The basis of designing gasified drilling is to understand the behavior of gas/liquid two-phase flow in the wellbore. The equations of mass and momentum conservation and equation of fluid flow in porous media were used...The basis of designing gasified drilling is to understand the behavior of gas/liquid two-phase flow in the wellbore. The equations of mass and momentum conservation and equation of fluid flow in porous media were used to establish a dynamic model to predict wellbore pressure according to the study results of Ansari and Beggs-Brill on gas-liquid two-phase flow. The dynamic model was solved by the finite difference approach combined with the mechanistic steady state model. The mechanistic dynamic model was numerically implemented into a FORTRAN 90 computer program and could simulate the coupled flow of fluid in wellbore and reservoir. The dynamic model revealed the effects of wellhead back pressure and injection rate of gas/liquid on bottomhole pressure. The model was validated against full-scale experimental data, and its 5.0% of average relative error could satisfy the accuracy requirements in engineering design.展开更多
Based on the technology of balanced cross-section and physical simulation experiments associated with natural gas geochemical characteristic analyses, core and thin section observations, it has been proven that the Pu...Based on the technology of balanced cross-section and physical simulation experiments associated with natural gas geochemical characteristic analyses, core and thin section observations, it has been proven that the Puguang gas reservoir has experienced two periods of diagenesis and restructuring since the Late Indo-Chinese epoch. One is the fluid transfer controlled by the tectonic movement and the other is geochemical reconstruction controlled by thermochemical sulfate reduction (TSR). The middle Yanshan epoch was the main period that the Puguang gas reservoir experienced the geochemical reaction of TSR. TSR can recreate the fluid in the gas reservoir, which makes the gas drying index higher and carbon isotope heavier because C2+ (ethane and heavy hydrocarbon) and 12C (carbon 12 isotope) is first consumed relative to CH4 and 13C (carbon 13 isotope). However, the reciprocity between fluid regarding TSR (hydrocarbon, sulfureted hydrogen (H2S), and water) and reservoir rock results in reservoir rock erosion and anhydrite alteration, which increases porosity in reservoir, thereby improving the petrophysical properties. Superimposed by later tectonic movement, the fluid in Puguang reservoir has twice experienced adjustment, one in the late Yanshan epoch to the early Himalayan epoch and the other time in late Himalayan epoch, after which Puguang gas reservoir is finally developed.展开更多
On the basis of the multi.channel seismic data and the other data, using 2DMove software, the tectonic evolution in three seismic profiles was restored since Pliocene. The tectonic restoration results show that: (1...On the basis of the multi.channel seismic data and the other data, using 2DMove software, the tectonic evolution in three seismic profiles was restored since Pliocene. The tectonic restoration results show that: (1) the initial active center lay in the west slope and then was transferred to east and south via trough center during the evolution process; (2) several main normal faults controlled the evolution of the southern Okinawa Trough; (3) since Late Pliocene, the southern Okinawa Trough has experienced two spreading stages. The early is depression in Early-Middle Pleistocene and the late is back-arc spreading in Late Pleistocene and Holocene, which is in primary oceanic crust spreading stage.展开更多
The effective radius of oil well is introduced in the inner boundary in the problem of fluids flow through fractal reservoir with double porosity, and thus a new model is established. Taking the wellbore storage and s...The effective radius of oil well is introduced in the inner boundary in the problem of fluids flow through fractal reservoir with double porosity, and thus a new model is established. Taking the wellbore storage and steady-state skin effect into consideration, the exact solutions of the pressure distribution of fluids flow in fractal reservoirs with double porosity are given for the cases of an infinite outer boundary, a finite closed outer boundary and a bounded domain with the constant pressure outer boundary conditions. The pressure behavior of fractal reservoir with double porosity is analyzed by using a numerical inversion of the Laplace transform solution. The pressure responses of changing various parameters are discussed.展开更多
Several homologous series of steranes with alkyl side chains (C1 to C4) at the 3β position have been identified in the Jiyang Eogene lacustrine deposition. It is postulated that its precursors repre sent a new class ...Several homologous series of steranes with alkyl side chains (C1 to C4) at the 3β position have been identified in the Jiyang Eogene lacustrine deposition. It is postulated that its precursors repre sent a new class of steroids, alkylated at the C-3 po sition with a polyhydroxy n-alkane. These precursors may have been formed by the bacterial addition of a ribose sugar to ?2-sterenes, diagenetic alteration products of steroids synthesized by eukaryotes 3-alkyl steroids might substitute for hopanols in bac terial membranes. When they are present in a sam ple, the patterns of the isomer distributions of 3-alky steranes are similar to desmethyl steranes except fo lower rearranged ones. It is shown that the configu rational isomerization of 3-alkyl steranes is trending in line with that of desmethyl steranes with increasing of maturity. The abundance of 3-alkyl steranes may be controlled by the depositional environments; they are primary in saline or near shore lacustrine, mod erate in shallow lacustrine, poor in sub-deep to deep lacustrine relative to the 4-methyl steranes.展开更多
The compositions of organic matter in four immature source rocks from Tertiary strata of Jiyang super-depression, the most typical continental rift subsidence basin in East China, have been stud- ied by different extr...The compositions of organic matter in four immature source rocks from Tertiary strata of Jiyang super-depression, the most typical continental rift subsidence basin in East China, have been stud- ied by different extracting methods with CHCl3, MAC and CS2/NMP, respectively. The results suggest that there are great differences among the chemical compositions of organic matter in the source rocks derived from different depositional environments. About 79% of all the organic matter exists by non- covalent bond in the Es4 source rocks which were deposited under the saline lacustrine, indicating that its organic matter is not the real kerogen, but mainly composed of soluble organic matter which is easy to generate hydrocarbon at lower temperature. This is why the immature oils were derived from Es4 source rocks in Dongying depression. In contrast, around 60% of organic matter exists by covalent bond in Es3 source rocks which were deposited under the deep brackish-fresh lacustrine, showing that Es3 source rocks are mainly composed of kerogen producing mature hydrocarbon at higher temperature. The thermal simulation experiments, upon the remaining solid source rocks which were sequentially extracted by the three solvents, have been carried out. The chloroform extracts from the simulation product have been compared with the other three solvent extracts gained at room temperature. It is obvious that re-markable odd/even predominance (OEP) is mainly the characteristic of soluble organic matter; phytane mostly exists in the soluble organic matter by means of non-covalent bonds and characteristics of soluble organic matter are similar to these in immature oils produced in Jiyang super-depression.展开更多
Point bars are well developed on the Yellow River delta, an~ which theShengli I point bar is the most typical. The point bar, being about 4 km in length and several tensto more than 100 meters in width, is located on ...Point bars are well developed on the Yellow River delta, an~ which theShengli I point bar is the most typical. The point bar, being about 4 km in length and several tensto more than 100 meters in width, is located on the south side of the Shengli Bridge in KenliCounty, Dongying, Shandong. It is a typical fine-grained point bar with silt, which is predominant,some clay and minor plant debris and clay boulders. The Shengli I Point bar has complicated 3-Dstructures. Firstly, in a plane view, it comprises mainly eight sedimentary units, bar edge, baredge, bar platform, bar plain, bar channel, bar gully, bar pond and bar bay, developing side by sideand superimposed one by one m a complex way. Secondly, its vertical structures are very complex dueto the partial superimposition of the 8 sedimentary units. Besides hydatogenesis, very intensivewind erosion, eolian, ice and meltwater actions are also visible on the Shengli I point bar. Thecomplex form is made even more complicated because of the above co-actions.展开更多
Lost circulations have presented great challenges to the petroleum industry, causing great expenditures of cash and time to fighting the problem. Probably the most problematic situations are the naturally fractured fo...Lost circulations have presented great challenges to the petroleum industry, causing great expenditures of cash and time to fighting the problem. Probably the most problematic situations are the naturally fractured formations where the operator may face total loss with no mud return in the annular. The voids or large fracture encountered in this case are often far too large to be plugged with conventional Lost Circulation Material. This paper will give a detailed introduction on a novel composite gel material usable to control severe losses and pressurization sealing. The plugging mechanics of this new composite gel material, which is different from conventional lost circulation materials, were elaborated as well. In addition, the properties of the new composite gel material such as thermostability, sealing strength and bearing resistance are characterized with specific experimental devices. The experimental results proved that the breakdown pressure of the new plugging reached more than 20MPa, and the maximum degraded temperature can be exceed 130℃. The field application at 4 wells in Puguang gas field, SINOPEC, demonstrated that the new composite gel material solved the serious loss in Ordovician carbonate fractured formation successfully and guaranteed the following completion cement operation smoothly. The composite gel sealing slurries, which was easily prepared on site, gives remarkable properties regarding pumping through drill pipes, adjustment of setting time and excellent sealing strength of the lost zone sealing, additionally, the whole pressurization sealing process was complicated within only ten hours. The on-site results show that the plugging ratio of the new composite gel was reached 100%, and the success rate of sealing operation kept above 80%.Thus the new LCM can guarantee safe drilling jobs and save operation cost more effectively.展开更多
Kuqa depression bears not only plenty ofnatural gas, but also a large amount of condensate and smallquantity of crude oil. Based on the geochemical correlationbetween the Jurassic and Triassic terrestrial hydrocarbons...Kuqa depression bears not only plenty ofnatural gas, but also a large amount of condensate and smallquantity of crude oil. Based on the geochemical correlationbetween the Jurassic and Triassic terrestrial hydrocarbonsource rock, this paper confirms that the natural gas in Kuqadepression belongs to coal-type gas and the main gas sourcerock is attributed to the middle to lower Jurassic coal seriesformation, while the main oil source rock is the upper Tri-assic lacustrine mudstone. The authors indicated that Kuqadepression was slowly subsided in Mesozoic, but rapidlywent down in Late Tertiary, which made the Jurassic andTriassic source rock suddenly deep-buried and rapidlyevolved to high and over-mature phase since 5 Ma. TheTriassic source rock is postponed to the Early Miocene dur-ing 23-12 Ma when entering the oil-generating peak, whilethe Jurassic is suspended to the latest 5 Ma, especially since2.5 Ma to the dry gas-generating period, which is one of thecharacteristics of the source rock thermal evolution in Kuqadepression. This paper presents a two-stage trapping andlate gas trapping model in Kuqa depression whose charac-teristics are: The main oil and gas reservoirs have differentsources. The oil reservoir is formed early while the gas res-ervoir is formed lately. During the early stage, it, mainly asoil, takes long distance lateral migration, while in the laterstage, it, mainly as gas, takes the vertical migration and alsohas lateral migration. The trap formed in different time onthe south and north sides of the depression and evolved intoa distributional pattern with oil in the south part and gas inthe north, also oil on the outer ring and gas on the inner ring.This paper points out that the late trapping of the naturalgas in Kuqa depression is favorable for the preservation oflarge gas fields.展开更多
With the discoveries of a series of large gas fields in the northeast of Sichuan Basin, such as Puguang and Longgang gas fields, the formation mechanism of the gas reservoir containing high H2S in the ancient marine c...With the discoveries of a series of large gas fields in the northeast of Sichuan Basin, such as Puguang and Longgang gas fields, the formation mechanism of the gas reservoir containing high H2S in the ancient marine carbonate formation in superposition-basin becomes a hot topic in the field of petroleum geology. Based on the structure inversion, numerical simulation, and geochemical research, we show at least two intervals of fluid transfer in Puguang paleo-oil reservoir, one in the forepart of late Indo-Chinese epoch to early Yanshan epoch and the other in the metaphase of early Yanshan epoch. Oil and gas accumulation occurred at Puguang structure through Puguang-Dongyuezhai faults and dolomite beds in reef and shoal facies in Changxing Formation (P2ch) - Feixianguan Formation (T1f) in the northwest and southwest directions along three main migration pathways, to form Puguang paleo-oil reservoir. Since crude oil is pyrolysised in the early stage of middle Yanshan epoch, Puguang gas reservoir has experienced fluid adjusting process controlled by tectonic movement and geochemical reconstruction process controlled by thermochemical sulfate reduction (TSR). Middle Yan-shan epoch is the main period during which the Puguang gas reservoir experienced the geochemical reaction of TSR. On one hand, TSR can recreate the fluid in gas reservoir, which makes the gas drying index larger and carbon isotope heavier. On the other hand, the reciprocity between fluid regarding TSR (hydrocarbon, H2S, and water) and reservoir rock induces erosion of the reservoir rocks and anhydrite alteration, which improves reservoir petrophysical properties. Superimposed by later tectonic movement, the fluid in Puguang reservoir has twice experienced adjustment, one in the late Yanshan epoch to the early Himalayan epoch and the other time in late Himalayan epoch, after which Puguang gas reservoir is finally developed.展开更多
文摘The basis of designing gasified drilling is to understand the behavior of gas/liquid two-phase flow in the wellbore. The equations of mass and momentum conservation and equation of fluid flow in porous media were used to establish a dynamic model to predict wellbore pressure according to the study results of Ansari and Beggs-Brill on gas-liquid two-phase flow. The dynamic model was solved by the finite difference approach combined with the mechanistic steady state model. The mechanistic dynamic model was numerically implemented into a FORTRAN 90 computer program and could simulate the coupled flow of fluid in wellbore and reservoir. The dynamic model revealed the effects of wellhead back pressure and injection rate of gas/liquid on bottomhole pressure. The model was validated against full-scale experimental data, and its 5.0% of average relative error could satisfy the accuracy requirements in engineering design.
基金supported by the 973 State Project (Project no.2005CB422105)
文摘Based on the technology of balanced cross-section and physical simulation experiments associated with natural gas geochemical characteristic analyses, core and thin section observations, it has been proven that the Puguang gas reservoir has experienced two periods of diagenesis and restructuring since the Late Indo-Chinese epoch. One is the fluid transfer controlled by the tectonic movement and the other is geochemical reconstruction controlled by thermochemical sulfate reduction (TSR). The middle Yanshan epoch was the main period that the Puguang gas reservoir experienced the geochemical reaction of TSR. TSR can recreate the fluid in the gas reservoir, which makes the gas drying index higher and carbon isotope heavier because C2+ (ethane and heavy hydrocarbon) and 12C (carbon 12 isotope) is first consumed relative to CH4 and 13C (carbon 13 isotope). However, the reciprocity between fluid regarding TSR (hydrocarbon, sulfureted hydrogen (H2S), and water) and reservoir rock results in reservoir rock erosion and anhydrite alteration, which increases porosity in reservoir, thereby improving the petrophysical properties. Superimposed by later tectonic movement, the fluid in Puguang reservoir has twice experienced adjustment, one in the late Yanshan epoch to the early Himalayan epoch and the other time in late Himalayan epoch, after which Puguang gas reservoir is finally developed.
基金This paper is supported by the Knowledge Innovation Project of Chinese Academy of Sciences (Nos. KZCX3-SW-219, KZCX3-SW-224) the Taishan Scholarship Project of Shandong Province.
文摘On the basis of the multi.channel seismic data and the other data, using 2DMove software, the tectonic evolution in three seismic profiles was restored since Pliocene. The tectonic restoration results show that: (1) the initial active center lay in the west slope and then was transferred to east and south via trough center during the evolution process; (2) several main normal faults controlled the evolution of the southern Okinawa Trough; (3) since Late Pliocene, the southern Okinawa Trough has experienced two spreading stages. The early is depression in Early-Middle Pleistocene and the late is back-arc spreading in Late Pleistocene and Holocene, which is in primary oceanic crust spreading stage.
文摘The effective radius of oil well is introduced in the inner boundary in the problem of fluids flow through fractal reservoir with double porosity, and thus a new model is established. Taking the wellbore storage and steady-state skin effect into consideration, the exact solutions of the pressure distribution of fluids flow in fractal reservoirs with double porosity are given for the cases of an infinite outer boundary, a finite closed outer boundary and a bounded domain with the constant pressure outer boundary conditions. The pressure behavior of fractal reservoir with double porosity is analyzed by using a numerical inversion of the Laplace transform solution. The pressure responses of changing various parameters are discussed.
文摘Several homologous series of steranes with alkyl side chains (C1 to C4) at the 3β position have been identified in the Jiyang Eogene lacustrine deposition. It is postulated that its precursors repre sent a new class of steroids, alkylated at the C-3 po sition with a polyhydroxy n-alkane. These precursors may have been formed by the bacterial addition of a ribose sugar to ?2-sterenes, diagenetic alteration products of steroids synthesized by eukaryotes 3-alkyl steroids might substitute for hopanols in bac terial membranes. When they are present in a sam ple, the patterns of the isomer distributions of 3-alky steranes are similar to desmethyl steranes except fo lower rearranged ones. It is shown that the configu rational isomerization of 3-alkyl steranes is trending in line with that of desmethyl steranes with increasing of maturity. The abundance of 3-alkyl steranes may be controlled by the depositional environments; they are primary in saline or near shore lacustrine, mod erate in shallow lacustrine, poor in sub-deep to deep lacustrine relative to the 4-methyl steranes.
基金supported by the National Natural Science Foundation of China(Grant No.400030002).
文摘The compositions of organic matter in four immature source rocks from Tertiary strata of Jiyang super-depression, the most typical continental rift subsidence basin in East China, have been stud- ied by different extracting methods with CHCl3, MAC and CS2/NMP, respectively. The results suggest that there are great differences among the chemical compositions of organic matter in the source rocks derived from different depositional environments. About 79% of all the organic matter exists by non- covalent bond in the Es4 source rocks which were deposited under the saline lacustrine, indicating that its organic matter is not the real kerogen, but mainly composed of soluble organic matter which is easy to generate hydrocarbon at lower temperature. This is why the immature oils were derived from Es4 source rocks in Dongying depression. In contrast, around 60% of organic matter exists by covalent bond in Es3 source rocks which were deposited under the deep brackish-fresh lacustrine, showing that Es3 source rocks are mainly composed of kerogen producing mature hydrocarbon at higher temperature. The thermal simulation experiments, upon the remaining solid source rocks which were sequentially extracted by the three solvents, have been carried out. The chloroform extracts from the simulation product have been compared with the other three solvent extracts gained at room temperature. It is obvious that re-markable odd/even predominance (OEP) is mainly the characteristic of soluble organic matter; phytane mostly exists in the soluble organic matter by means of non-covalent bonds and characteristics of soluble organic matter are similar to these in immature oils produced in Jiyang super-depression.
文摘Point bars are well developed on the Yellow River delta, an~ which theShengli I point bar is the most typical. The point bar, being about 4 km in length and several tensto more than 100 meters in width, is located on the south side of the Shengli Bridge in KenliCounty, Dongying, Shandong. It is a typical fine-grained point bar with silt, which is predominant,some clay and minor plant debris and clay boulders. The Shengli I Point bar has complicated 3-Dstructures. Firstly, in a plane view, it comprises mainly eight sedimentary units, bar edge, baredge, bar platform, bar plain, bar channel, bar gully, bar pond and bar bay, developing side by sideand superimposed one by one m a complex way. Secondly, its vertical structures are very complex dueto the partial superimposition of the 8 sedimentary units. Besides hydatogenesis, very intensivewind erosion, eolian, ice and meltwater actions are also visible on the Shengli I point bar. Thecomplex form is made even more complicated because of the above co-actions.
文摘Lost circulations have presented great challenges to the petroleum industry, causing great expenditures of cash and time to fighting the problem. Probably the most problematic situations are the naturally fractured formations where the operator may face total loss with no mud return in the annular. The voids or large fracture encountered in this case are often far too large to be plugged with conventional Lost Circulation Material. This paper will give a detailed introduction on a novel composite gel material usable to control severe losses and pressurization sealing. The plugging mechanics of this new composite gel material, which is different from conventional lost circulation materials, were elaborated as well. In addition, the properties of the new composite gel material such as thermostability, sealing strength and bearing resistance are characterized with specific experimental devices. The experimental results proved that the breakdown pressure of the new plugging reached more than 20MPa, and the maximum degraded temperature can be exceed 130℃. The field application at 4 wells in Puguang gas field, SINOPEC, demonstrated that the new composite gel material solved the serious loss in Ordovician carbonate fractured formation successfully and guaranteed the following completion cement operation smoothly. The composite gel sealing slurries, which was easily prepared on site, gives remarkable properties regarding pumping through drill pipes, adjustment of setting time and excellent sealing strength of the lost zone sealing, additionally, the whole pressurization sealing process was complicated within only ten hours. The on-site results show that the plugging ratio of the new composite gel was reached 100%, and the success rate of sealing operation kept above 80%.Thus the new LCM can guarantee safe drilling jobs and save operation cost more effectively.
文摘Kuqa depression bears not only plenty ofnatural gas, but also a large amount of condensate and smallquantity of crude oil. Based on the geochemical correlationbetween the Jurassic and Triassic terrestrial hydrocarbonsource rock, this paper confirms that the natural gas in Kuqadepression belongs to coal-type gas and the main gas sourcerock is attributed to the middle to lower Jurassic coal seriesformation, while the main oil source rock is the upper Tri-assic lacustrine mudstone. The authors indicated that Kuqadepression was slowly subsided in Mesozoic, but rapidlywent down in Late Tertiary, which made the Jurassic andTriassic source rock suddenly deep-buried and rapidlyevolved to high and over-mature phase since 5 Ma. TheTriassic source rock is postponed to the Early Miocene dur-ing 23-12 Ma when entering the oil-generating peak, whilethe Jurassic is suspended to the latest 5 Ma, especially since2.5 Ma to the dry gas-generating period, which is one of thecharacteristics of the source rock thermal evolution in Kuqadepression. This paper presents a two-stage trapping andlate gas trapping model in Kuqa depression whose charac-teristics are: The main oil and gas reservoirs have differentsources. The oil reservoir is formed early while the gas res-ervoir is formed lately. During the early stage, it, mainly asoil, takes long distance lateral migration, while in the laterstage, it, mainly as gas, takes the vertical migration and alsohas lateral migration. The trap formed in different time onthe south and north sides of the depression and evolved intoa distributional pattern with oil in the south part and gas inthe north, also oil on the outer ring and gas on the inner ring.This paper points out that the late trapping of the naturalgas in Kuqa depression is favorable for the preservation oflarge gas fields.
基金Supported by National Basic Research Program of China (Grant No. 2005CB422105)
文摘With the discoveries of a series of large gas fields in the northeast of Sichuan Basin, such as Puguang and Longgang gas fields, the formation mechanism of the gas reservoir containing high H2S in the ancient marine carbonate formation in superposition-basin becomes a hot topic in the field of petroleum geology. Based on the structure inversion, numerical simulation, and geochemical research, we show at least two intervals of fluid transfer in Puguang paleo-oil reservoir, one in the forepart of late Indo-Chinese epoch to early Yanshan epoch and the other in the metaphase of early Yanshan epoch. Oil and gas accumulation occurred at Puguang structure through Puguang-Dongyuezhai faults and dolomite beds in reef and shoal facies in Changxing Formation (P2ch) - Feixianguan Formation (T1f) in the northwest and southwest directions along three main migration pathways, to form Puguang paleo-oil reservoir. Since crude oil is pyrolysised in the early stage of middle Yanshan epoch, Puguang gas reservoir has experienced fluid adjusting process controlled by tectonic movement and geochemical reconstruction process controlled by thermochemical sulfate reduction (TSR). Middle Yan-shan epoch is the main period during which the Puguang gas reservoir experienced the geochemical reaction of TSR. On one hand, TSR can recreate the fluid in gas reservoir, which makes the gas drying index larger and carbon isotope heavier. On the other hand, the reciprocity between fluid regarding TSR (hydrocarbon, H2S, and water) and reservoir rock induces erosion of the reservoir rocks and anhydrite alteration, which improves reservoir petrophysical properties. Superimposed by later tectonic movement, the fluid in Puguang reservoir has twice experienced adjustment, one in the late Yanshan epoch to the early Himalayan epoch and the other time in late Himalayan epoch, after which Puguang gas reservoir is finally developed.