Based on comprehensive analysis of tectonic and fault evolution, core, well logging, seismic, drilling, and production data, the reservoir space characteristic, distribution, origin of fault-karst carbonate reservoir ...Based on comprehensive analysis of tectonic and fault evolution, core, well logging, seismic, drilling, and production data, the reservoir space characteristic, distribution, origin of fault-karst carbonate reservoir in Yueman block of South Tahe area, Halahatang oilfield, Tarim Basin, were studied systematically. And the regular pattern of hydrocarbon accumulation and enrichment was analyzed systematically based on development practice of the reservoirs. The results show that fault-karst carbonate reservoirs are distributed in the form of "body by body" discontinuously, heterogeneously and irregularly, which are controlled by the development of faults. Three formation models of fault-karst carbonate reservoirs, namely, the models controlled by the main deep-large fault, the secondary fault and the secondary internal fault, are built. The hydrocarbon accumulation and enrichment of fault-karst carbonate reservoirs is controlled by the spatiotemporal matching relation between hydrocarbon generation period and fault activity, and the size and segmentation of fault. The study results can effectively guide the well deployment and help the efficient development of fault-karst carbonate reservoirs of South Tahe area, Halahatang oilfield.展开更多
Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression an...Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression and permeability tests to investigate the mechanical and seepage properties of tight sandstone.A digital core of tight sandstone was built using Computed Tomography(CT)scanning,which was divided into matrix and pore phases by a pore equivalent diameter threshold.A fluid-solid coupling model was established to investigate the seepage characteristics at micro-scale.The results showed that increasing the confining pressure decreased porosity,permeability,and flow velocity,with the pore phase becoming the dominant seepage channel.Cracks and large pores closed first under increasing pressure,resulted in a steep drop in permeability.However,permeability slightly decreased under high confining pressure,which followed a first-order exponential function.Flow velocity increased with seepage pressure.And the damage mainly occurred in stress-concentration regions under low seepage pressure.Seepage behavior followed linear Darcy flow,the damage emerged at seepage entrances under high pressure,which decreased rock elastic modulus and significantly increased permeability.展开更多
Recent studies, focused on dihedral angles and intersection processes, have increased understandings of conjugate fault mechanisms. We present new 3-D seismic data and microstructural core analysis in a case study of ...Recent studies, focused on dihedral angles and intersection processes, have increased understandings of conjugate fault mechanisms. We present new 3-D seismic data and microstructural core analysis in a case study of a large conjugate strike-slip fault system from the intracratonic Tarim Basin, NW China. Within our study area, "X" type NE and NW trending faults occur within Cambrian- Ordovician carbonates. The dihedral angles of these conjugate faults have narrow ranges, 19~ to 62~ in the Cambrian and 26~ to 51~ in the Ordovician, and their modes are 42~ and 44~ respectively. These data are significantly different from the ~60~ predicted by the Coulomb fracture criterion. It is concluded that: (1) The dihedral angles of the conjugate faults were not controlled by confining pressure, which was low and associated with shallow burial; (2) As dihedral angles were not controlled by pressure they can be used to determine the shortening direction during faulting; (3) Sequential slip may have played an important role in forming conjugate fault intersections; (4) The conjugate fault system of the Tarim basin initiated as rhombic joints; these subsequently developed into sequentially active "X" type conjugate faults; followed by preferential development of the NW-trending faults; then reactivation of the NE trending faults. This intact rhombic conjugate fault system presents new insights into mechanisms of dihedral angle development, with particular relevance to intracratonic basins.展开更多
Understanding hydrocarbon migration and accumulation mechanisms is one of the key scientif ic problems that should be solved for effective hydrocarbon exploration in the superimposed basins developed in northwest Chin...Understanding hydrocarbon migration and accumulation mechanisms is one of the key scientif ic problems that should be solved for effective hydrocarbon exploration in the superimposed basins developed in northwest China. The northwest striking No.1 slope break zone, which is a representative of superimposed basins in the Tarim Basin, can be divided into five parts due to the intersection of the northeast strike-slip faults. Controlled by the tectonic framework, the types and properties of reservoirs and the hydrocarbon compositions can also be divided into five parts from east to west. Anomalies of all the parameters were found on the fault intersection zone and weakened up-dip along the structural ridge away from it. Thus, it can be inferred that the intersection zone is the hydrocarbon charging position. This new conclusion differs greatly from the traditional viewpoint, which believes that the hydrocarbon migrates and accumulates along the whole plane of the No.1 slope break zone. The viewpoint is further supported by the evidence from the theory of main pathway systems, obvious improvement of the reservoir quality (2-3 orders of magnitude at the intersection zone) and the formation mechanisms of the fault intersection zone. Differential hydrocarbon migration and entrapment exists in and around the strike- slip faults. This is controlled by the internal structure of faults. It is concluded that the more complicated the fault structure is, the more significant the effects will be. If there is a deformation band, it will hinder the cross fault migration due to the common feature of two to four orders of magnitude reduction in permeability. Otherwise, hydrocarbons tend to accumulate in the up-dip structure under the control of buoyancy. Further research on the internal fault structure should be emphasized.展开更多
Based on comprehensive analysis of reservoir-forming conditions, the diversity of reservoir and the difference of multistage hydrocarbon charge are the key factors for the carbonate hydrocarbon accumulation of the Ord...Based on comprehensive analysis of reservoir-forming conditions, the diversity of reservoir and the difference of multistage hydrocarbon charge are the key factors for the carbonate hydrocarbon accumulation of the Ordovician in the Tarim Basin. Undergone four major deposition-tectonic cycles, the Ordovician carbonate formed a stable structural framework with huge uplifts, in which are developed reservoirs of the reef-bank type and unconformity type, and resulted in multistage hydrocarbon charge and accumulation during the Caledonian, Late Hercynian and Late Himalayan. With low matrix porosity and permeability of the Ordovician carbonate, the secondary solution pores and caverns serve as the main reservoir space. The polyphase tectonic movements formed unconformity reservoirs widely distributed around the paleo-uplifts; and the reef-bank reservoir is controlled by two kinds of sedimentary facies belts, namely the steep slope and gentle slope. The unconventional carbonate pool is characterized by extensive distribution, no obvious edge water or bottom water, complicated oil/gas/water relations and severe heterogeneity controlled by reservoirs. The low porosity and low permeability reservoir together with multi-period hydrocarbon accumulation resulted in the difference and complex of the distribution and production of oil/gas/water. The distribution of hydrocarbon is controlled by the temporal-spatial relation between revolution of source rocks and paleo-uplifts. The heterogenetic carbonate reservoir and late-stage gas charge are the main factors making the oil/ gas phase complicated. The slope areas of the paleo-uplifts formed in the Paleozoic are the main carbonate exploration directions based on comprehensive evaluation. The Ordovician of the northern slope of the Tazhong uplift, Lunnan and its periphery areas are practical exploration fields. The Yengimahalla-Hanikatam and Markit slopes are the important replacement targets for carbonate exploration. Gucheng, Tadong, the deep layers of Cambrian dolomite in the Lunnan and Tazhong-Bachu areas are favorable directions for research and risk exploration.展开更多
The major storage space types in the carbonate reservoir in the Ordovician in the TZ45 area are secondary dissolution caves.For the prediction of caved carbonate reservoir,post-stack methods are commonly used in the o...The major storage space types in the carbonate reservoir in the Ordovician in the TZ45 area are secondary dissolution caves.For the prediction of caved carbonate reservoir,post-stack methods are commonly used in the oilfield at present since pre-stack inversion is always limited by poor seismic data quality and insufficient logging data.In this paper,based on amplitude preserved seismic data processing and rock-physics analysis,pre-stack inversion is employed to predict the caved carbonate reservoir in TZ45 area by seriously controlling the quality of inversion procedures.These procedures mainly include angle-gather conversion,partial stack,wavelet estimation,low-frequency model building and inversion residual analysis.The amplitude-preserved data processing method can achieve high quality data based on the principle that they are very consistent with the synthetics.Besides,the foundation of pre-stack inversion and reservoir prediction criterion can be established by the connection between reservoir property and seismic reflection through rock-physics analysis.Finally,the inversion result is consistent with drilling wells in most cases.It is concluded that integrated with amplitude-preserved processing and rock-physics,pre-stack inversion can be effectively applied in the caved carbonate reservoir prediction.展开更多
The origin of the unusually high dibenzothiophene (DBT) concentrations in Lower Ordovician oils from the Tazhong Uplift,Tarim Basin was studied by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR...The origin of the unusually high dibenzothiophene (DBT) concentrations in Lower Ordovician oils from the Tazhong Uplift,Tarim Basin was studied by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS).The most abundant sulfur compounds in the oils are S 1 species with doublebond equivalent (DBE) values of 1-19 and 11-48 carbon atoms.The range of the number of carbon atoms in the sulfur compounds detected by the FT-ICR MS (S 1 species with DBE=9) is about ten times larger than that for sulfur compounds detected by GC/MS (DBTs).This suggests that FT-ICR MS is a much better approach than GC/MS for characterization of DBTs in crude oils.The abundance of S 1 species with DBE=1-8 decreased with increasing thermal maturity,while the abundance of S 1 species with DBE=9 (primarily DBTs) increased.Therefore,thermal maturity is an important factor in the formation of oils with high DBT concentrations.Unusually high abundances of S 1 species with low DBE values (1-8),which include sulfide,thiophene and benzothiophene,were observed in several oils,especially the TZ83 (O 1) oil with high or very high thermal maturity.Thermochemical sulfate reduction (TSR) was thought to be the reason for the high abundance of these low DBE compounds in deep reservoirs,and thermochemical sulfate reduction could affect the distribution and composition of DBTs in the oils.According to the results of FT-ICR MS analysis,there are no signs that TSR is occurring or has occurred recently for most of the Lower Ordovician oils.展开更多
The Tarim Basin is the largest petroliferous basin in the northwest of China, and is composed of a Paleozoic marine craton basin and a Meso-Cenozoic continental foreland basin. It is of great significance in explorati...The Tarim Basin is the largest petroliferous basin in the northwest of China, and is composed of a Paleozoic marine craton basin and a Meso-Cenozoic continental foreland basin. It is of great significance in exploration of Ordovician. In over 50 years of exploration, oil and gas totaling over 1.6 billion tonnes oil-equivalent has been discovered in the Ordovician carbonate formation. The accumulation mechanisms and distribution rules are quite complicated because of the burial depth more than 3,500 m, multi-source, and multi-stage accumulation, adjustment, reconstruction and re-enrichment in Ordovician. In this paper, we summarized four major advances in the hydrocarbon accumulation mechanisms of Ordovician carbonate reservoirs. First, oil came from Cambrian and Ordovician source rocks separately and as a mixture, while natural gas was mainly cracked gas generated from the Cambrian-Lower Ordovician crude oil. Second, most hydrocarbon migrated along unconformities and faults, with different directions in different regions. Third, hydrocarbon migration and accumulation had four periods: Caledonian, early Hercynian, late Hercynian and Himalayan, and the latter two were the most important for oil and gas exploration. Fourth, hydrocarbon accumulation and evolution can be generally divided into four stages: Caledonian (the period of hydrocarbon accumulation), early Hercynian (the period of destruction), late Hercynian (the period of hydrocarbon reconstruction and re-accumulation), and Himalayan (the period of hydrocarbon adjustment and re-accumulation). Source rocks (S), combinations of reservoir-seal (C), paleo-uplifts (M), structure balance belt (B) matched in the same time (T) control the hydrocarbon accumulation and distribution in the Ordovician formations. Reservoir adjustment and reconstruction can be classified into two modes of physical adjustment and variation of chemical compositions and five mechanisms. These mechanisms are occurrence displacement, biodegradation, multi-source mixing, high-temperature cracking and late gas invasion. Late hydrocarbon accumulation effects controlled the distribution of current hydrocarbon. The T-BCMS model is a basic geological model to help understanding the control of reservoirs. At present, the main problems of hydrocarbon accumulation focus on two aspects, dynamic mechanisms of hydrocarbon accumulation and the quantitative models of oil-bearing in traps, which need further systemic research.展开更多
Understanding the scaling relation of damage zone width with displacement of faults is important for predicting subsurface faulting mechanisms and fluid flow processes. The understanding of this scaling relationship i...Understanding the scaling relation of damage zone width with displacement of faults is important for predicting subsurface faulting mechanisms and fluid flow processes. The understanding of this scaling relationship is influenced by the accuracy of the methods and types of data utilized to investigate faults. In this study, seismic reflection data are used to investigate the throw and damage zone width of five strike-slip faults a ecting Ordovician carbonates of the Tarim intracraton basin,NW China. The results indicate that fault slips with a throw less than 200 m had formed wide damage zones up to 3000 m in width. Also, damage zone width is found to have both a positive correlation and a power-law relation with throw of two orders of magnitude, with a ratio of these values varying in a range of 2–15. The relationship between throw and damage zone width is not a simple power-law and changes its slope from small to larger size faults. The results indicate that throw scales well with damage zone width for the studied faults, and hence these can be used to predict fault geometries in the Tarim Basin. The study of the wide carbonate damage zones presented here provides new insights into scaling of large-size faults, which involve multiple faulting stages.展开更多
The carbonate reservoirs in the Tarim Basin are characterized by low matrix-porosity,heterogeneity and anisotropy,which make it difficult to predict and evaluate these reservoirs.The reservoir formations in Lundong ar...The carbonate reservoirs in the Tarim Basin are characterized by low matrix-porosity,heterogeneity and anisotropy,which make it difficult to predict and evaluate these reservoirs.The reservoir formations in Lundong area experienced a series of diagenesis and tectonic evolution stages.And secondary storage spaces such as fractures and dissolution caves were developed while nearly all the primary pores have disappeared.Based on a summary of different types of storage spaces and their responses in conventional logs,FMI and full waveform sonic logs which are sensitive to different reservoirs,the comprehensive probability index (CPI) method is applied to evaluating the reservoirs and a standard of reservoir classification is established.By comparing the evaluation results with actual welllogging results,the method has proven to be practical for formation evaluation of carbonate reservoirs,especially for the fractured carbonate reservoirs.In reservoir fluid identification,the multivariate stepwise discriminant analysis (MSDA) method is introduced.Combining the CPI method and MSDA method,comprehensive formation evaluation has been performed for fractured and caved carbonate reservoirs in the Tarim Basin.Additionally,on the basis of secondary pore inversion results,another new method of formation evaluation is also proposed in the discussion part of this paper.Through detailed application result analysis,the method shows a promising capability for formation evaluation of complex carbonate reservoirs dominated by various secondary pores such as holes,caves,and cracks.展开更多
Conventional seismic exploration method based on post-stack data usually fails to identify the distribution of fractured and caved carbonate reservoirs in the Tarim Basin,so the rich pre-stack information should be ap...Conventional seismic exploration method based on post-stack data usually fails to identify the distribution of fractured and caved carbonate reservoirs in the Tarim Basin,so the rich pre-stack information should be applied to the prediction of carbonate reservoirs.Amplitude-preserved seismic data processing is the foundation.In this paper,according to the feature of desert seismic data (including weak reflection,fast attenuation of high frequency components,strong coherent noises,low S/N and resolution),a set of amplitude-preserved processing techniques is applied and a reasonable processing flow is formed to obtain the high quality data.After implementing a set of pre-stack amplitude-preserved processing,we test and define the kernel parameters of amplitude-preserved Kirchhoff PSTM (pre-stack time migration) and subsequent gathers processing,in order to obtain the amplitude-preserved gathers used to the isotropic pre-stack inversion for the identification of caved reservoirs.The AVO characteristics of obtained gathers fit well with the synthetic gathers from logging data,and it proves that the processing above is amplitudepreserved.The azimuthal processing techniques,including azimuth division and binning enlargement,are implemented for amplitude-preserved azimuthal gathers with the uniform fold.They can be used in the anisotropic inversion to detect effective fractures.The processing techniques and flows are applied to the field seismic data,and are proved available for providing the amplitude-preserved gathers for carbonate reservoir prediction in the Tarim Basin.展开更多
The carbonate reservoirs in the Tarim Basin are characterized by anisotropy and strong heterogeneity.Combined with an integrated analysis of data from seismic,geology,and drilling results,a series of attributes which ...The carbonate reservoirs in the Tarim Basin are characterized by anisotropy and strong heterogeneity.Combined with an integrated analysis of data from seismic,geology,and drilling results,a series of attributes which are suitable for fractured and caved carbonate reservoir prediction is discussed,including amplitude,coherence analysis,spectra decomposition,seismic absorption attenuation analysis and impedance inversion.Moreover,3-D optimization of these attributes is achieved by integration of multivariate discriminant analysis and principle component analysis,where the logging data are taken as training samples.Using the optimized results,the spatial distribution and configuration features of the caved reservoirs can be characterized in detail.This technique not only improves the understanding of the spatial distribution of current reservoirs but also provides a significant basis for the discovery and production of carbonate reservoirs in the Tarim Basin.展开更多
In recent years, great progress has been made constantly in oil and gas exploration in the Lungudong region of the Tarim Basin. However, progress has been slow in the evaluation of its main oil-producing horizons -- t...In recent years, great progress has been made constantly in oil and gas exploration in the Lungudong region of the Tarim Basin. However, progress has been slow in the evaluation of its main oil-producing horizons -- the Ordovician carbonate reservoir beds. Based on previous researches and on the various data such as drilling, geology and oil test, in combination with the interpretation of each single-well imaging and conventional logging data, and through analysis and comparison, the identification methods in imaging and conventional logging for four types of carbonate reservoir beds in this region are summarized in this paper. Calculation formulas for four reservoir bed parameters, i. e. shale content, porosity, permeability and oil saturation in this region are proposed; and reservoir beds in this region are divided into three levels (Ⅰ, Ⅱ and Ⅲ) by combining oil test data and logging data, The lower limits of the effective porosity of reservoir beds and the fracture porosity of effective reservoir beds are determined as 1.8% and 0.04%, respectively. The physical property parameters are calculated by conventional logging curves, and the most advantageous areas for reservoir development are predicted comprehensively. On the plane, the high-value zones of reservoir bed parameters are mainly concentrated in the N-S-trending strike-slip fault, the Sangtamu fault horst zone and near the LG38 well area; vertically, the reservoir bed parameters of the Yijianfang Formation are better than those of the Yingshan and Lianglitage formations.展开更多
Fractured reservoirs always show anisotropic amplitude features,i.e.the reflection amplitude of seismic waves varies with offset and azimuth (AVOZ).A noise attenuation fracture inversion algorithm is presented for f...Fractured reservoirs always show anisotropic amplitude features,i.e.the reflection amplitude of seismic waves varies with offset and azimuth (AVOZ).A noise attenuation fracture inversion algorithm is presented for fracture detection based on P-wave AVOZ.The conventional inversion method always fails when applied to limited azimuth data because of the existence of noise.In our inversion algorithm,special attention is paid to suppressing the noise during inversion,to overcome the limitation of the conventional inversion method on limited azimuth data.Numerical models are employed to illustrate the effectiveness of the method.The inversion algorithm is then applied to Tazhong 45 area field data which is acquired under limited azimuth distribution.Compared with cores and fullbore formation microimage (FMI),the inverted results (fracture density and orientation) are reasonable,suggesting that the inversion algorithm is feasible for fracture prediction in the Tarim Basin.展开更多
Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the con...Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the conventional AVO inversion method based on HTI theory to predict fracture development will result in some errors.Thus,an integrated research concept for fractured reservoir prediction is put forward in this paper.Seismic modeling plays a bridging role in this concept,and the establishment of an anisotropic fracture model by Discrete Fracture Network (DFN) is the key part.Because the fracture system in the Tarim Basin shows complex anisotropic characteristics,it is vital to build an effective anisotropic model.Based on geological,well logging and seismic data,an effective anisotropic model of complex fracture systems can be set up with the DFN method.The effective elastic coefficients,and the input data for seismic modeling can be calculated.Then seismic modeling based on this model is performed,and the seismic response characteristics are analyzed.The modeling results can be used in the following AVO inversion for fracture detection.展开更多
Previous studies have postulated the contribution of present-day low-total organic carbon (TOC) marine carbonate source rocks to oil accumulations in the Tabei Uplift, Tarim Basin, China. However, not all present-da...Previous studies have postulated the contribution of present-day low-total organic carbon (TOC) marine carbonate source rocks to oil accumulations in the Tabei Uplift, Tarim Basin, China. However, not all present-day low-TOC carbonates have generated and expelled hydrocarbons; therefore, to distinguish the source rocks that have already expelled sufficient hydrocarbons from those not expelled hydrocarbons, is crucial in source rock evaluation and resource assessment in the Tabei Uplift. Mass balance can be used to identify modern low-TOC carbonates resulting from hydrocarbon expulsion. However, the process is quite complicated, requiring many parameters and coefficients and thus also a massive data source. In this paper, we provide a quick and cost effective method for identifying carbonate source rock with present-day low TOC, using widely available Rock-Eval data. First, we identify present-day low-TOC carbonate source rocks in typical wells according to the mass balance approach. Second, we build an optimal model to evaluate source rocks from the analysis of the rocks' characteristics and their influencing factors, reported as positive or negative values of a dimensionless index of Rock-Eval data (IR). Positive IR corresponds to those samples which have expelled hydrocarbons. The optimal model optimizes complicated calculations and simulation processes; thus it could be widely applicable and competitive in the evaluation of present-day low TOC carbonates. By applying the model to the Rock-Eval dataset of the Tabei Uplift, we identify present-day iow-TOC carbonate source rocks and primarily evaluate the contribution equivalent of 11.87×10^9 t oil.展开更多
Fault attributes generally display a consistent power–law-scaling relationship.Based on new 3 D seismic data,however,we found some exceptional fault attribute relationships of lengths(L)–throw(T)(vertical component ...Fault attributes generally display a consistent power–law-scaling relationship.Based on new 3 D seismic data,however,we found some exceptional fault attribute relationships of lengths(L)–throw(T)(vertical component of displacement),overlap zone length(Lo)–width(Wo)from a strike-slip fault system of the Ordovician carbonates in the Tarim Basin.The L–T relationship shows two linear segments with breakup at^40 km in fault length.This presents an exceptional throw increase in the second stage,which is attributed to a localization of vertical displacement and deformation in overlapping zones other than the different fault scales in a mature fault zone.The Lo–Wo relationship in the overlapping zones shows multiply stepped-shape patterns,suggesting multiple fault differential growth and periodic increase in fault size.Therefore,we propose a new alternative growth model of fault attributes in strike-slip fault zones,in which the overlapping zones accumulated localized displacement and deformation in the intracratonic strike-slip fault zone.展开更多
Based on analysis of the reasons for low efficiency and low production after fracturing of some wells in the ultra-deep fractured tight reservoirs of the Kuqa piedmont zone, Tarim Basin and the matching relationship b...Based on analysis of the reasons for low efficiency and low production after fracturing of some wells in the ultra-deep fractured tight reservoirs of the Kuqa piedmont zone, Tarim Basin and the matching relationship between the in-situ stress field and natural fractures, technological methods for creating complex fracture networks are proposed. Through theoretical study and large-scale physical simulation experiments, the mechanical conditions for forming complex fracture network in the Kuqa piedmont ultra-deep reservoirs are determined. The effectiveness of temporary plugging and diversion, and multi-stage fracturing to activate natural fractures and consequently realize multi-stage diversion is verified. The coupling effect of hydraulic fractures and natural fractures activating each other and resulting in "fracture swarms" is observed. These insights provide theoretical support for improving fracture-controlled stimulated reservoir volume(FSRV) in ultra-deep tight reservoirs. In addition, following the concept of volume fracturing technology and based on the results of fracture conductivity experiments of different processes, fracturing technologies such as multi-stage fracture-network acid fracturing, "multi-stage temporary plugging + secondary fracturing", fracturing of multiple small layers by vertically softness-and-hardness-oriented subdivision, and weighted-fluid refracturing are proposed to increase the FSRV. New environment-friendly weighted-fluid with low cost and new fracturing fluid system with low viscosity and high proppant-carrying capacity are also developed. These techniques have achieved remarkable results in field application.展开更多
Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of...Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of using hydrophobically modified silica nanoparticle(HMN)to enhance the comprehensive performance of WBDFs in the Xinjiang Oilfield,especially the anti-collapse performance.The effect of HMN on the overall performance of WBDFs in the Xinjiang Oilfield,including inhibition,plugging,lu-bricity,rheology,and filtration loss,was studied with a series of experiments.The mechanism of HMN action was studied by analyzing the changes of shale surface structure and chemical groups,wettability,and capillary force.The experimental results showed that HMN could improve the performance of WBDFs in the Xinjiang Oilfeld to inhibit the hydration swelling and dispersion of shale.The plugging and lubrication performance of the WBDFs in the Xinjiang Oilfield were also enhanced with HMN based on the experimental results.HMN had less impact on the rheological and filtration performance of the WBDFs in the Xinjiang Oilfield.In addition,HMN significantly prevented the decrease of shale strength.The potential mechanism of HMN was as follows.The chemical composition and structure of the shale surface were altered due to the adsorption of HMN driven by electrostatic attraction.Changes of the shale surface resulted in significant wettability transition.The capillary force of the shale was converted from a driving force of water into the interior to a resistance.In summary,hydrophobic nanoparticles presented afavorable application potential for WBDFs.展开更多
The Ordovician carbonate reservoirs in the Tarim Basin with secondary dissolution pores and vugs have complicated pore structures. The weathering crust reservoirs mainly consist of large cavities or vugs connected by ...The Ordovician carbonate reservoirs in the Tarim Basin with secondary dissolution pores and vugs have complicated pore structures. The weathering crust reservoirs mainly consist of large cavities or vugs connected by fractures, but most of the reef-shoal reservoirs have complex and small throats among matrix pores. The pore structure can be divided into four types: big pore and big throat, big pore but small throat, small pore and small throat, and fracture type. Most of the average throat radius falls between 0.03 and 0.07μm, close to that of unconventional reservoirs except in local areas with developed fractures. Fluid driving force analysis shows that the differentiation of fluid is mainly controlled by the throat radius in two kinds of mechanism separated by the critical throat radius about 0.1 μm. There is obvious fluid differentiation and oil/gas/water contact in fracture-cavity reservoirs with big throats. However, most of reservoirs under the critical throat radius have high capillary pressure, which resulted in incomplete differentiation of gas/oil/water, and complicated fluid distribution and fluid properties in the unconventional reservoirs.展开更多
基金Supported by the China National Sicence and Technology Project(2016ZX05004)
文摘Based on comprehensive analysis of tectonic and fault evolution, core, well logging, seismic, drilling, and production data, the reservoir space characteristic, distribution, origin of fault-karst carbonate reservoir in Yueman block of South Tahe area, Halahatang oilfield, Tarim Basin, were studied systematically. And the regular pattern of hydrocarbon accumulation and enrichment was analyzed systematically based on development practice of the reservoirs. The results show that fault-karst carbonate reservoirs are distributed in the form of "body by body" discontinuously, heterogeneously and irregularly, which are controlled by the development of faults. Three formation models of fault-karst carbonate reservoirs, namely, the models controlled by the main deep-large fault, the secondary fault and the secondary internal fault, are built. The hydrocarbon accumulation and enrichment of fault-karst carbonate reservoirs is controlled by the spatiotemporal matching relation between hydrocarbon generation period and fault activity, and the size and segmentation of fault. The study results can effectively guide the well deployment and help the efficient development of fault-karst carbonate reservoirs of South Tahe area, Halahatang oilfield.
基金financially supported by the National Natural Science Foundation of China(Nos.42272153 and 42472195)the Research Fund of PetroChina Tarim Oilfield Company(No.671023060003)the Research Fund of China National Petroleum Corporation Limited(No.2023ZZ16YJ04).
文摘Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression and permeability tests to investigate the mechanical and seepage properties of tight sandstone.A digital core of tight sandstone was built using Computed Tomography(CT)scanning,which was divided into matrix and pore phases by a pore equivalent diameter threshold.A fluid-solid coupling model was established to investigate the seepage characteristics at micro-scale.The results showed that increasing the confining pressure decreased porosity,permeability,and flow velocity,with the pore phase becoming the dominant seepage channel.Cracks and large pores closed first under increasing pressure,resulted in a steep drop in permeability.However,permeability slightly decreased under high confining pressure,which followed a first-order exponential function.Flow velocity increased with seepage pressure.And the damage mainly occurred in stress-concentration regions under low seepage pressure.Seepage behavior followed linear Darcy flow,the damage emerged at seepage entrances under high pressure,which decreased rock elastic modulus and significantly increased permeability.
基金partly supportedby National Natural Science Foundation of China(Grant No.41472103)
文摘Recent studies, focused on dihedral angles and intersection processes, have increased understandings of conjugate fault mechanisms. We present new 3-D seismic data and microstructural core analysis in a case study of a large conjugate strike-slip fault system from the intracratonic Tarim Basin, NW China. Within our study area, "X" type NE and NW trending faults occur within Cambrian- Ordovician carbonates. The dihedral angles of these conjugate faults have narrow ranges, 19~ to 62~ in the Cambrian and 26~ to 51~ in the Ordovician, and their modes are 42~ and 44~ respectively. These data are significantly different from the ~60~ predicted by the Coulomb fracture criterion. It is concluded that: (1) The dihedral angles of the conjugate faults were not controlled by confining pressure, which was low and associated with shallow burial; (2) As dihedral angles were not controlled by pressure they can be used to determine the shortening direction during faulting; (3) Sequential slip may have played an important role in forming conjugate fault intersections; (4) The conjugate fault system of the Tarim basin initiated as rhombic joints; these subsequently developed into sequentially active "X" type conjugate faults; followed by preferential development of the NW-trending faults; then reactivation of the NE trending faults. This intact rhombic conjugate fault system presents new insights into mechanisms of dihedral angle development, with particular relevance to intracratonic basins.
基金supported by the National 973 Basic Research Program (Grant No.2006CB202308)the Major National Science & Technology Program (2008ZX05008-004-012)
文摘Understanding hydrocarbon migration and accumulation mechanisms is one of the key scientif ic problems that should be solved for effective hydrocarbon exploration in the superimposed basins developed in northwest China. The northwest striking No.1 slope break zone, which is a representative of superimposed basins in the Tarim Basin, can be divided into five parts due to the intersection of the northeast strike-slip faults. Controlled by the tectonic framework, the types and properties of reservoirs and the hydrocarbon compositions can also be divided into five parts from east to west. Anomalies of all the parameters were found on the fault intersection zone and weakened up-dip along the structural ridge away from it. Thus, it can be inferred that the intersection zone is the hydrocarbon charging position. This new conclusion differs greatly from the traditional viewpoint, which believes that the hydrocarbon migrates and accumulates along the whole plane of the No.1 slope break zone. The viewpoint is further supported by the evidence from the theory of main pathway systems, obvious improvement of the reservoir quality (2-3 orders of magnitude at the intersection zone) and the formation mechanisms of the fault intersection zone. Differential hydrocarbon migration and entrapment exists in and around the strike- slip faults. This is controlled by the internal structure of faults. It is concluded that the more complicated the fault structure is, the more significant the effects will be. If there is a deformation band, it will hinder the cross fault migration due to the common feature of two to four orders of magnitude reduction in permeability. Otherwise, hydrocarbons tend to accumulate in the up-dip structure under the control of buoyancy. Further research on the internal fault structure should be emphasized.
文摘Based on comprehensive analysis of reservoir-forming conditions, the diversity of reservoir and the difference of multistage hydrocarbon charge are the key factors for the carbonate hydrocarbon accumulation of the Ordovician in the Tarim Basin. Undergone four major deposition-tectonic cycles, the Ordovician carbonate formed a stable structural framework with huge uplifts, in which are developed reservoirs of the reef-bank type and unconformity type, and resulted in multistage hydrocarbon charge and accumulation during the Caledonian, Late Hercynian and Late Himalayan. With low matrix porosity and permeability of the Ordovician carbonate, the secondary solution pores and caverns serve as the main reservoir space. The polyphase tectonic movements formed unconformity reservoirs widely distributed around the paleo-uplifts; and the reef-bank reservoir is controlled by two kinds of sedimentary facies belts, namely the steep slope and gentle slope. The unconventional carbonate pool is characterized by extensive distribution, no obvious edge water or bottom water, complicated oil/gas/water relations and severe heterogeneity controlled by reservoirs. The low porosity and low permeability reservoir together with multi-period hydrocarbon accumulation resulted in the difference and complex of the distribution and production of oil/gas/water. The distribution of hydrocarbon is controlled by the temporal-spatial relation between revolution of source rocks and paleo-uplifts. The heterogenetic carbonate reservoir and late-stage gas charge are the main factors making the oil/ gas phase complicated. The slope areas of the paleo-uplifts formed in the Paleozoic are the main carbonate exploration directions based on comprehensive evaluation. The Ordovician of the northern slope of the Tazhong uplift, Lunnan and its periphery areas are practical exploration fields. The Yengimahalla-Hanikatam and Markit slopes are the important replacement targets for carbonate exploration. Gucheng, Tadong, the deep layers of Cambrian dolomite in the Lunnan and Tazhong-Bachu areas are favorable directions for research and risk exploration.
基金supported by National Basic Research Program(2006CB202304)of Chinaco-supported by the National Basic Research Program of China(Grant No.2011CB201103)the National Science and Technology Major Project of China(Grant No.2011ZX05004003)
文摘The major storage space types in the carbonate reservoir in the Ordovician in the TZ45 area are secondary dissolution caves.For the prediction of caved carbonate reservoir,post-stack methods are commonly used in the oilfield at present since pre-stack inversion is always limited by poor seismic data quality and insufficient logging data.In this paper,based on amplitude preserved seismic data processing and rock-physics analysis,pre-stack inversion is employed to predict the caved carbonate reservoir in TZ45 area by seriously controlling the quality of inversion procedures.These procedures mainly include angle-gather conversion,partial stack,wavelet estimation,low-frequency model building and inversion residual analysis.The amplitude-preserved data processing method can achieve high quality data based on the principle that they are very consistent with the synthetics.Besides,the foundation of pre-stack inversion and reservoir prediction criterion can be established by the connection between reservoir property and seismic reflection through rock-physics analysis.Finally,the inversion result is consistent with drilling wells in most cases.It is concluded that integrated with amplitude-preserved processing and rock-physics,pre-stack inversion can be effectively applied in the caved carbonate reservoir prediction.
基金funded by the Natural Science FundingCouncil of China(Grant No.#40973031)the Foundationof State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(No.PRPJC2008-02)Natural Science Research Council of China(China 973 National Key Research and Development Program 2011CB201102)
文摘The origin of the unusually high dibenzothiophene (DBT) concentrations in Lower Ordovician oils from the Tazhong Uplift,Tarim Basin was studied by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS).The most abundant sulfur compounds in the oils are S 1 species with doublebond equivalent (DBE) values of 1-19 and 11-48 carbon atoms.The range of the number of carbon atoms in the sulfur compounds detected by the FT-ICR MS (S 1 species with DBE=9) is about ten times larger than that for sulfur compounds detected by GC/MS (DBTs).This suggests that FT-ICR MS is a much better approach than GC/MS for characterization of DBTs in crude oils.The abundance of S 1 species with DBE=1-8 decreased with increasing thermal maturity,while the abundance of S 1 species with DBE=9 (primarily DBTs) increased.Therefore,thermal maturity is an important factor in the formation of oils with high DBT concentrations.Unusually high abundances of S 1 species with low DBE values (1-8),which include sulfide,thiophene and benzothiophene,were observed in several oils,especially the TZ83 (O 1) oil with high or very high thermal maturity.Thermochemical sulfate reduction (TSR) was thought to be the reason for the high abundance of these low DBE compounds in deep reservoirs,and thermochemical sulfate reduction could affect the distribution and composition of DBTs in the oils.According to the results of FT-ICR MS analysis,there are no signs that TSR is occurring or has occurred recently for most of the Lower Ordovician oils.
基金supported by the National Basic Research Program of China (973 Program, Grant No.2006CB202308)
文摘The Tarim Basin is the largest petroliferous basin in the northwest of China, and is composed of a Paleozoic marine craton basin and a Meso-Cenozoic continental foreland basin. It is of great significance in exploration of Ordovician. In over 50 years of exploration, oil and gas totaling over 1.6 billion tonnes oil-equivalent has been discovered in the Ordovician carbonate formation. The accumulation mechanisms and distribution rules are quite complicated because of the burial depth more than 3,500 m, multi-source, and multi-stage accumulation, adjustment, reconstruction and re-enrichment in Ordovician. In this paper, we summarized four major advances in the hydrocarbon accumulation mechanisms of Ordovician carbonate reservoirs. First, oil came from Cambrian and Ordovician source rocks separately and as a mixture, while natural gas was mainly cracked gas generated from the Cambrian-Lower Ordovician crude oil. Second, most hydrocarbon migrated along unconformities and faults, with different directions in different regions. Third, hydrocarbon migration and accumulation had four periods: Caledonian, early Hercynian, late Hercynian and Himalayan, and the latter two were the most important for oil and gas exploration. Fourth, hydrocarbon accumulation and evolution can be generally divided into four stages: Caledonian (the period of hydrocarbon accumulation), early Hercynian (the period of destruction), late Hercynian (the period of hydrocarbon reconstruction and re-accumulation), and Himalayan (the period of hydrocarbon adjustment and re-accumulation). Source rocks (S), combinations of reservoir-seal (C), paleo-uplifts (M), structure balance belt (B) matched in the same time (T) control the hydrocarbon accumulation and distribution in the Ordovician formations. Reservoir adjustment and reconstruction can be classified into two modes of physical adjustment and variation of chemical compositions and five mechanisms. These mechanisms are occurrence displacement, biodegradation, multi-source mixing, high-temperature cracking and late gas invasion. Late hydrocarbon accumulation effects controlled the distribution of current hydrocarbon. The T-BCMS model is a basic geological model to help understanding the control of reservoirs. At present, the main problems of hydrocarbon accumulation focus on two aspects, dynamic mechanisms of hydrocarbon accumulation and the quantitative models of oil-bearing in traps, which need further systemic research.
基金partly supported by National Natural Science Foundation of China(Grant No.41472103)Technology Major Project(2016ZX05004001)
文摘Understanding the scaling relation of damage zone width with displacement of faults is important for predicting subsurface faulting mechanisms and fluid flow processes. The understanding of this scaling relationship is influenced by the accuracy of the methods and types of data utilized to investigate faults. In this study, seismic reflection data are used to investigate the throw and damage zone width of five strike-slip faults a ecting Ordovician carbonates of the Tarim intracraton basin,NW China. The results indicate that fault slips with a throw less than 200 m had formed wide damage zones up to 3000 m in width. Also, damage zone width is found to have both a positive correlation and a power-law relation with throw of two orders of magnitude, with a ratio of these values varying in a range of 2–15. The relationship between throw and damage zone width is not a simple power-law and changes its slope from small to larger size faults. The results indicate that throw scales well with damage zone width for the studied faults, and hence these can be used to predict fault geometries in the Tarim Basin. The study of the wide carbonate damage zones presented here provides new insights into scaling of large-size faults, which involve multiple faulting stages.
基金co-supported by the National Basic Research Program of China(Grant No.2011CB201103)the National Science and Technology Major Project(GrantNo.2011ZX05004003)
文摘The carbonate reservoirs in the Tarim Basin are characterized by low matrix-porosity,heterogeneity and anisotropy,which make it difficult to predict and evaluate these reservoirs.The reservoir formations in Lundong area experienced a series of diagenesis and tectonic evolution stages.And secondary storage spaces such as fractures and dissolution caves were developed while nearly all the primary pores have disappeared.Based on a summary of different types of storage spaces and their responses in conventional logs,FMI and full waveform sonic logs which are sensitive to different reservoirs,the comprehensive probability index (CPI) method is applied to evaluating the reservoirs and a standard of reservoir classification is established.By comparing the evaluation results with actual welllogging results,the method has proven to be practical for formation evaluation of carbonate reservoirs,especially for the fractured carbonate reservoirs.In reservoir fluid identification,the multivariate stepwise discriminant analysis (MSDA) method is introduced.Combining the CPI method and MSDA method,comprehensive formation evaluation has been performed for fractured and caved carbonate reservoirs in the Tarim Basin.Additionally,on the basis of secondary pore inversion results,another new method of formation evaluation is also proposed in the discussion part of this paper.Through detailed application result analysis,the method shows a promising capability for formation evaluation of complex carbonate reservoirs dominated by various secondary pores such as holes,caves,and cracks.
基金financially supported by National Basic Research Program of China(No.2011CB201100)
文摘Conventional seismic exploration method based on post-stack data usually fails to identify the distribution of fractured and caved carbonate reservoirs in the Tarim Basin,so the rich pre-stack information should be applied to the prediction of carbonate reservoirs.Amplitude-preserved seismic data processing is the foundation.In this paper,according to the feature of desert seismic data (including weak reflection,fast attenuation of high frequency components,strong coherent noises,low S/N and resolution),a set of amplitude-preserved processing techniques is applied and a reasonable processing flow is formed to obtain the high quality data.After implementing a set of pre-stack amplitude-preserved processing,we test and define the kernel parameters of amplitude-preserved Kirchhoff PSTM (pre-stack time migration) and subsequent gathers processing,in order to obtain the amplitude-preserved gathers used to the isotropic pre-stack inversion for the identification of caved reservoirs.The AVO characteristics of obtained gathers fit well with the synthetic gathers from logging data,and it proves that the processing above is amplitudepreserved.The azimuthal processing techniques,including azimuth division and binning enlargement,are implemented for amplitude-preserved azimuthal gathers with the uniform fold.They can be used in the anisotropic inversion to detect effective fractures.The processing techniques and flows are applied to the field seismic data,and are proved available for providing the amplitude-preserved gathers for carbonate reservoir prediction in the Tarim Basin.
基金co-supported by the National Basic Resarch Program of China (Grant No.2011CB201103)the National Scince and Technology Major Project (Grant No.2011ZX05004003)
文摘The carbonate reservoirs in the Tarim Basin are characterized by anisotropy and strong heterogeneity.Combined with an integrated analysis of data from seismic,geology,and drilling results,a series of attributes which are suitable for fractured and caved carbonate reservoir prediction is discussed,including amplitude,coherence analysis,spectra decomposition,seismic absorption attenuation analysis and impedance inversion.Moreover,3-D optimization of these attributes is achieved by integration of multivariate discriminant analysis and principle component analysis,where the logging data are taken as training samples.Using the optimized results,the spatial distribution and configuration features of the caved reservoirs can be characterized in detail.This technique not only improves the understanding of the spatial distribution of current reservoirs but also provides a significant basis for the discovery and production of carbonate reservoirs in the Tarim Basin.
基金supported by the State Key Development Program for Basic Research of China(Grant No.2006CB202308)
文摘In recent years, great progress has been made constantly in oil and gas exploration in the Lungudong region of the Tarim Basin. However, progress has been slow in the evaluation of its main oil-producing horizons -- the Ordovician carbonate reservoir beds. Based on previous researches and on the various data such as drilling, geology and oil test, in combination with the interpretation of each single-well imaging and conventional logging data, and through analysis and comparison, the identification methods in imaging and conventional logging for four types of carbonate reservoir beds in this region are summarized in this paper. Calculation formulas for four reservoir bed parameters, i. e. shale content, porosity, permeability and oil saturation in this region are proposed; and reservoir beds in this region are divided into three levels (Ⅰ, Ⅱ and Ⅲ) by combining oil test data and logging data, The lower limits of the effective porosity of reservoir beds and the fracture porosity of effective reservoir beds are determined as 1.8% and 0.04%, respectively. The physical property parameters are calculated by conventional logging curves, and the most advantageous areas for reservoir development are predicted comprehensively. On the plane, the high-value zones of reservoir bed parameters are mainly concentrated in the N-S-trending strike-slip fault, the Sangtamu fault horst zone and near the LG38 well area; vertically, the reservoir bed parameters of the Yijianfang Formation are better than those of the Yingshan and Lianglitage formations.
文摘Fractured reservoirs always show anisotropic amplitude features,i.e.the reflection amplitude of seismic waves varies with offset and azimuth (AVOZ).A noise attenuation fracture inversion algorithm is presented for fracture detection based on P-wave AVOZ.The conventional inversion method always fails when applied to limited azimuth data because of the existence of noise.In our inversion algorithm,special attention is paid to suppressing the noise during inversion,to overcome the limitation of the conventional inversion method on limited azimuth data.Numerical models are employed to illustrate the effectiveness of the method.The inversion algorithm is then applied to Tazhong 45 area field data which is acquired under limited azimuth distribution.Compared with cores and fullbore formation microimage (FMI),the inverted results (fracture density and orientation) are reasonable,suggesting that the inversion algorithm is feasible for fracture prediction in the Tarim Basin.
基金co-supported by the National Basic Research Program of China(Grant No.2011CB201103)the National Science and Technology Major Project(GrantNo.2011ZX05004003)
文摘Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the conventional AVO inversion method based on HTI theory to predict fracture development will result in some errors.Thus,an integrated research concept for fractured reservoir prediction is put forward in this paper.Seismic modeling plays a bridging role in this concept,and the establishment of an anisotropic fracture model by Discrete Fracture Network (DFN) is the key part.Because the fracture system in the Tarim Basin shows complex anisotropic characteristics,it is vital to build an effective anisotropic model.Based on geological,well logging and seismic data,an effective anisotropic model of complex fracture systems can be set up with the DFN method.The effective elastic coefficients,and the input data for seismic modeling can be calculated.Then seismic modeling based on this model is performed,and the seismic response characteristics are analyzed.The modeling results can be used in the following AVO inversion for fracture detection.
基金supported by the China Postdoctoral Science Foundation (grant No. 2017M611108)the National Science and Technology Major Project of China (grant No. 2016ZX05006006-001)the National Basic Research Program of China (grant Nos. 2011CB2011-02 and 2014CB239100)
文摘Previous studies have postulated the contribution of present-day low-total organic carbon (TOC) marine carbonate source rocks to oil accumulations in the Tabei Uplift, Tarim Basin, China. However, not all present-day low-TOC carbonates have generated and expelled hydrocarbons; therefore, to distinguish the source rocks that have already expelled sufficient hydrocarbons from those not expelled hydrocarbons, is crucial in source rock evaluation and resource assessment in the Tabei Uplift. Mass balance can be used to identify modern low-TOC carbonates resulting from hydrocarbon expulsion. However, the process is quite complicated, requiring many parameters and coefficients and thus also a massive data source. In this paper, we provide a quick and cost effective method for identifying carbonate source rock with present-day low TOC, using widely available Rock-Eval data. First, we identify present-day low-TOC carbonate source rocks in typical wells according to the mass balance approach. Second, we build an optimal model to evaluate source rocks from the analysis of the rocks' characteristics and their influencing factors, reported as positive or negative values of a dimensionless index of Rock-Eval data (IR). Positive IR corresponds to those samples which have expelled hydrocarbons. The optimal model optimizes complicated calculations and simulation processes; thus it could be widely applicable and competitive in the evaluation of present-day low TOC carbonates. By applying the model to the Rock-Eval dataset of the Tabei Uplift, we identify present-day iow-TOC carbonate source rocks and primarily evaluate the contribution equivalent of 11.87×10^9 t oil.
基金partly supported by the National Natural Science Foundation of China(Grant No.91955204)Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(Grant No.2020CX010300)。
文摘Fault attributes generally display a consistent power–law-scaling relationship.Based on new 3 D seismic data,however,we found some exceptional fault attribute relationships of lengths(L)–throw(T)(vertical component of displacement),overlap zone length(Lo)–width(Wo)from a strike-slip fault system of the Ordovician carbonates in the Tarim Basin.The L–T relationship shows two linear segments with breakup at^40 km in fault length.This presents an exceptional throw increase in the second stage,which is attributed to a localization of vertical displacement and deformation in overlapping zones other than the different fault scales in a mature fault zone.The Lo–Wo relationship in the overlapping zones shows multiply stepped-shape patterns,suggesting multiple fault differential growth and periodic increase in fault size.Therefore,we propose a new alternative growth model of fault attributes in strike-slip fault zones,in which the overlapping zones accumulated localized displacement and deformation in the intracratonic strike-slip fault zone.
基金National Science and Technology Major Project(2016ZX05023)PetroChina Science and Technology Major Project(2018E-1809)。
文摘Based on analysis of the reasons for low efficiency and low production after fracturing of some wells in the ultra-deep fractured tight reservoirs of the Kuqa piedmont zone, Tarim Basin and the matching relationship between the in-situ stress field and natural fractures, technological methods for creating complex fracture networks are proposed. Through theoretical study and large-scale physical simulation experiments, the mechanical conditions for forming complex fracture network in the Kuqa piedmont ultra-deep reservoirs are determined. The effectiveness of temporary plugging and diversion, and multi-stage fracturing to activate natural fractures and consequently realize multi-stage diversion is verified. The coupling effect of hydraulic fractures and natural fractures activating each other and resulting in "fracture swarms" is observed. These insights provide theoretical support for improving fracture-controlled stimulated reservoir volume(FSRV) in ultra-deep tight reservoirs. In addition, following the concept of volume fracturing technology and based on the results of fracture conductivity experiments of different processes, fracturing technologies such as multi-stage fracture-network acid fracturing, "multi-stage temporary plugging + secondary fracturing", fracturing of multiple small layers by vertically softness-and-hardness-oriented subdivision, and weighted-fluid refracturing are proposed to increase the FSRV. New environment-friendly weighted-fluid with low cost and new fracturing fluid system with low viscosity and high proppant-carrying capacity are also developed. These techniques have achieved remarkable results in field application.
基金the National Natural Science Foundation of China(51904329,52174014)the Major Scientific and Technological Projects of CNPC(ZD 2019-183-005)Key R&D Program of Shandong Province(No.2020ZLYS07).
文摘Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of using hydrophobically modified silica nanoparticle(HMN)to enhance the comprehensive performance of WBDFs in the Xinjiang Oilfield,especially the anti-collapse performance.The effect of HMN on the overall performance of WBDFs in the Xinjiang Oilfield,including inhibition,plugging,lu-bricity,rheology,and filtration loss,was studied with a series of experiments.The mechanism of HMN action was studied by analyzing the changes of shale surface structure and chemical groups,wettability,and capillary force.The experimental results showed that HMN could improve the performance of WBDFs in the Xinjiang Oilfeld to inhibit the hydration swelling and dispersion of shale.The plugging and lubrication performance of the WBDFs in the Xinjiang Oilfield were also enhanced with HMN based on the experimental results.HMN had less impact on the rheological and filtration performance of the WBDFs in the Xinjiang Oilfield.In addition,HMN significantly prevented the decrease of shale strength.The potential mechanism of HMN was as follows.The chemical composition and structure of the shale surface were altered due to the adsorption of HMN driven by electrostatic attraction.Changes of the shale surface resulted in significant wettability transition.The capillary force of the shale was converted from a driving force of water into the interior to a resistance.In summary,hydrophobic nanoparticles presented afavorable application potential for WBDFs.
基金supported by the National Basic Research Program of China (973 Program,Grant No.2011CB201106)
文摘The Ordovician carbonate reservoirs in the Tarim Basin with secondary dissolution pores and vugs have complicated pore structures. The weathering crust reservoirs mainly consist of large cavities or vugs connected by fractures, but most of the reef-shoal reservoirs have complex and small throats among matrix pores. The pore structure can be divided into four types: big pore and big throat, big pore but small throat, small pore and small throat, and fracture type. Most of the average throat radius falls between 0.03 and 0.07μm, close to that of unconventional reservoirs except in local areas with developed fractures. Fluid driving force analysis shows that the differentiation of fluid is mainly controlled by the throat radius in two kinds of mechanism separated by the critical throat radius about 0.1 μm. There is obvious fluid differentiation and oil/gas/water contact in fracture-cavity reservoirs with big throats. However, most of reservoirs under the critical throat radius have high capillary pressure, which resulted in incomplete differentiation of gas/oil/water, and complicated fluid distribution and fluid properties in the unconventional reservoirs.