed as the three important factors that contribute to the energy loss in the evacuated tube transportation.展开更多
The super-high speed high temperature superconductor (HTS) maglev evacuated tube transport (ETT) is a promising transport mode for the future. As a key component of the HTS maglev vehicle, the permanent magnet gui...The super-high speed high temperature superconductor (HTS) maglev evacuated tube transport (ETT) is a promising transport mode for the future. As a key component of the HTS maglev vehicle, the permanent magnet guide- ways (PMGs) with different geometrical configurations and iron yoke widths are analyzed by finite element method (FEM). The levitation force of a single onboard HTS maglev device over the designed PMG at different field cooling heights (FCH) is measured by magnetic levitation measurement system. Based on the designed PMG and experimental results, a preliminary scheme of subterranean super-high speed HTS maglev ETT is described in this paper. The HTS maglev ETT is mainly composed of an evacuated tube, HTS maglev vehicle, PMG, propulsion system, station, emergency rescue system, etc. In addition, a subterranean tube that consists of foundation tube and vacuum airproof layer is introduced. In order to convert the stress caused by the air pressure difference between inside and outside of the vehicle, a multi-circular vehicle body is designed. The vehicle is driven by a linear motor propulsion system under the control of a ground controlling system. The scheme of long-distance super-high speed passenger transportation is accomplished by the connection of different vehicles.展开更多
Topological insulators are insulating in the bulkbut have metallic surface states. Its unique physicochemicalproperties can find numerous applications in electronics,spintronics, photonics, the energy sciences, and th...Topological insulators are insulating in the bulkbut have metallic surface states. Its unique physicochemicalproperties can find numerous applications in electronics,spintronics, photonics, the energy sciences, and thesignal control of transportation. We report an experimentalapproach to synthesize the high-quality single crystal oftopological insulator Bi2Te3 by using self-flux method. Weobtained the optimal preparation conditions by adjustingthe parameters of heat treatment, and successfully preparedthe single-crystal Bi2Te3 sample. The as-grown sampleshave a surface with bright metallic luster and are soft andfragile. Furthermore, Bi2Te3 has the obvious layer structurefrom SEM results. The data of X-ray diffraction andscanning electron microscope show that Bi2Te3 singlecrystal grows along the c-axis with the order of Te(1)–Bi–Te(2)–Bi–Te(1) and crystallizes in the hexagonal systemwith space group of R/3 m. The q–T curve shows that qdecreases with temperature, showing metallic behaviorover the whole temperature range.展开更多
Perovskite-based materials can be widely used in the aerospace and transportation field. Perovskite man-ganese oxides La0.7Sr0.3MnO3 (LSMO) thin films were grown on LaAlO3 (100) and Si (100) single crystal sub-s...Perovskite-based materials can be widely used in the aerospace and transportation field. Perovskite man-ganese oxides La0.7Sr0.3MnO3 (LSMO) thin films were grown on LaAlO3 (100) and Si (100) single crystal sub-strates by the polymer-assisted chemical solution deposi-tion (PACSD) method. Electronic transport behavior, microstructure, and magnetoresistance (MR) of LSMO thin films on different substrates were investigated. The resis-tance of LSMO films fabricated on LaAlO3 substrates is smaller than that on the Si substrates. The magnetic field reduces resistance of LSMO films both on Si and LAO in the wide temperature region, when the insulator-metal transition temperature shifts to higher temperature. The low-field magnetoresistance of LSMO films on Si in low temperature range at 1 T is larger than that of LSMO films on LAO. However, the MR of LSMO film on LAO films at room-temperature is about 5.17%. The thin films are smooth and dense with uniform nanocrystal size grain. These results demonstrate that PACSD is an effective technique for producing high quality LSMO films, which is significant to improve the magnetic properties and the application of automotive sensor.展开更多
In this study, finite element analysis (FEA) has been used to investigate the effects of different Laval nozzle throat sizes on supersonic molecular beam. The simulations indicate the Mach numbers of the molecular s...In this study, finite element analysis (FEA) has been used to investigate the effects of different Laval nozzle throat sizes on supersonic molecular beam. The simulations indicate the Mach numbers of the molecular stream peak at different positions along the center axis of the beam, which correspond to local minimums of the molecular densities. With the increase of the throat diameter, the first peak of the Mach number increases first and then decreases, while that of the molecular number density increases gradually. Moreover, both first peaks shift progressively away from the throat. At the last part, we discuss the possible applications of our FEA approach to solve some crucial problems met in modern transportations.展开更多
The self-absorption effect is one of the main factors affecting the quantitative analysis accuracy of laser-induced breakdown spectroscopy.In this paper,the self-absorption effects of laserinduced 7050 Al alloy plasma...The self-absorption effect is one of the main factors affecting the quantitative analysis accuracy of laser-induced breakdown spectroscopy.In this paper,the self-absorption effects of laserinduced 7050 Al alloy plasma under different pressures in air,Ar,and N2have been studied.Compared with air and N2,Ar significantly enhances the spectral signal.Furthermore,the spectral self-absorption coefficient is calculated to quantify the degree of self-absorption,and the influences of gas species and gas pressure on self-absorption are analyzed.In addition,it is found that the spectral intensity fluctuates with the change of pressure of three gases.It can also be seen that the fluctuation of spectral intensity with pressure is eliminated after correcting,which indicates that the self-absorption leads to the fluctuation of spectral intensity under different pressures.The analysis shows that the evolution of optical thin spectral lines with pressure in different gases is mainly determined by the gas properties and the competition between plasma confinement and Rayleigh–Taylor instability.展开更多
Electric vehicles(EVs) and the recent pandemic outbreak give cities a new trend to primarily private and shared mobility with low noise and less air pollution.Crucial factors for the widespread of EVs are the electric...Electric vehicles(EVs) and the recent pandemic outbreak give cities a new trend to primarily private and shared mobility with low noise and less air pollution.Crucial factors for the widespread of EVs are the electrical charging infrastructure,driving range,and the reduction of the cost of battery packets.For this reason,there is a massive effort from manufacturers,governments,and the scientific community to reduce battery costs and boost sustainable electrical production and distribution.Battery reuse is an alternative to reduce batteries’ costs and environmental impacts.Second-life batteries can be used in a wide variety of secondary applications.Second-life batteries can be connected with off-grid or on-grid photovoltaic and wind systems,vehicle charging stations,forklifts,and frequency control.The present work aims to analyze the main challenges imposed on the reuse of batteries,the leading technologies for their reuse,and the different types of batteries in terms of their feasibility for second-life use.The main novelty of this work is the discussion about the barriers,opportunities,uncertainties,and technologies for the second life market.Here we summarize the present state of the art in reusing lithium-ion batteries discussing technical and economic feasibility,environmental impacts,and perspectives.The results show five business models that have been proposed in the literature,three types of markets for trading second-life batteries,and the main opportunities and barriers for each actor in the battery supply chain.展开更多
Currently, Nanjing South Railway Stationplanning to implement slate roof renovation is integratingsolar cell modules into traditional roof materials to generateclean energy. Copper–indium–gallium diselenide(CuIn1-x...Currently, Nanjing South Railway Stationplanning to implement slate roof renovation is integratingsolar cell modules into traditional roof materials to generateclean energy. Copper–indium–gallium diselenide(CuIn1-xGaxSe2, CIGS) is one of the most promisingmaterials for thin film solar cells. Cu(In1-xGax)Se2 filmswere deposited by a one-step radio frequency magnetronsputtering process at low substrate temperature. X-raydiffraction, Raman, scanning electron microscopy, energydispersiveX-ray spectroscopy, and electrical and opticalmeasurements were carried out to investigate the depositedfilms. The results reveal that a temperature of 320 C iscritical for near-stoichiometric CIGS films with uniformsurface morphology. Cu-rich phase particulates are foundat less than this temperature. The sample deposited at380 C gives well-crystalline single-phase CIGS film.Furthermore, the electrical and optical performances of theabsorber layer are improved significantly with theincreasing substrate temperature.展开更多
Because of the end effect, a linear induction motor (LIM) runs in an asymmetrical state even though the winding of each phase is symmetric. Based on the basic principle of the LIM, a new approach was proposed to cal...Because of the end effect, a linear induction motor (LIM) runs in an asymmetrical state even though the winding of each phase is symmetric. Based on the basic principle of the LIM, a new approach was proposed to calculate the thrust of the LIM using the instantaneous current value. A three-phase LIM model with 12 slots and a singlelayer winding was designed to validate this method. The experiments show that when the current is small, the calculated results basically agree with the experiments. The agreement becomes worse with the increase of the current because of the saturation of the primary iron core. The proposed formula is suitable when the iron core of the LIM primary is in an unsaturated state.展开更多
To choose a reasonable mode of three-phase winding for the improvement of the operating efficiency of cascaded linear induction motor, the time and space characteristics of magnetomotive force were investigated. The i...To choose a reasonable mode of three-phase winding for the improvement of the operating efficiency of cascaded linear induction motor, the time and space characteristics of magnetomotive force were investigated. The ideal model of the cascaded linear induction motor was built, in which the B and C-phase windings are respectively separated from the A-phase winding by a distance of d and e slots pitch and not overlapped. By changing the values of d and e from 1 to 5, we can obtain 20 different modes of three-phase winding with the different combinations of d and e. Then, the air-gap magnetomotive forces of A-, B-, and C-phase windings were calculated by the magnetomotive force theory. According to the transient superposition of magnetomotive forces of A-, B-, and C-phase windings, the theoretical and simulated synthetic fundamental magnetomotive forces under 20 different arrangement modes were obtained. The results show that the synthetic magnetomotive force with d = 2 and e = 4 is close to forward sinusoidal traveling wave and the synthetic magnetomotive force with d = 4 and e = 2 is close to backward sinusoidal traveling wave, and their amplitudes and wave velocities are approximately constant and equal. In both cases, the motor could work normally with ahigh efficiency, but under other 18 arrangement modes (d= 1, e=2; d= 1, e=3; d= 1, e=4;...), the synthetic magnetomotive force presents obvious pulse vibration and moves with variable velocity, which means that the motor did not work normally and had high energy loss.展开更多
The multi-block high-temperature superconducting (HTS) maglev system has more complicated dynamic characteristics than the single-block HTS maglev system. To study its vibration characteristics, we designed a maglev...The multi-block high-temperature superconducting (HTS) maglev system has more complicated dynamic characteristics than the single-block HTS maglev system. To study its vibration characteristics, we designed a maglev measurement system. The system responses at the excitation frequencies of 2, 3 and 15 Hz were examined. Results show that the responses under excitation frequencies of 2 and 3 Hz include a 6 Hz component, which means that the maglev system is a critical nonlinear system. Moreover, the 6 Hz component is much stronger than the 2 Hz or 3 Hz components in the response spectra. There is the interaction between excitation and response. Under an excitation frequency of 15 Hz, intensified low-frequency perturbations were observed.展开更多
文摘In the Acknowledgments Section,please replace“Shell oil”for“TotalEnergies”.The authors would like to apologise for any inconvenience caused.For the sake of clarity(“Shell oil”should be removed and in boldblack“TotalEnergies”inserted),this section should say:The authors would like to thank Moura Batteries for the financial support.
基金financially supported by the Science Foundation for International Cooperation of Sichuan Province (2014HH0016)the Fundamental Research Funds for the Central Universities (SWJTU2014: A0920502051113-10000)National Magnetic Confinement Fusion Science Program (2011GB112001)
文摘In this work, we choose Nb3Al/Nb3Sn as a new test case for flat/steep band model of superconductivity. Based on the density functional theory in the generalized gradient approximation, the electronic structure of Nb3Al/ Nb3Sn has been studied. The obtained results agree well with those of the earlier studies and show clearly fiat bands around the Fermi level. The steep bands as characterized in this work locate around the M point in the first Brillouin zone. The obtained results reveal that Nb3Al/Nb3Sn fits more to the "Flat/steep" band model than to the van-Hove singularity scenario. The fiat/steep band condition for superconductivity implies a different thermodynamic behavior of superconductors other than that predicted from the conventional BCS theory. This observation sets up an indicator for selecting a suitable superconductor when its large-scale industrial use is needed, for example, in superconducting maglev system or ITER project.
基金supported by the Research Project of the Technical Inspection Center of Sinopec Shengli Oilfield Company.
文摘When a gas-liquid two-phase flow(GLTPF)enters a parallel separator through a T-junction,it generally splits unevenly.This phenomenon can seriously affect the operation efficiency and safety of the equipment located downstream.In order to investigate these aspects and,more specifically,the so-called bias phenomenon(all gas and liquid flowing to one pipe,while the other pipe is a liquid column that fluctuates up and down),laboratory experiments were carried out by using a T-junction connected to two parallel vertical pipes.Moreover,a GLTPF prediction model based on the principle of minimum potential energy was introduced.The research results indicate that this model can accurately predict the GLTPF state in parallel risers.The boundary of the slug flow and the churn flow in the opposite pipe can be predicted.Overall,according to the results,the pressure drop curves of the two-phase flow in the parallel risers are basically the same when there is no bias phenomenon,but the pressure drop in the parallel riser displays a large deviation when there is a slug flow-churn flow.Only when the parallel riser is in a state of asymmetric flow and one of the risers produces churn flow,the two-phase flow is prone to produce the bias phenomenon.
基金the Shanghai Rising-Star Program(No.22QA1403900)the National Natural Science Foundation of China(No.71804106)the Noncarbon Energy Conversion and Utilization Institute under the Shanghai Class IV Peak Disciplinary Development Program.
文摘Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons.
基金supported by National Natural Science Foundation of China(Grant No.50975033,Grant No.60875046)Program of Education Office of Liaoning Province,China(Grant No.LT2010074)
文摘It is a complicated problem for the bottom-to-top adaptive conceptual design of complicated products between structure and function. Reliable theories demand to be found in order to determine whether the structure accords with the requirement of design. For the requirement generally is dynamic variety as time passes, new requirements will come, and some initial requirements can no longer be used. The number of product requirements, the gene length expressing requirements, the structure of the product, and the correlation matrix are varied with individuation of customer requirements of the product. By researching on the calculation mechanisms of dynamic variety, the approaches of gene expression and variable length gene expression are proposed. According to the diversity of structure selection in conceptual design and mutual relations between structure and function as well as structure and structure, the correlation matrixes between structure and function as well as structure and structure are defined. By the approach of making the sum of the elements of correlation matrix maximum, the mathematical models of multi-object optimization for structure design are provided based on variable requirements. An improved genetic algorithm called segment genetic algorithm is proposed based on optimization preservation simple genetic algorithm. The models of multi-object optimization are calculated by the segment genetic algorithm and hybrid genetic algorithm. An example for the conceptual design of a washing machine is given to show that the proposed method is able to realize the optimization structure design fitting for variable requirements. In addition, the proposed approach can provide good Pareto optimization solutions, and the individuation customer requirements for structures of products are able to be resolved effectively.
基金supported by the National Research Foundation of Korea(NRF)-Grants funded by the Ministry of ScienceICT and Future Planning(2014R1A2A2A01004352)the Ministry of Education(2009-0093816),Republic of Korea
文摘The present study involves the fabrication of tungsten trioxide(WO3) nanofibers by an electrospinning technique using polyvinyl pyrrolidone(PVP)/citric acid/tungstic acid as precursor solution. It was found that the PVP concentration was one of the most crucial processing parameters determining the final properties of WO3 nanofibers. The optimum concentration of PVP was from 75 to 94 g L-1. The average diameter of the nanofibers increases with increasing the PVP concentration, whereas it is decreased after sintering and orthorhombic structure were formed at 500 °C. The photocatalytic properties of the as-synthesized nanofibers were also investigated by degrading methylene blue and twofold efficiency was obtained compared with that of commercial WO3 microparticles.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT) of the Ministry of Education of China(IRT0751)the National High Technology Research and Development Program of China (863 program: 2007-AA03Z203)+2 种基金the National Natural Science Foundation of China (Grant Nos. 50588201 and 50872116)the Research Fund for the Doctoral Program of Higher Education of China (SRFDP200806130023)the Fundamental Research Funds for the Central Universities (SWJTU09BR152, SWJTU09ZT24, and SWJTU11CX073)
文摘Based on the Navier-Stokes (N-S) equations of incompressible viscous fluids and the standard k-ε turbu- lence model with assumptions of steady state and two dimensional conditions, a simulation of the aerodynamic drag on a maglev train in an evacuated tube was made with ANSYS/FLOTRAN software under different vacuum pressures, blockage ratios, and shapes of train head and tail. The pressure flow fields of the evacuated tube maglev train under different vacuum pressures were analyzed, and then compared under the same blockage ratio condition. The results show that the environmental pressure of 1 000 Pa in the tube is the best to achieve the effect of aerodynamic drag reduction, and there are no obvious differences in the aerodynamic drag reduction among different streamline head shapes. Overall, the blunt-shape tail and the blockage ratio of 0.25 are more efficient for drag reduction of the train at the tube pressure of 1 000 Pa.
基金support of the Fundamental Research Funds for the Central Universities (SWJTU09ZT24)the National Science Foundation of China (50872116)+1 种基金the PCSIRT of the Ministry of Education of China (IRT0751)the Specialized Research Fund for the Doctoral Program of Higher Education (200806130023)
文摘A theoretical model of describing the electromagnetic and thermal dynamics of high-Tc superconducting bulks in a high-Tc superconducting Maglev system is built up.The model contains the effects of hysteresis-type loss,flux flow,flux creep,and thermal diffusion on the superconducting bulks in the Maglev system.As the first stage of this study,the behavior of magnetic and electric fields,as well as the distribution energy flow density in the superconducting bulk is studied.The results show that the flux flow and thermal diffusion affect the behaviors of the electromagnetic field in the high-Tc superconducting bulks in different ways;however,both of them contribute significantly to the energy dissipation of the superconducting bulks when they are used in the Maglev train.
基金supported by the National Magnetic Confinement Fusion Science Program (No. 2011GB112001)the Program of International S&T Cooperation (No. S2013ZR0595)+1 种基金the Fundamental Research Funds for the Central Universities (Nos. SWJTU11ZT16, SWJTU11ZT31)the Science Foundation of Sichuan Province (No. 2011JY0031,2011JY0130)
文摘In order to study the relationships between the aerodynamic drag of maglev and other factors in the evacuated tube, the formula of aerodynamic drag was deduced based on the basic equations of aerodynamics and then the calculated result was confirmed at a low speed on an experimental system developed by Superconductivity and New Energy R&D Center of South Jiaotong University. With regard to this system a high temperature superconducting magnetic levitation vehicle was motivated by a linear induction motor (LIM) fixed on the permanent magnetic guideway. When the vehicle reached an expected speed, the LIM was stopped. Then the damped speed was recorded and used to calculate the experimental drag. The two results show the approximately same relationship between the aerodynamic drag on the maglev and the other factors such as the pressure in the tube, the velocity of the maglev and the blockage ratio. Thus, the pressure, the velocity, and the blockage ratio are viewed as the three important factors that contribute to the energy loss in the evacuated tube transportation.
基金support from the PCSIRT of the Ministry of Education of China(IRT0751)the National Natural Science Foundation of China (Grant Nos. 50588201, and 50872116)+3 种基金the National High Technology Research and Development Program of China (863 program: 2007AA03Z203)the Research Fund for the Doctoral Program of Higher Education of China (SRFDP200806130023)the Fundamental Research Funds for the Central Universities(SWJTU09BR152 and SWJTU09ZT24)the Doctoral Innovation Foundation of Southwest Jiaotong University (X1899124710003)
文摘The super-high speed high temperature superconductor (HTS) maglev evacuated tube transport (ETT) is a promising transport mode for the future. As a key component of the HTS maglev vehicle, the permanent magnet guide- ways (PMGs) with different geometrical configurations and iron yoke widths are analyzed by finite element method (FEM). The levitation force of a single onboard HTS maglev device over the designed PMG at different field cooling heights (FCH) is measured by magnetic levitation measurement system. Based on the designed PMG and experimental results, a preliminary scheme of subterranean super-high speed HTS maglev ETT is described in this paper. The HTS maglev ETT is mainly composed of an evacuated tube, HTS maglev vehicle, PMG, propulsion system, station, emergency rescue system, etc. In addition, a subterranean tube that consists of foundation tube and vacuum airproof layer is introduced. In order to convert the stress caused by the air pressure difference between inside and outside of the vehicle, a multi-circular vehicle body is designed. The vehicle is driven by a linear motor propulsion system under the control of a ground controlling system. The scheme of long-distance super-high speed passenger transportation is accomplished by the connection of different vehicles.
基金supported by the National Magnetic Confinement Fusion Science Program (Grant No. 2011GB112001)the Program of International S&T Cooperation (Grant No. 2013DFA 51050)+3 种基金the National Natural Science Foundation of China (Grant No. 11104224, 11004162, 51271155)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110184120029)the Fundamental Research Funds for the Central Universities (Grant No. 2682013ZT16, SWJTU11ZT31, 2682013CX004, SWJTU11BR063)the Science Foundation of Sichuan Province (Grant No. 2011JY0031, 2011JY0130)
文摘Topological insulators are insulating in the bulkbut have metallic surface states. Its unique physicochemicalproperties can find numerous applications in electronics,spintronics, photonics, the energy sciences, and thesignal control of transportation. We report an experimentalapproach to synthesize the high-quality single crystal oftopological insulator Bi2Te3 by using self-flux method. Weobtained the optimal preparation conditions by adjustingthe parameters of heat treatment, and successfully preparedthe single-crystal Bi2Te3 sample. The as-grown sampleshave a surface with bright metallic luster and are soft andfragile. Furthermore, Bi2Te3 has the obvious layer structurefrom SEM results. The data of X-ray diffraction andscanning electron microscope show that Bi2Te3 singlecrystal grows along the c-axis with the order of Te(1)–Bi–Te(2)–Bi–Te(1) and crystallizes in the hexagonal systemwith space group of R/3 m. The q–T curve shows that qdecreases with temperature, showing metallic behaviorover the whole temperature range.
基金supported by the Program of International S&T Cooperation 2013DFA51050National Magnetic Confinement Fusion Science Program (2011GB112001)+2 种基金Science Foundation of Sichuan Province (2011JY0031, 2011JY0130)the financial support of the National Natural Science Foundation of China (No. 51271155, No. 51002125)the Fundamental Research Funds for the Central Universities (SWJTU12CX018)
文摘Perovskite-based materials can be widely used in the aerospace and transportation field. Perovskite man-ganese oxides La0.7Sr0.3MnO3 (LSMO) thin films were grown on LaAlO3 (100) and Si (100) single crystal sub-strates by the polymer-assisted chemical solution deposi-tion (PACSD) method. Electronic transport behavior, microstructure, and magnetoresistance (MR) of LSMO thin films on different substrates were investigated. The resis-tance of LSMO films fabricated on LaAlO3 substrates is smaller than that on the Si substrates. The magnetic field reduces resistance of LSMO films both on Si and LAO in the wide temperature region, when the insulator-metal transition temperature shifts to higher temperature. The low-field magnetoresistance of LSMO films on Si in low temperature range at 1 T is larger than that of LSMO films on LAO. However, the MR of LSMO film on LAO films at room-temperature is about 5.17%. The thin films are smooth and dense with uniform nanocrystal size grain. These results demonstrate that PACSD is an effective technique for producing high quality LSMO films, which is significant to improve the magnetic properties and the application of automotive sensor.
基金financially supported by the Science Foundation for International Cooperation of Sichuan Province (2014HH0016)the Fundamental Research Funds for the Central Universities (SWJTU2014: A0920502051113-10000)National Magnetic Confinement Fusion Science Program (2011GB112001)
文摘In this study, finite element analysis (FEA) has been used to investigate the effects of different Laval nozzle throat sizes on supersonic molecular beam. The simulations indicate the Mach numbers of the molecular stream peak at different positions along the center axis of the beam, which correspond to local minimums of the molecular densities. With the increase of the throat diameter, the first peak of the Mach number increases first and then decreases, while that of the molecular number density increases gradually. Moreover, both first peaks shift progressively away from the throat. At the last part, we discuss the possible applications of our FEA approach to solve some crucial problems met in modern transportations.
基金National Key Research and Development Program of China(Nos.2017YFE0301306,2017YFE0301300,and 2017YFE0301506)Fujian Province Industrial Guidance Project(No.2019H0011).
文摘The self-absorption effect is one of the main factors affecting the quantitative analysis accuracy of laser-induced breakdown spectroscopy.In this paper,the self-absorption effects of laserinduced 7050 Al alloy plasma under different pressures in air,Ar,and N2have been studied.Compared with air and N2,Ar significantly enhances the spectral signal.Furthermore,the spectral self-absorption coefficient is calculated to quantify the degree of self-absorption,and the influences of gas species and gas pressure on self-absorption are analyzed.In addition,it is found that the spectral intensity fluctuates with the change of pressure of three gases.It can also be seen that the fluctuation of spectral intensity with pressure is eliminated after correcting,which indicates that the self-absorption leads to the fluctuation of spectral intensity under different pressures.The analysis shows that the evolution of optical thin spectral lines with pressure in different gases is mainly determined by the gas properties and the competition between plasma confinement and Rayleigh–Taylor instability.
基金financial CNPq(159332/2019-2,301486/2016-6)FAPESP(2014/02163-7,2017/11958-1,2018/20756-6)+2 种基金Shell oil company through ANP(Brazil’s National Oil,Natural Gas,and Biofuels Agency) funded part of this researchthe BloRin Project"Blockchain for renewables decentralized management",PO FESR Sicilia 2014/2020-Action 1.1.5-identification code:SI_1_23074 CUP:G79J18000680007 for all the support given to the authorspartly founded by the Bavarian Ministry of Economic Affairs,Regional Development and Energy in the program BayVFP Digitalisierung,grant number DIK0384/02.
文摘Electric vehicles(EVs) and the recent pandemic outbreak give cities a new trend to primarily private and shared mobility with low noise and less air pollution.Crucial factors for the widespread of EVs are the electrical charging infrastructure,driving range,and the reduction of the cost of battery packets.For this reason,there is a massive effort from manufacturers,governments,and the scientific community to reduce battery costs and boost sustainable electrical production and distribution.Battery reuse is an alternative to reduce batteries’ costs and environmental impacts.Second-life batteries can be used in a wide variety of secondary applications.Second-life batteries can be connected with off-grid or on-grid photovoltaic and wind systems,vehicle charging stations,forklifts,and frequency control.The present work aims to analyze the main challenges imposed on the reuse of batteries,the leading technologies for their reuse,and the different types of batteries in terms of their feasibility for second-life use.The main novelty of this work is the discussion about the barriers,opportunities,uncertainties,and technologies for the second life market.Here we summarize the present state of the art in reusing lithium-ion batteries discussing technical and economic feasibility,environmental impacts,and perspectives.The results show five business models that have been proposed in the literature,three types of markets for trading second-life batteries,and the main opportunities and barriers for each actor in the battery supply chain.
基金financial supports of the Foundation of National Magnetic Confinement Fusion Science Program (No. 2011GB112001)the Program of International S&T Cooperation (No. 2013DFA51050)+1 种基金the NationalNatural Science Foundation of China (No. 51271155, 51377138)the Science Foundation of Sichuan Province (Nos. 2011JY0031 and 2011JY0130)
文摘Currently, Nanjing South Railway Stationplanning to implement slate roof renovation is integratingsolar cell modules into traditional roof materials to generateclean energy. Copper–indium–gallium diselenide(CuIn1-xGaxSe2, CIGS) is one of the most promisingmaterials for thin film solar cells. Cu(In1-xGax)Se2 filmswere deposited by a one-step radio frequency magnetronsputtering process at low substrate temperature. X-raydiffraction, Raman, scanning electron microscopy, energydispersiveX-ray spectroscopy, and electrical and opticalmeasurements were carried out to investigate the depositedfilms. The results reveal that a temperature of 320 C iscritical for near-stoichiometric CIGS films with uniformsurface morphology. Cu-rich phase particulates are foundat less than this temperature. The sample deposited at380 C gives well-crystalline single-phase CIGS film.Furthermore, the electrical and optical performances of theabsorber layer are improved significantly with theincreasing substrate temperature.
基金supported by the National Natural Science Foundation of China (Nos. 50588201,50672078, and 50872116)the National Basic Research Program (973 program, No. 2007CB616906)+1 种基金the Australian Research Council (Grant No. DP0559872 and DP0881739)the PCSIRT of the Ministry of Education of China (No. IRT0751)
文摘Because of the end effect, a linear induction motor (LIM) runs in an asymmetrical state even though the winding of each phase is symmetric. Based on the basic principle of the LIM, a new approach was proposed to calculate the thrust of the LIM using the instantaneous current value. A three-phase LIM model with 12 slots and a singlelayer winding was designed to validate this method. The experiments show that when the current is small, the calculated results basically agree with the experiments. The agreement becomes worse with the increase of the current because of the saturation of the primary iron core. The proposed formula is suitable when the iron core of the LIM primary is in an unsaturated state.
基金supported by the National Magnetic Confinement Fusion Science Program 2011GB112001Program of International S&T Cooperation S2013ZR0595+2 种基金the financial support of the National Natural Science Foundation of China (No. 51271155)the Fundamental Research Funds for the Central Universities (SWJTU11ZT16, SWJTU11ZT31)the Science Foundation of Sichuan Province 2011JY0031, 2011JY0130
文摘To choose a reasonable mode of three-phase winding for the improvement of the operating efficiency of cascaded linear induction motor, the time and space characteristics of magnetomotive force were investigated. The ideal model of the cascaded linear induction motor was built, in which the B and C-phase windings are respectively separated from the A-phase winding by a distance of d and e slots pitch and not overlapped. By changing the values of d and e from 1 to 5, we can obtain 20 different modes of three-phase winding with the different combinations of d and e. Then, the air-gap magnetomotive forces of A-, B-, and C-phase windings were calculated by the magnetomotive force theory. According to the transient superposition of magnetomotive forces of A-, B-, and C-phase windings, the theoretical and simulated synthetic fundamental magnetomotive forces under 20 different arrangement modes were obtained. The results show that the synthetic magnetomotive force with d = 2 and e = 4 is close to forward sinusoidal traveling wave and the synthetic magnetomotive force with d = 4 and e = 2 is close to backward sinusoidal traveling wave, and their amplitudes and wave velocities are approximately constant and equal. In both cases, the motor could work normally with ahigh efficiency, but under other 18 arrangement modes (d= 1, e=2; d= 1, e=3; d= 1, e=4;...), the synthetic magnetomotive force presents obvious pulse vibration and moves with variable velocity, which means that the motor did not work normally and had high energy loss.
基金supported by the PCSIRT of the Ministry of Education of China (No. IRT0751)the National High Technology Research and Development Program of China (863 Program: No. 2007AA03Z203)+2 种基金the National Natural Science Foundation of China (Nos.50588201 and 50872116)the Research Fund for the Doctoral Program of Higher Education of China (No.SRFDP200806130023)the Fundamental Research Funds for the Central Universities (Nos. SWJTU09BR152, SWJTU09ZT24 and SWJTU11CX073)
文摘The multi-block high-temperature superconducting (HTS) maglev system has more complicated dynamic characteristics than the single-block HTS maglev system. To study its vibration characteristics, we designed a maglev measurement system. The system responses at the excitation frequencies of 2, 3 and 15 Hz were examined. Results show that the responses under excitation frequencies of 2 and 3 Hz include a 6 Hz component, which means that the maglev system is a critical nonlinear system. Moreover, the 6 Hz component is much stronger than the 2 Hz or 3 Hz components in the response spectra. There is the interaction between excitation and response. Under an excitation frequency of 15 Hz, intensified low-frequency perturbations were observed.