Solar-powered carbon dioxide (CO_2)-to-fuel conversion presents itself as an ideal solution for both CO_2 mit- igation and the rapidly growing world energy demand. In this work, the heating effect of light irradiati...Solar-powered carbon dioxide (CO_2)-to-fuel conversion presents itself as an ideal solution for both CO_2 mit- igation and the rapidly growing world energy demand. In this work, the heating effect of light irradiation onto a bed of supported nickel (Ni) catalyst was utilized to facilitate CO_2 conversion. Ceria (CeO_2)-titania (TiO_2) oxide supports of different compositions were employed and their effects on photothermal CO_2 conver- sion examined, Two factors are shown to be crucial for instigating photothermal CO_2 methanation activity: ① Fine nickel deposits are required for both higher active catalyst area and greater light absorption capacity for the initial heating of the catalyst bed; and ② the presence of defect sites on the support are necessary to promote adsorption of C02 for its subsequent activation, Titania inclusion within the support plays a crucial role in maintaining the oxygen vacancy defect sites on the (titanium-doped) cerium oxide. The combination of elevated light absorption and stabilized reduced states for CO_2 adsorption subsequently invokes effective Dhotothermal CO_2 methanation when the ceria and titania are blended in the ideal ratio(s).展开更多
基金financially supported by the Australian Research Council under the Laureate Fellowship Scheme (FL140100081)
文摘Solar-powered carbon dioxide (CO_2)-to-fuel conversion presents itself as an ideal solution for both CO_2 mit- igation and the rapidly growing world energy demand. In this work, the heating effect of light irradiation onto a bed of supported nickel (Ni) catalyst was utilized to facilitate CO_2 conversion. Ceria (CeO_2)-titania (TiO_2) oxide supports of different compositions were employed and their effects on photothermal CO_2 conver- sion examined, Two factors are shown to be crucial for instigating photothermal CO_2 methanation activity: ① Fine nickel deposits are required for both higher active catalyst area and greater light absorption capacity for the initial heating of the catalyst bed; and ② the presence of defect sites on the support are necessary to promote adsorption of C02 for its subsequent activation, Titania inclusion within the support plays a crucial role in maintaining the oxygen vacancy defect sites on the (titanium-doped) cerium oxide. The combination of elevated light absorption and stabilized reduced states for CO_2 adsorption subsequently invokes effective Dhotothermal CO_2 methanation when the ceria and titania are blended in the ideal ratio(s).