In addressing the challenge of motion artifacts in Positron Emission Tomography (PET) lung scans, our studyintroduces the Triple Equivariant Motion Transformer (TEMT), an innovative, unsupervised, deep-learningbasedfr...In addressing the challenge of motion artifacts in Positron Emission Tomography (PET) lung scans, our studyintroduces the Triple Equivariant Motion Transformer (TEMT), an innovative, unsupervised, deep-learningbasedframework for efficient respiratory motion correction in PET imaging. Unlike traditional techniques,which segment PET data into bins throughout a respiratory cycle and often face issues such as inefficiency andoveremphasis on certain artifacts, TEMT employs Convolutional Neural Networks (CNNs) for effective featureextraction and motion decomposition.TEMT’s unique approach involves transforming motion sequences into Liegroup domains to highlight fundamental motion patterns, coupled with employing competitive weighting forprecise target deformation field generation. Our empirical evaluations confirm TEMT’s superior performancein handling diverse PET lung datasets compared to existing image registration networks. Experimental resultsdemonstrate that TEMT achieved Dice indices of 91.40%, 85.41%, 79.78%, and 72.16% on simulated geometricphantom data, lung voxel phantom data, cardiopulmonary voxel phantom data, and clinical data, respectively. Tofacilitate further research and practical application, the TEMT framework, along with its implementation detailsand part of the simulation data, is made publicly accessible at https://github.com/yehaowei/temt.展开更多
基金the National Natural Science Foundation of China(No.82160347)Yunnan Provincial Science and Technology Department(No.202102AE090031)Yunnan Key Laboratory of Smart City in Cyberspace Security(No.202105AG070010).
文摘In addressing the challenge of motion artifacts in Positron Emission Tomography (PET) lung scans, our studyintroduces the Triple Equivariant Motion Transformer (TEMT), an innovative, unsupervised, deep-learningbasedframework for efficient respiratory motion correction in PET imaging. Unlike traditional techniques,which segment PET data into bins throughout a respiratory cycle and often face issues such as inefficiency andoveremphasis on certain artifacts, TEMT employs Convolutional Neural Networks (CNNs) for effective featureextraction and motion decomposition.TEMT’s unique approach involves transforming motion sequences into Liegroup domains to highlight fundamental motion patterns, coupled with employing competitive weighting forprecise target deformation field generation. Our empirical evaluations confirm TEMT’s superior performancein handling diverse PET lung datasets compared to existing image registration networks. Experimental resultsdemonstrate that TEMT achieved Dice indices of 91.40%, 85.41%, 79.78%, and 72.16% on simulated geometricphantom data, lung voxel phantom data, cardiopulmonary voxel phantom data, and clinical data, respectively. Tofacilitate further research and practical application, the TEMT framework, along with its implementation detailsand part of the simulation data, is made publicly accessible at https://github.com/yehaowei/temt.