The Oak Ridge National Laboratory (ORNL) is the largest and most diverse energy, research, and development institution within the Department of Energy (DOE) system in the United States. As such, the site endures const...The Oak Ridge National Laboratory (ORNL) is the largest and most diverse energy, research, and development institution within the Department of Energy (DOE) system in the United States. As such, the site endures constant land development that creates rigorous growing conditions for urban vegetation. Natural resource managers at ORNL recognize that trees are an integral component of the landscape and are interested in characterizing the urban forest and their associated ecosystem services benefits. We evaluated the urban forest structure, quantified ecosystem services and benefits, and estimated economic value of resources using i-Tree Eco at ORNL. While this assessment captured over 1100 landscape trees, the ORNL Natural Resources Management for landscape vegetation can be expanded to include unmanaged landscapes, e.g. riparian areas, greenspace, and other vegetative attributes to increase ecosystem services benefits. Assigning a monetary value to urban forest benefits help to inform decisions about urban forest management, ideally on cost-benefit analysis.展开更多
Transition-metal oxyhydroxides are attractive catalysts for oxygen evolution reactions(OERs).Further studies for developing transition-metal oxyhydroxide catalysts and understanding their catalytic mechanisms will ben...Transition-metal oxyhydroxides are attractive catalysts for oxygen evolution reactions(OERs).Further studies for developing transition-metal oxyhydroxide catalysts and understanding their catalytic mechanisms will benefit their quick transition to the next catalysts.Herein,Mo-doped CoOOH was designed as a high-performance model electrocatalyst with durability for 20 h at 10 mAcm−2.Additionally,it had an overpotential of 260 mV(glassy carbon)or 215 mV(nickel foam),which was 78 mV lower than that of IrO_(2)(338 mV).In situ,Raman spectroscopy revealed the transformation process of CoOOH.Calculations using the density functional theory showed that during OER,doped Mo increased the spin-up density of states and shrank the spin-down bandgap of the 3d orbits in the reconstructed CoOOH under the electrochemical activation process,which simultaneously optimized the adsorption and electron conduction of oxygen-related intermediates on Co sites and lowered the OER overpotentials.Our research provides new insights into the methodical planning of the creation of transition-metal oxyhydroxide OER catalysts.展开更多
In addition to the tens of millions of medical doses consumed annually around the world,a vast number of nuclear magnetic resonance imaging(MRI)contrast agents are being deployed in MRI research and development,offeri...In addition to the tens of millions of medical doses consumed annually around the world,a vast number of nuclear magnetic resonance imaging(MRI)contrast agents are being deployed in MRI research and development,offering precise diagnostic information,targeting capabilities,and analyte sensing.Superparamagnetic iron oxide nanoparticles(SPIONs)are notable among these agents,providing effective and versatile MRI applications while also being heavy-metal-free,bioconjugatable,and theranostic.We designed and implemented a novel two-pronged computational and experimental strategy to meet the demand for the efficient and rigorous development of SPION-based MRI agents.Our MATLAB-based modeling simulation and magnetic characterization revealed that extremely small maghemite SPIONs in the 1-3 nm range possess significantly reduced transversal relaxation rates(R_(2))and are therefore preferred for positive(T_(1)-weighted)MRI.Moreover,X-ray diffraction and X-ray absorption fine structure analyses demonstrated that the diffraction pattern and radial distribution function of our SPIONs matched those of the targeted maghemite crystals.In addition,simulations of the X-ray near-edge structure spectra indicated that our synthesized SPIONs,even at 1 nm,maintained a spherical structure.Furthermore,in vitro and in vivo MRI investigations showed that our 1-nm SPIONs effectively highlighted whole-body blood vessels and major organs in mice and could be cleared through the kidney route to minimize potential post-imaging side effects.Overall,our innovative approach enabled a swift discovery of the desired SPION structure,followed by targeted synthesis,synchrotron radiation spectroscopic studies,and MRI evaluations.The efficient and rigorous development of our high-performance SPIONs can set the stage for a computational and experimental platform for the development of future MRI agents.展开更多
Lithium metal(LM)is a promising anode for next-generation batteries due to its high theoretical capacity and low electrode potential.Nonetheless,side reactions,volume change,and unwanted lithium dendrite growth seriou...Lithium metal(LM)is a promising anode for next-generation batteries due to its high theoretical capacity and low electrode potential.Nonetheless,side reactions,volume change,and unwanted lithium dendrite growth seriously limit the practical application of LM.Herein,with the aid of a hard template approach,a novel lithiophilic CoF_(2)-carbon hollow sphere(CoF_(2)@C-HS)composite material is successfully prepared via a facile in-situ fluorination and etching strategy.The lithiophilic CoF_(2) acts as nucleation sites to reduce nucleation overpotential as well as induces the spatial Li deposition and the formation of LiFrich solid electrolyte interphase(SEI),and the hollow carbon matrix can enhance the electrical conductivity and offer free space for LM deposition.Theoretical simulations reveal that the synergistic effect of lithiophilic CoF_(2) and hollow carbon matrix homogenizes the electric field distribution and Li~+flux.Benefiting from these advantages,the CoF_(2)@C-HS-modified copper substrate electrode delivers an enhanced Coulombic efficiency(CE)of 93.7%for 280 cycles at 1 mA cm^(-2)and 1 mA h cm^(-2).The symmetrical cell using CoF_(2)@C-HS can stably cycle more than 1800 h with a low voltage hysteresis of 11 mV at a current density of 0.5 MA cm^(-2)and an areal capacity of 0.5 mA h cm^(-2).Moreover,the Li@CoF_(2)@C-HS composite anode enables more than 300 stable cycles at 1 C with a capacity retention of 95%in LiFePO_(4)-based full cell and 110 stable cycles at 1 C in LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)-based highvoltage full cell.This work might shed a new light on designing lithiophilic hosts to spatially confine LM deposition,realizing dendrite-free LM anodes and the practical applications of LM batteries.展开更多
Recent advances in scanning transmission electron microscopy(STEM)have led to increased development of multidimensional STEM imaging modalities and novel image reconstruction methods.This interest arises because the m...Recent advances in scanning transmission electron microscopy(STEM)have led to increased development of multidimensional STEM imaging modalities and novel image reconstruction methods.This interest arises because the main electron lens in a modern transmission electron microscope usually has a diffraction-space information limit that is significantly better than the real-space resolution of the same lens.This state-of-affairs is sometimes shared by other scattering methods in modern physics and contributes to a broader excitement surrounding multidimensional techniques that scan a probe while recording diffraction-space images,such as ptychography and scanning nano-beam diffraction.However,the contrasting resolution in the two spaces raises the question as to what is limiting their effective performance.Here,we examine this paradox by considering the effects of aberrations in both image and diffraction planes,and likewise separate the contributions of pre-and post-sample aberrations.This consideration provides insight into aberration-measurement techniques and might also indicate improvements for super-resolution techniques.展开更多
The functionalities and diverse metastable phases of multiferroic BiFeO_(3)(BFO)thin films depend on the misfit strain.Although mixed phase-induced strain relaxation in multiphase BFO thin films is well known,it is un...The functionalities and diverse metastable phases of multiferroic BiFeO_(3)(BFO)thin films depend on the misfit strain.Although mixed phase-induced strain relaxation in multiphase BFO thin films is well known,it is unclear whether a singlecrystalline BFO thin film can accommodate misfit strain without the involvement of its polymorphs.Thus,understanding the strain relaxation behavior is key to elucidating the lattice strain–property relationship.In this study,a correlative strain analysis based on dark-field inline electron holography(DIH)and quantitative scanning transmission electron microscopy(STEM)was performed to reveal the structural mechanism for strain accommodation of a single-crystalline BFO thin film.The nanoscale DIH strain analysis results indicated a random combination of multiple strain states that acted as a primary strain relief,forming irregularly strained nanodomains.The STEM-based bond length measurement of the corresponding strained nanodomains revealed a unique strain accommodation behavior achieved by a statistical combination of multiple modes of distorted structures on the unit-cell scale.The globally integrated strain for each nanodomain was estimated to be close to1.5%,irrespective of the nanoscale strain states,which was consistent with the fully strained BFO film on the SrTiO_(3) substrate.Density functional theory calculations suggested that strain accommodation by the combination of metastable phases was energetically favored compared to single-phase-mediated relaxation.This discovery allows a comprehensive understanding of strain accommodation behavior in ferroelectric oxide films,such as BFO,with various low-symmetry polymorphs.展开更多
The chiral 2×2 charge order has been reported and confirmed in the kagome superconductor RbV_(3)Sb_(5),while its interplay with superconductivity remains elusive owing to its lowest superconducting transition tem...The chiral 2×2 charge order has been reported and confirmed in the kagome superconductor RbV_(3)Sb_(5),while its interplay with superconductivity remains elusive owing to its lowest superconducting transition temperature Tc of about 0.85K in the AV_(3)Sb_(5) family(A=K,Rb,Cs)that severely challenges electronic spectroscopic probes.Here,utilizing dilution-refrigerator-based scanning tunneling microscopy down to 30 mK,we observe chiral 2×2 pair density waves with residual Fermi arcs in RbV_(3)Sb_(5).We find a superconducting gap of 150 μeV with substantial residual in-gap states.The spatial distribution of this gap exhibits chiral 2×2 modulations,signaling a chiral pair density wave(PDW).Our quasi-particle interference imaging of the zero-energy residual states further reveals arc-like patterns.We discuss the relation of the gap modulations with the residual Fermi arcs under the space-momentum correspondence between PDW and Bogoliubov Fermi states.展开更多
The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in orde...The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.展开更多
Designing and optimizing complex scientific code for new computing architectures is a challenging task. To address this issue in the E3SM land model (ELM) development, we developed a software tool called SPEL, which f...Designing and optimizing complex scientific code for new computing architectures is a challenging task. To address this issue in the E3SM land model (ELM) development, we developed a software tool called SPEL, which facilitates code generation, verification, and performance tuning using compiler directives within a Function Unit Test framework. In this paper, we present a SPEL extension that leverages the version control system (e.g., Git) to autonomous code generation and demonstrate its application to continuous code integration and development of the ELM software system. The study can benefit the scientific software development community.展开更多
The interest in the development and improvement of dynamic global vegetation models (DGVMs), which have the potential to simulate fluxes of carbon, water and nitrogen, along with changes in the vegetation dynamics, ...The interest in the development and improvement of dynamic global vegetation models (DGVMs), which have the potential to simulate fluxes of carbon, water and nitrogen, along with changes in the vegetation dynamics, within an integrated system, has been increasing. In this paper, some numerical schemes and a higher resolution soil texture dataset were employed to improve the Sheffield Dynamic Global Vegetation Model (SDGVM). Using eddy covariance-based measurements, we then tested the standard version of the SDGVM and the modified version of the SDGVM. Detailed observations of daily carbon and water fluxes made at the upland oak forest on the Walker Branch Watershed in Tennessee, USA offered a unique opportunity for these comparisons. The results revealed that the modified version of the SDGVM did a reasonable job of simulating the carbon and water flux and the variation of soil water content (SWC). However, at the end of the growing season, it failed to simulate the effect of the limitations on the soil respiration dynamics and as a result underestimated this respiration. It was also noted that the modified version overestimated the increase in the SWC following summer rainfall, which was attributed to an inadequate representation of the ground water and thermal cycle.展开更多
Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings,high catalyst utilization and facile fabrication are urgently needed to enable cost-effective,green hydrogen production via proto...Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings,high catalyst utilization and facile fabrication are urgently needed to enable cost-effective,green hydrogen production via proton exchange membrane electrolyzer cells(PEMECs).Herein,benefitting from a thin seeding layer,bottom-up grown ultrathin Pt nanosheets(Pt-NSs)were first deposited on thin Ti substrates for PEMECs via a fast,template-and surfactant-free electrochemical growth process at room temperature,showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies.Combined with an anode-only Nafion 117 catalyst-coated membrane(CCM),the Pt-NS electrode with an ultralow loading of 0.015 mgPt cm−2 demonstrates superior cell performance to the commercial CCM(3.0 mgPt cm^(−2)),achieving 99.5%catalyst savings and more than 237-fold higher catalyst utilization.The remarkable performance with high catalyst utilization is mainly due to the vertically well-aligned ultrathin nanosheets with good surface coverage exposing abundant active sites for the electrochemical reaction.Overall,this study not only paves a new way for optimizing the catalyst uniformity and surface coverage with ultralow loadings but also provides new insights into nanostructured electrode design and facile fabrication for highly efficient and low-cost PEMECs and other energy storage/conversion devices.展开更多
Molecular mechanisms transducing physical forces in the bone microenvironment to regulate bone mass are poorly understood.Here,we used mouse genetics,mechanical loading,and pharmacological approaches to test the possi...Molecular mechanisms transducing physical forces in the bone microenvironment to regulate bone mass are poorly understood.Here,we used mouse genetics,mechanical loading,and pharmacological approaches to test the possibility that polycystin-1 and Wwtr1 have interdependent mechanosensing functions in osteoblasts.We created and compared the skeletal phenotypes of control Pkd1^(flox/)+;Wwtr1^(flox/)+,Pkd1^(Oc-cKO),Wwtr1^(Oc-cKO),and Pkd1/Wwtr1^(Oc-cKO)mice to investigate genetic interactions.Consistent with an interaction between polycystins and Wwtr1 in bone in vivo,Pkd1/Wwtr1^(Oc-cKO)mice exhibited greater reductions of BMD and periosteal MAR than either Wwtr1Oc-cKOor Pkd1^(Oc-cKO)mice.Micro-CT 3D image analysis indicated that the reduction in bone mass was due to greater loss in both trabecular bone volume and cortical bone thickness in Pkd1/Wwtr1Oc-cKO mice compared to either Pkd1Oc-cKOor Wwtr1^(Oc-cKO)mice.Pkd1/Wwtr1^(Oc-cKO)mice also displayed additive reductions in mechanosensing and osteogenic gene expression profiles in bone compared to Pkd1Oc-cKOor Wwtr1^(Oc-cKO)mice.Moreover,we found that Pkd1/Wwtr1^(Oc-cKO)mice exhibited impaired responses to tibia mechanical loading in vivo and attenuation of loadinduced mechanosensing gene expression compared to control mice.Finally,control mice treated with a small molecule mechanomimetic,MS2 that activates the polycystin complex resulted in marked increases in femoral BMD and periosteal MAR compared to vehicle control.In contrast,Pkd1/Wwtr1^(Oc-cKO)mice were resistant to the anabolic effects of MS2.These findings suggest that PC1 and Wwtr1 form an anabolic mechanotransduction signaling complex that mediates mechanical loading responses and serves as a potential novel therapeutic target for treating osteoporosis.展开更多
Galvanic corrosion of AZ31B joined with bare or Zn-coated DP590 steel by ultrasonic spot welding or linear friction stir welding was quantitatively studied by pre-defining anode and cathode in the lap joint samples. C...Galvanic corrosion of AZ31B joined with bare or Zn-coated DP590 steel by ultrasonic spot welding or linear friction stir welding was quantitatively studied by pre-defining anode and cathode in the lap joint samples. Corrosion volume and depth from Mg anode surfaces exposed to 0.1 M sodium chloride solution was analyzed as functions of cathode surface type and welding method. Characterization of as-welded joints was performed to identify any microstructural feature of the bonding zone that could impact galvanic corrosion behavior.COMSOL modeling with modified user subroutine was conducted to simulate the progression of Mg corrosion in the same joint and electrode configurations used for the corrosion experiments. The experimental results indicated that Zn-coated cathode surface can reduce Mg galvanic corrosion significantly as galvanic polarization and cathodic current on Zn-coated surface remained relatively low for Mg in the weld joints.COMSOL modeling described the growth of Mg galvanic corrosion in a reasonable manner but showed limitation by underestimating the corrosion volume as it did not capture self-corrosion.展开更多
Approaches for predicting low-lying resonances,uniformly treating bound,and resonant levels have been a long-standing goal in nuclear theory.Accordingly,we explored the viability of the complex momentum representation...Approaches for predicting low-lying resonances,uniformly treating bound,and resonant levels have been a long-standing goal in nuclear theory.Accordingly,we explored the viability of the complex momentum representation(CMR)approach coupled with new potentials.We focus on predicting the energy of the low-lying 2p_(3∕2)resonance in 17 O,which is critical for s-process nucleosynthesis and missing in previous theoretical research.Using a Woods-Saxon potential based on the Koning-Delaroche optical model and constrained by the experimental one-neutron separation energy,we successfully predicted the resonant energy of this level for the first time.Our predictions of the bound levels and 1d_(3∕2)resonance agree well with the measurement results.Additionally,we utilize this approach to study the near-threshold resonances that play a role when forming a two-neutron halo in^(29,31)F.We found that the CMR-based predictions of the bound-level energies and unbound 1f7∕2 level agree well with the results obtained using the scattering phase shift method.Subsequently,we successfully found a solution for the 2p_(3∕2)resonance with energy just above the threshold,which is decisive for halo formation.展开更多
Carbon and oxygen-rich corrosion barrier layer formed on Mg by a simple and scalable CO_(2) atmospheric plasma(CO_(2)-AP)process.The reactive CO_(2)-AP interacts with the Mg surface and forms a unique layered structur...Carbon and oxygen-rich corrosion barrier layer formed on Mg by a simple and scalable CO_(2) atmospheric plasma(CO_(2)-AP)process.The reactive CO_(2)-AP interacts with the Mg surface and forms a unique layered structure with the top MgCO_(3)/MgO-intermixed particulates pillars and the bottom dense layer.The surface features were simultaneously formed on the nano-/micro-structured MgO layer by carbonate molecules,plasma-active CO_(2) molecules,and/or other volatile organic compounds on the nano-/micro-structured MgO particle layer.The resulting surfaces after CO_(2)-AP were either hydrophobic or hydrophilic and exhibited lower anodic current or high resistance for Mg corrosion.For the hydrophobic surfaces of CO_(2)-AP treated Mg,molecular dynamic simulations were performed to understand the origin of hydrophobicity and identified that the amorphous carbon layers formed on the Mg surface are the source.The environmentally benign abundant-gas-based process enables the cost reduction associated with waste treatment,generation of by-product,and supply of raw material.展开更多
We develop and use a novel mixed-precision weighted essentially non-oscillatory(WENO)method for solving the Teukolsky equation,which arises when modeling perturbations of Kerr black holes.We show that WENO methods out...We develop and use a novel mixed-precision weighted essentially non-oscillatory(WENO)method for solving the Teukolsky equation,which arises when modeling perturbations of Kerr black holes.We show that WENO methods outperform higher-order finite-difference methods,standard in the discretization of the Teukolsky equation,due to the need to add dissipation for stability purposes in the latter.In particular,as the WENO scheme uses no additional dissipation,it is well suited for scenarios requiring long-time evolution such as the study of price tails and gravitational wave emission from extreme mass ratio bina-ries.In the mixed-precision approach,the expensive computation of the WENO weights is performed in reduced floating-point precision that results in a significant speedup factor of≈3.3.In addition,we use state-of-the-art Nvidia general-purpose graphics processing units and cluster parallelism to further accelerate the WENO computations.Our optimized WENO solver can be used to quickly generate accurate results of significance in the field of black hole and gravitational wave physics.We apply our solver to study the behavior of the Aretakis charge—a conserved quantity,that if detected by a gravitational wave observatory like LIGO/Virgo would prove the existence of extremal black holes.展开更多
The genus Populus has long been used for environmental,agroforestry and industrial applications worldwide.Today Populus is also recognized as a desirable crop for biofuel production and a model tree for physiological ...The genus Populus has long been used for environmental,agroforestry and industrial applications worldwide.Today Populus is also recognized as a desirable crop for biofuel production and a model tree for physiological and ecological research.As such,various modern biotechnologies,including CRISPR/Cas9-based techniques,have been actively applied to Populus for genetic and genomic improvements for traits such as increased growth rate and tailored lignin composition.However,CRISPR/Cas9 has been primarily used as the active Cas9 form to create knockouts in the hybrid poplar clone“717-1B4”(P.tremula x P.alba clone INRA 717-1B4).Alternative CRISPR/Cas9-based technologies,e.g.those involving modified Cas9 for gene activation and base editing,have not been evaluated in most Populus species for their efficacy.Here we employed a deactivated Cas9(dCas9)-based CRISPR activation(CRISPRa)technique to fine-tune the expression of two target genes,TPX2 and LecRLK-G which play important roles in plant growth and defense response,in hybrid poplar clone“717-1B4”and poplar clone“WV94”(P.deltoides“WV94”),respectively.We observed that CRISPRa resulted in 1.2-fold to 7.0-fold increase in target gene expression through transient expression in protoplasts and Agrobacterium-mediated stable transformation,demonstrating the effectiveness of dCas9-based CRISPRa system in Populus.In addition,we applied Cas9 nickase(nCas9)-based cytosine base editor(CBE)to precisely introduce premature stop codons via C-to-T conversion,with an efficiency of 13%–14%,in the target gene PLATZ which encodes a transcription factor involved in plant fungal pathogen response in hybrid poplar clone“717-1B4”.Overall,we showcase the successful application of CRISPR/Cas-based technologies in gene expression regulation and precise gene engineering in two Populus species,facilitating the adoption of emerging genome editing tools in woody species.展开更多
Adventitious rooting(AR)is critical to the propagation,breeding,and genetic engineering of trees.The capacity for plants to undergo this process is highly heritable and of a polygenic nature;however,the basis of its g...Adventitious rooting(AR)is critical to the propagation,breeding,and genetic engineering of trees.The capacity for plants to undergo this process is highly heritable and of a polygenic nature;however,the basis of its genetic variation is largely uncharacterized.To identify genetic regulators of AR,we performed a genome-wide association study(GWAS)using 1148 genotypes of Populus trichocarpa.GWASs are often limited by the abilities of researchers to collect precise phenotype data on a high-throughput scale;to help overcome this limitation,we developed a computer vision system to measure an array of traits related to adventitious root development in poplar,including temporal measures of lateral and basal root length and area.GWAS was performed using multiple methods and significance thresholds to handle non-normal phenotype statistics and to gain statistical power.These analyses yielded a total of 277 unique associations,suggesting that genes that control rooting include regulators of hormone signaling,cell division and structure,reactive oxygen species signaling,and other processes with known roles in root development.Numerous genes with uncharacterized functions and/or cryptic roles were also identified.These candidates provide targets for functional analysis,including physiological and epistatic analyses,to better characterize the complex polygenic regulation of AR.展开更多
1.Introduction,The interconnection among food-energy-water(FEW)systems in meeting societal demands is broadly acknowledged[1].Similarly,competitive or synergistic allocations of water and energy resources for agricult...1.Introduction,The interconnection among food-energy-water(FEW)systems in meeting societal demands is broadly acknowledged[1].Similarly,competitive or synergistic allocations of water and energy resources for agricultural production,manufacturing,and human consumption are understood,and their economic impacts can be predicted[2].Far less appreciated and understood are the outcomes of the FEW nexus in response to operation changes in agricultural practices and the associated technological innovations for future generations[3,4].Also,the inter-scale and feedback effects of emerging technology-driven resource reallocation and decision-making on FEW systems are largely unknown.For example,how do the agroeconomic feedbacks of intelligent technologies influence the FEW nexus of agricultural production under environmental and demographic changes?How does the necessary water allocation for powering non-powered dams and pumped-storage hydropower generation influence agricultural production and municipal water supply maintenance?How do solar and wind energy farms influence land use for agriculture and the rural economy?展开更多
In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it ...In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it is predicted that in the nonrelativistic limit of certain collinear antiferromagnets, there exists a type of chiral“Dirac-like” fermion, whose dispersion manifests four-fold degenerate crossing points formed by spin-degenerate linear bands, with topologically protected Fermi arcs. Such an unconventional chiral fermion, protected by a hidden SU(2) symmetry in the hierarchy of an enhanced crystallographic group, namely spin space group, is not experimentally verified yet. Here, by angle-resolved photoemission spectroscopy measurements, we reveal the surface origin of the electron pocket at the Fermi surface in collinear antiferromagnet CoNb3S6. Combining with neutron diffraction and first-principles calculations, we suggest a multidomain collinear antiferromagnetic configuration, rendering the the existence of the Fermi-arc surface states induced by chiral Dirac-like fermions.Our work provides spectral evidence of the chiral Dirac-like fermion caused by particular spin symmetry in CoNb_(3)S_(6), paving an avenue for exploring new emergent phenomena in antiferromagnets with unconventional quasiparticle excitations.展开更多
文摘The Oak Ridge National Laboratory (ORNL) is the largest and most diverse energy, research, and development institution within the Department of Energy (DOE) system in the United States. As such, the site endures constant land development that creates rigorous growing conditions for urban vegetation. Natural resource managers at ORNL recognize that trees are an integral component of the landscape and are interested in characterizing the urban forest and their associated ecosystem services benefits. We evaluated the urban forest structure, quantified ecosystem services and benefits, and estimated economic value of resources using i-Tree Eco at ORNL. While this assessment captured over 1100 landscape trees, the ORNL Natural Resources Management for landscape vegetation can be expanded to include unmanaged landscapes, e.g. riparian areas, greenspace, and other vegetative attributes to increase ecosystem services benefits. Assigning a monetary value to urban forest benefits help to inform decisions about urban forest management, ideally on cost-benefit analysis.
基金The National Natural Science Foundation of China(Grant Nos.52072114 and 51922008)the 111 Project(Grant No.D17007),the Henan Center for Outstanding Overseas Scientists(Grant No.GZS2018003)+2 种基金Xinxiang Major Science and Technology Projects(Grant No.21ZD001)Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06N500)Guangdong Provincial Key Laboratory of Energy Materials for Electric Power(2018B030322001)all provided financial support for this work.
文摘Transition-metal oxyhydroxides are attractive catalysts for oxygen evolution reactions(OERs).Further studies for developing transition-metal oxyhydroxide catalysts and understanding their catalytic mechanisms will benefit their quick transition to the next catalysts.Herein,Mo-doped CoOOH was designed as a high-performance model electrocatalyst with durability for 20 h at 10 mAcm−2.Additionally,it had an overpotential of 260 mV(glassy carbon)or 215 mV(nickel foam),which was 78 mV lower than that of IrO_(2)(338 mV).In situ,Raman spectroscopy revealed the transformation process of CoOOH.Calculations using the density functional theory showed that during OER,doped Mo increased the spin-up density of states and shrank the spin-down bandgap of the 3d orbits in the reconstructed CoOOH under the electrochemical activation process,which simultaneously optimized the adsorption and electron conduction of oxygen-related intermediates on Co sites and lowered the OER overpotentials.Our research provides new insights into the methodical planning of the creation of transition-metal oxyhydroxide OER catalysts.
基金supported by start-up funds from the laboratory of H.WFaculty Sponsored Student Research Awards(FSSRA)from the Department of Chemistry and Biochemistry in the College of Science and Mathematics at California State University,Fresno。
文摘In addition to the tens of millions of medical doses consumed annually around the world,a vast number of nuclear magnetic resonance imaging(MRI)contrast agents are being deployed in MRI research and development,offering precise diagnostic information,targeting capabilities,and analyte sensing.Superparamagnetic iron oxide nanoparticles(SPIONs)are notable among these agents,providing effective and versatile MRI applications while also being heavy-metal-free,bioconjugatable,and theranostic.We designed and implemented a novel two-pronged computational and experimental strategy to meet the demand for the efficient and rigorous development of SPION-based MRI agents.Our MATLAB-based modeling simulation and magnetic characterization revealed that extremely small maghemite SPIONs in the 1-3 nm range possess significantly reduced transversal relaxation rates(R_(2))and are therefore preferred for positive(T_(1)-weighted)MRI.Moreover,X-ray diffraction and X-ray absorption fine structure analyses demonstrated that the diffraction pattern and radial distribution function of our SPIONs matched those of the targeted maghemite crystals.In addition,simulations of the X-ray near-edge structure spectra indicated that our synthesized SPIONs,even at 1 nm,maintained a spherical structure.Furthermore,in vitro and in vivo MRI investigations showed that our 1-nm SPIONs effectively highlighted whole-body blood vessels and major organs in mice and could be cleared through the kidney route to minimize potential post-imaging side effects.Overall,our innovative approach enabled a swift discovery of the desired SPION structure,followed by targeted synthesis,synchrotron radiation spectroscopic studies,and MRI evaluations.The efficient and rigorous development of our high-performance SPIONs can set the stage for a computational and experimental platform for the development of future MRI agents.
基金supported by the Natural Science Foundation of China (52277218)the Hubei Provincial Natural Science Foundation of China (2024AFA094)+1 种基金the Excellent Discipline Cultivation Project by JHUN (2023XKZ009)supported by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences,Materials Sciences and Engineering Division under contract number DE-AC05-00OR22725。
文摘Lithium metal(LM)is a promising anode for next-generation batteries due to its high theoretical capacity and low electrode potential.Nonetheless,side reactions,volume change,and unwanted lithium dendrite growth seriously limit the practical application of LM.Herein,with the aid of a hard template approach,a novel lithiophilic CoF_(2)-carbon hollow sphere(CoF_(2)@C-HS)composite material is successfully prepared via a facile in-situ fluorination and etching strategy.The lithiophilic CoF_(2) acts as nucleation sites to reduce nucleation overpotential as well as induces the spatial Li deposition and the formation of LiFrich solid electrolyte interphase(SEI),and the hollow carbon matrix can enhance the electrical conductivity and offer free space for LM deposition.Theoretical simulations reveal that the synergistic effect of lithiophilic CoF_(2) and hollow carbon matrix homogenizes the electric field distribution and Li~+flux.Benefiting from these advantages,the CoF_(2)@C-HS-modified copper substrate electrode delivers an enhanced Coulombic efficiency(CE)of 93.7%for 280 cycles at 1 mA cm^(-2)and 1 mA h cm^(-2).The symmetrical cell using CoF_(2)@C-HS can stably cycle more than 1800 h with a low voltage hysteresis of 11 mV at a current density of 0.5 MA cm^(-2)and an areal capacity of 0.5 mA h cm^(-2).Moreover,the Li@CoF_(2)@C-HS composite anode enables more than 300 stable cycles at 1 C with a capacity retention of 95%in LiFePO_(4)-based full cell and 110 stable cycles at 1 C in LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)-based highvoltage full cell.This work might shed a new light on designing lithiophilic hosts to spatially confine LM deposition,realizing dendrite-free LM anodes and the practical applications of LM batteries.
基金the U.S.Department of Energy,Office of Basic Energy Sciences(DOE-BES),Division of Materials Sciences and Engineering under contract ERKCS89.We acknowledge support for 4D-STEM performed as part of user proposal at the Center for Nanophase Materials Sciences(CNMS),which is a US Department of Energy,Office of Science,User Facility.Microscopy performed using instrumentation within ORNL’s Materials Characterization Core provided by UTBattelle,LLC,under Contract No.DE-AC05-00OR22725 with the DOE and sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory,managed by UT-Battelle,LLC,for the U.S.Department of Energy.
文摘Recent advances in scanning transmission electron microscopy(STEM)have led to increased development of multidimensional STEM imaging modalities and novel image reconstruction methods.This interest arises because the main electron lens in a modern transmission electron microscope usually has a diffraction-space information limit that is significantly better than the real-space resolution of the same lens.This state-of-affairs is sometimes shared by other scattering methods in modern physics and contributes to a broader excitement surrounding multidimensional techniques that scan a probe while recording diffraction-space images,such as ptychography and scanning nano-beam diffraction.However,the contrasting resolution in the two spaces raises the question as to what is limiting their effective performance.Here,we examine this paradox by considering the effects of aberrations in both image and diffraction planes,and likewise separate the contributions of pre-and post-sample aberrations.This consideration provides insight into aberration-measurement techniques and might also indicate improvements for super-resolution techniques.
基金Samsung Research Fundings&Incubation Center of Samsung Electronics(Grant No.SRFCMA1702-01)Y.-M.K acknowledges partial support from the National Research Foundation of Korea(NRF)(Grant No.2023R1A2C2002403)funded by the Korean government in KoreaA.Borisevich acknowledges support from FaCT,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science,Office of Basic Energy Science,Collaboratives Research Division.
文摘The functionalities and diverse metastable phases of multiferroic BiFeO_(3)(BFO)thin films depend on the misfit strain.Although mixed phase-induced strain relaxation in multiphase BFO thin films is well known,it is unclear whether a singlecrystalline BFO thin film can accommodate misfit strain without the involvement of its polymorphs.Thus,understanding the strain relaxation behavior is key to elucidating the lattice strain–property relationship.In this study,a correlative strain analysis based on dark-field inline electron holography(DIH)and quantitative scanning transmission electron microscopy(STEM)was performed to reveal the structural mechanism for strain accommodation of a single-crystalline BFO thin film.The nanoscale DIH strain analysis results indicated a random combination of multiple strain states that acted as a primary strain relief,forming irregularly strained nanodomains.The STEM-based bond length measurement of the corresponding strained nanodomains revealed a unique strain accommodation behavior achieved by a statistical combination of multiple modes of distorted structures on the unit-cell scale.The globally integrated strain for each nanodomain was estimated to be close to1.5%,irrespective of the nanoscale strain states,which was consistent with the fully strained BFO film on the SrTiO_(3) substrate.Density functional theory calculations suggested that strain accommodation by the combination of metastable phases was energetically favored compared to single-phase-mediated relaxation.This discovery allows a comprehensive understanding of strain accommodation behavior in ferroelectric oxide films,such as BFO,with various low-symmetry polymorphs.
基金supported by the National Key R&D Program of China(Grant Nos.2023YFA1407300,2023YFA1406500,2022YFA1403800,and 2023YFF0718403)the National Natural Science Foundation of China(Grant Nos.12374060,12274459,and 12074162)+2 种基金Guangdong Provincial Quantum Science Strategic Initiative(Grant No.GDZX2201001)the Beijing Natural Science Foundation(Grant No.Z200005)Guangdong Basic and Applied Basic Research Foundation(Grant No.2022B1515130005)。
文摘The chiral 2×2 charge order has been reported and confirmed in the kagome superconductor RbV_(3)Sb_(5),while its interplay with superconductivity remains elusive owing to its lowest superconducting transition temperature Tc of about 0.85K in the AV_(3)Sb_(5) family(A=K,Rb,Cs)that severely challenges electronic spectroscopic probes.Here,utilizing dilution-refrigerator-based scanning tunneling microscopy down to 30 mK,we observe chiral 2×2 pair density waves with residual Fermi arcs in RbV_(3)Sb_(5).We find a superconducting gap of 150 μeV with substantial residual in-gap states.The spatial distribution of this gap exhibits chiral 2×2 modulations,signaling a chiral pair density wave(PDW).Our quasi-particle interference imaging of the zero-energy residual states further reveals arc-like patterns.We discuss the relation of the gap modulations with the residual Fermi arcs under the space-momentum correspondence between PDW and Bogoliubov Fermi states.
基金supported by the Learning & Academic Research Institution for Master’s and Ph.D. Students and Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. RS-2023-00285353)supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2021R1A2C3006662, NRF-2022R1A5A1030054, and 2021R1A2C1091301)+3 种基金the support from Natural Sciences and Engineering Research Council of Canada (NSERC)Canada Foundation for Innovation (CFI)Atlantic Canada Opportunities Agency (ACOA)the New Brunswick Innovation Foundation (NBIF)
文摘The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.
文摘Designing and optimizing complex scientific code for new computing architectures is a challenging task. To address this issue in the E3SM land model (ELM) development, we developed a software tool called SPEL, which facilitates code generation, verification, and performance tuning using compiler directives within a Function Unit Test framework. In this paper, we present a SPEL extension that leverages the version control system (e.g., Git) to autonomous code generation and demonstrate its application to continuous code integration and development of the ELM software system. The study can benefit the scientific software development community.
基金This paper is partly supported by the Chinese Academy of Sciences International Partnership Creative Group "The Climate System Model Development and Application Studies", the 973 project under Grant No. 2005CB321703 the Fund for Innovative Research Groups with Grant No. 40221503+2 种基金the National Natural Science Foundation of China under Grant Nos. 40225013the NSFC project with Grant No. 40233031 The participation of Paul J. Hanson in this work was supported by the U.S. Department of Energy (D0E), 0ffice of Science, Biological and Environmental Research (BER), as a part of the Program for Ecosystem Research (PER). The data from the Walker Branch AmeriFlux tower site (Kell Wilson and Dennis Baldocchi) was developed with funding from the D0E, 0ffice of Science (BER) as a part of its Terrestrial Carbon Processes (TCP) program and from NASA/GEWEX.
文摘The interest in the development and improvement of dynamic global vegetation models (DGVMs), which have the potential to simulate fluxes of carbon, water and nitrogen, along with changes in the vegetation dynamics, within an integrated system, has been increasing. In this paper, some numerical schemes and a higher resolution soil texture dataset were employed to improve the Sheffield Dynamic Global Vegetation Model (SDGVM). Using eddy covariance-based measurements, we then tested the standard version of the SDGVM and the modified version of the SDGVM. Detailed observations of daily carbon and water fluxes made at the upland oak forest on the Walker Branch Watershed in Tennessee, USA offered a unique opportunity for these comparisons. The results revealed that the modified version of the SDGVM did a reasonable job of simulating the carbon and water flux and the variation of soil water content (SWC). However, at the end of the growing season, it failed to simulate the effect of the limitations on the soil respiration dynamics and as a result underestimated this respiration. It was also noted that the modified version overestimated the increase in the SWC following summer rainfall, which was attributed to an inadequate representation of the ground water and thermal cycle.
基金The authors greatly appreciate the support from the U.S.Department of Energy’s Office of Energy Efficiency and Renewable Energy(EERE)under the Hydrogen and Fuel Cell Technologies Office Awards DE-EE0008426 and DE-EE0008423National Energy Technology Laboratory under Award DEFE0011585.
文摘Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings,high catalyst utilization and facile fabrication are urgently needed to enable cost-effective,green hydrogen production via proton exchange membrane electrolyzer cells(PEMECs).Herein,benefitting from a thin seeding layer,bottom-up grown ultrathin Pt nanosheets(Pt-NSs)were first deposited on thin Ti substrates for PEMECs via a fast,template-and surfactant-free electrochemical growth process at room temperature,showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies.Combined with an anode-only Nafion 117 catalyst-coated membrane(CCM),the Pt-NS electrode with an ultralow loading of 0.015 mgPt cm−2 demonstrates superior cell performance to the commercial CCM(3.0 mgPt cm^(−2)),achieving 99.5%catalyst savings and more than 237-fold higher catalyst utilization.The remarkable performance with high catalyst utilization is mainly due to the vertically well-aligned ultrathin nanosheets with good surface coverage exposing abundant active sites for the electrochemical reaction.Overall,this study not only paves a new way for optimizing the catalyst uniformity and surface coverage with ultralow loadings but also provides new insights into nanostructured electrode design and facile fabrication for highly efficient and low-cost PEMECs and other energy storage/conversion devices.
基金supported by National Institutes of Health(NIH),National Institute of Arthritis and Musculoskeletal and Skin Diseases(Grant RO1-AR071930)National Institute of Diabetes and Digestive and Kidney Diseases(Grant RO1 DK121132)supported by the Office of Science of the U.S.Department of Energy under Contract No.DE-AC05-00OR22725。
文摘Molecular mechanisms transducing physical forces in the bone microenvironment to regulate bone mass are poorly understood.Here,we used mouse genetics,mechanical loading,and pharmacological approaches to test the possibility that polycystin-1 and Wwtr1 have interdependent mechanosensing functions in osteoblasts.We created and compared the skeletal phenotypes of control Pkd1^(flox/)+;Wwtr1^(flox/)+,Pkd1^(Oc-cKO),Wwtr1^(Oc-cKO),and Pkd1/Wwtr1^(Oc-cKO)mice to investigate genetic interactions.Consistent with an interaction between polycystins and Wwtr1 in bone in vivo,Pkd1/Wwtr1^(Oc-cKO)mice exhibited greater reductions of BMD and periosteal MAR than either Wwtr1Oc-cKOor Pkd1^(Oc-cKO)mice.Micro-CT 3D image analysis indicated that the reduction in bone mass was due to greater loss in both trabecular bone volume and cortical bone thickness in Pkd1/Wwtr1Oc-cKO mice compared to either Pkd1Oc-cKOor Wwtr1^(Oc-cKO)mice.Pkd1/Wwtr1^(Oc-cKO)mice also displayed additive reductions in mechanosensing and osteogenic gene expression profiles in bone compared to Pkd1Oc-cKOor Wwtr1^(Oc-cKO)mice.Moreover,we found that Pkd1/Wwtr1^(Oc-cKO)mice exhibited impaired responses to tibia mechanical loading in vivo and attenuation of loadinduced mechanosensing gene expression compared to control mice.Finally,control mice treated with a small molecule mechanomimetic,MS2 that activates the polycystin complex resulted in marked increases in femoral BMD and periosteal MAR compared to vehicle control.In contrast,Pkd1/Wwtr1^(Oc-cKO)mice were resistant to the anabolic effects of MS2.These findings suggest that PC1 and Wwtr1 form an anabolic mechanotransduction signaling complex that mediates mechanical loading responses and serves as a potential novel therapeutic target for treating osteoporosis.
基金funded by the U.S. Department Energy’s Vehicle Technology Offices as a part of the Joining Core Program。
文摘Galvanic corrosion of AZ31B joined with bare or Zn-coated DP590 steel by ultrasonic spot welding or linear friction stir welding was quantitatively studied by pre-defining anode and cathode in the lap joint samples. Corrosion volume and depth from Mg anode surfaces exposed to 0.1 M sodium chloride solution was analyzed as functions of cathode surface type and welding method. Characterization of as-welded joints was performed to identify any microstructural feature of the bonding zone that could impact galvanic corrosion behavior.COMSOL modeling with modified user subroutine was conducted to simulate the progression of Mg corrosion in the same joint and electrode configurations used for the corrosion experiments. The experimental results indicated that Zn-coated cathode surface can reduce Mg galvanic corrosion significantly as galvanic polarization and cathodic current on Zn-coated surface remained relatively low for Mg in the weld joints.COMSOL modeling described the growth of Mg galvanic corrosion in a reasonable manner but showed limitation by underestimating the corrosion volume as it did not capture self-corrosion.
基金supported by the National Natural Science Foundation of China(Nos.12175010,11375022,11775014)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB34010000)US Department of Energy Office of Science,Office of Nuclear Physics,under Award Number DE-AC05-00OR22725.
文摘Approaches for predicting low-lying resonances,uniformly treating bound,and resonant levels have been a long-standing goal in nuclear theory.Accordingly,we explored the viability of the complex momentum representation(CMR)approach coupled with new potentials.We focus on predicting the energy of the low-lying 2p_(3∕2)resonance in 17 O,which is critical for s-process nucleosynthesis and missing in previous theoretical research.Using a Woods-Saxon potential based on the Koning-Delaroche optical model and constrained by the experimental one-neutron separation energy,we successfully predicted the resonant energy of this level for the first time.Our predictions of the bound levels and 1d_(3∕2)resonance agree well with the measurement results.Additionally,we utilize this approach to study the near-threshold resonances that play a role when forming a two-neutron halo in^(29,31)F.We found that the CMR-based predictions of the bound-level energies and unbound 1f7∕2 level agree well with the results obtained using the scattering phase shift method.Subsequently,we successfully found a solution for the 2p_(3∕2)resonance with energy just above the threshold,which is decisive for halo formation.
基金the US Department of Energy’s(DOE’s)Office of Energy Efficiency and Renewable Energy,Vehicle Technology Office,Powertrain Materials Core and Light Metals Core ProgramsSample characterization is also partially supported by the Technology Commercialization Fund Fiscal Year 2020 of DOE’s Office of Technology Transitionsby the Creative Materials Discovery Program through the National Research Foundation of Korea,with computational modeling of amorphous carbons funded by the Ministry of Science,ICT and Future Planning(NRF-2016M3D1A1919181)。
文摘Carbon and oxygen-rich corrosion barrier layer formed on Mg by a simple and scalable CO_(2) atmospheric plasma(CO_(2)-AP)process.The reactive CO_(2)-AP interacts with the Mg surface and forms a unique layered structure with the top MgCO_(3)/MgO-intermixed particulates pillars and the bottom dense layer.The surface features were simultaneously formed on the nano-/micro-structured MgO layer by carbonate molecules,plasma-active CO_(2) molecules,and/or other volatile organic compounds on the nano-/micro-structured MgO particle layer.The resulting surfaces after CO_(2)-AP were either hydrophobic or hydrophilic and exhibited lower anodic current or high resistance for Mg corrosion.For the hydrophobic surfaces of CO_(2)-AP treated Mg,molecular dynamic simulations were performed to understand the origin of hydrophobicity and identified that the amorphous carbon layers formed on the Mg surface are the source.The environmentally benign abundant-gas-based process enables the cost reduction associated with waste treatment,generation of by-product,and supply of raw material.
基金support of NSF Grants No.PHY-2010685(G.K)and No.DMS-1912716(S.F,S.G,and G.K),AFOSR Grant No.FA9550-18-1-0383(S.G)Office of Naval Research/Defense University Research Instrumentation Program(ONR/DURIP)Grant No.N00014181255+2 种基金the National Science Foundation under Grant No.DMS-1439786 while a subset of the authors were in residence at the Institute for Computational and Experimental Research in Mathematics in Providence,RI,during the Advances in Computational Relativity program.A part of this research is sponsored by the Office of Advanced Scientific Computing ResearchUS Department of Energy,and was performed at the Oak Ridge National Laboratory,which is managed by UT-Battelle,LLC under Contract no.De-AC05-00OR22725UT-Battelle,LLC,under contract DE-AC05-00OR22725 with the US Department of Energy.
文摘We develop and use a novel mixed-precision weighted essentially non-oscillatory(WENO)method for solving the Teukolsky equation,which arises when modeling perturbations of Kerr black holes.We show that WENO methods outperform higher-order finite-difference methods,standard in the discretization of the Teukolsky equation,due to the need to add dissipation for stability purposes in the latter.In particular,as the WENO scheme uses no additional dissipation,it is well suited for scenarios requiring long-time evolution such as the study of price tails and gravitational wave emission from extreme mass ratio bina-ries.In the mixed-precision approach,the expensive computation of the WENO weights is performed in reduced floating-point precision that results in a significant speedup factor of≈3.3.In addition,we use state-of-the-art Nvidia general-purpose graphics processing units and cluster parallelism to further accelerate the WENO computations.Our optimized WENO solver can be used to quickly generate accurate results of significance in the field of black hole and gravitational wave physics.We apply our solver to study the behavior of the Aretakis charge—a conserved quantity,that if detected by a gravitational wave observatory like LIGO/Virgo would prove the existence of extremal black holes.
文摘The genus Populus has long been used for environmental,agroforestry and industrial applications worldwide.Today Populus is also recognized as a desirable crop for biofuel production and a model tree for physiological and ecological research.As such,various modern biotechnologies,including CRISPR/Cas9-based techniques,have been actively applied to Populus for genetic and genomic improvements for traits such as increased growth rate and tailored lignin composition.However,CRISPR/Cas9 has been primarily used as the active Cas9 form to create knockouts in the hybrid poplar clone“717-1B4”(P.tremula x P.alba clone INRA 717-1B4).Alternative CRISPR/Cas9-based technologies,e.g.those involving modified Cas9 for gene activation and base editing,have not been evaluated in most Populus species for their efficacy.Here we employed a deactivated Cas9(dCas9)-based CRISPR activation(CRISPRa)technique to fine-tune the expression of two target genes,TPX2 and LecRLK-G which play important roles in plant growth and defense response,in hybrid poplar clone“717-1B4”and poplar clone“WV94”(P.deltoides“WV94”),respectively.We observed that CRISPRa resulted in 1.2-fold to 7.0-fold increase in target gene expression through transient expression in protoplasts and Agrobacterium-mediated stable transformation,demonstrating the effectiveness of dCas9-based CRISPRa system in Populus.In addition,we applied Cas9 nickase(nCas9)-based cytosine base editor(CBE)to precisely introduce premature stop codons via C-to-T conversion,with an efficiency of 13%–14%,in the target gene PLATZ which encodes a transcription factor involved in plant fungal pathogen response in hybrid poplar clone“717-1B4”.Overall,we showcase the successful application of CRISPR/Cas-based technologies in gene expression regulation and precise gene engineering in two Populus species,facilitating the adoption of emerging genome editing tools in woody species.
文摘Adventitious rooting(AR)is critical to the propagation,breeding,and genetic engineering of trees.The capacity for plants to undergo this process is highly heritable and of a polygenic nature;however,the basis of its genetic variation is largely uncharacterized.To identify genetic regulators of AR,we performed a genome-wide association study(GWAS)using 1148 genotypes of Populus trichocarpa.GWASs are often limited by the abilities of researchers to collect precise phenotype data on a high-throughput scale;to help overcome this limitation,we developed a computer vision system to measure an array of traits related to adventitious root development in poplar,including temporal measures of lateral and basal root length and area.GWAS was performed using multiple methods and significance thresholds to handle non-normal phenotype statistics and to gain statistical power.These analyses yielded a total of 277 unique associations,suggesting that genes that control rooting include regulators of hormone signaling,cell division and structure,reactive oxygen species signaling,and other processes with known roles in root development.Numerous genes with uncharacterized functions and/or cryptic roles were also identified.These candidates provide targets for functional analysis,including physiological and epistatic analyses,to better characterize the complex polygenic regulation of AR.
基金supported by the US National Science Foundation(CBET-2021956).
文摘1.Introduction,The interconnection among food-energy-water(FEW)systems in meeting societal demands is broadly acknowledged[1].Similarly,competitive or synergistic allocations of water and energy resources for agricultural production,manufacturing,and human consumption are understood,and their economic impacts can be predicted[2].Far less appreciated and understood are the outcomes of the FEW nexus in response to operation changes in agricultural practices and the associated technological innovations for future generations[3,4].Also,the inter-scale and feedback effects of emerging technology-driven resource reallocation and decision-making on FEW systems are largely unknown.For example,how do the agroeconomic feedbacks of intelligent technologies influence the FEW nexus of agricultural production under environmental and demographic changes?How does the necessary water allocation for powering non-powered dams and pumped-storage hydropower generation influence agricultural production and municipal water supply maintenance?How do solar and wind energy farms influence land use for agriculture and the rural economy?
基金supported by the National Key R&D Program of China (Grant Nos. 2020YFA0308900 and 2022YFA1403700)the National Natural Science Foundation of China (Grant Nos. 12074163, 12134020, 11974157, 12104255, 12004159, and 12374146)+8 种基金Guangdong Provincial Key Laboratory for Computational Science and Material Design (Grant No. 2019B030301001)the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant Nos. ZDSYS20190902092905285 and KQTD20190929173815000)Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2022B1515020046, 2021B1515130007, 2022A1515011915, 2019A1515110712, and 2022B1515130005)Shenzhen Science and Technology Program (Grant Nos. RCJC20221008092722009 and RCBS20210706092218039)the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2019ZT08C044)the beam time awarded by Australia’s Nuclear Science and Technology Organisation (ANSTO) (Grant No. P8130)the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Research Complex (J-PARC) was performed under a user program (Proposal No. 2019B0140)performed at the Hiroshima Synchrotron Radiation Center (HiSOR) of Japan (Grant Nos. 22BG023 and 22BG029)Shanghai Synchrotron Radiation Facility (SSRF) BL03U (Grant No. 2022-SSRF-PT-020848)。
文摘In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it is predicted that in the nonrelativistic limit of certain collinear antiferromagnets, there exists a type of chiral“Dirac-like” fermion, whose dispersion manifests four-fold degenerate crossing points formed by spin-degenerate linear bands, with topologically protected Fermi arcs. Such an unconventional chiral fermion, protected by a hidden SU(2) symmetry in the hierarchy of an enhanced crystallographic group, namely spin space group, is not experimentally verified yet. Here, by angle-resolved photoemission spectroscopy measurements, we reveal the surface origin of the electron pocket at the Fermi surface in collinear antiferromagnet CoNb3S6. Combining with neutron diffraction and first-principles calculations, we suggest a multidomain collinear antiferromagnetic configuration, rendering the the existence of the Fermi-arc surface states induced by chiral Dirac-like fermions.Our work provides spectral evidence of the chiral Dirac-like fermion caused by particular spin symmetry in CoNb_(3)S_(6), paving an avenue for exploring new emergent phenomena in antiferromagnets with unconventional quasiparticle excitations.