In an effort to develop new green-emitting PDP phosphors with high efficiency, investigated were the synthesis, VUV photoluminescence (PL) spectra, optical properties, and chromaticity of Ca(La1-x-yTbxGdy. )4Si3O13 ph...In an effort to develop new green-emitting PDP phosphors with high efficiency, investigated were the synthesis, VUV photoluminescence (PL) spectra, optical properties, and chromaticity of Ca(La1-x-yTbxGdy. )4Si3O13 phosphors by using synchrotron radiation. Upon analysis of the VUV spectroscopic and chromaticity investigations on the new greenemitting VUV phosphors, were an optimized composition achieved. The PLE spectral studies show that Ca ( La1-x-y TbxGdy)4Si3O13 exhibit significant absorption in the VUV range. The VUV PL intensity was found to enhance with Gd3+-doping. Furthermore, the 1931 CIE chromaticity coordinates of Ca(La,Gd)4Si3O13:Tb were found to be (0.286, 0.548), as compared to (0.230, 0.712) for Zn2SiP4:Mn2+ as a reference. The potential application of Ca(La,Gd)4Si3O13:Tb as a new green-emitting PDP phosphor are being currently improving and evaluating.展开更多
The synthesis, composition optimization, VUV Photoluminescence (PL) spectra, and optical properties, of (Y,Gd)(V,P)O4∶Eu3+ phosphors were investigated by synchrotron radiation. The VUV PLE spectra and the correlation...The synthesis, composition optimization, VUV Photoluminescence (PL) spectra, and optical properties, of (Y,Gd)(V,P)O4∶Eu3+ phosphors were investigated by synchrotron radiation. The VUV PLE spectra and the correlation among VUV PL intensity, λem, and Eu3+, Gd3+, and P-content were established. The PLE spectral studies showed that (Y,Gd)(V,P)O4∶Eu3+ exhibited significant absorption in the VUV range. The VUV PL intensity was found to enhance with PO43- and Gd3+-doping. Furthermore, the chromaticity characteristics of (Y,Gd)(V,P)O4∶Eu3+ were also found to be (0.6614, 0.3286) and compared against (Y, Gd)BO3∶Eu3+ as a reference. Based on the characterization results, we are currently improving and evaluating the potential application of (Y,Gd)(V,P)O4∶Eu3+ as a new red-emitting PDP phosphor.展开更多
The goal of this work was aimed to improve the power conversion efficiency of single crystalline silicon-based photovoltaic cells by using the solar spectral conversion principle, which employs an up-conversion phosph...The goal of this work was aimed to improve the power conversion efficiency of single crystalline silicon-based photovoltaic cells by using the solar spectral conversion principle, which employs an up-conversion phosphor to convert a low energy infrared photon to the more energetic visible photons to improve the spectral response. In this study, the surface of multicrystalline silicon solar cells was coated with an up-conversion molybdate phosphor to improve the spectral response of the solar cell in the near-infrared spectral range. The short circuit current (Isc), open circuit voltage (Voc), and conversion efficiency (η) of spectral conversion cells were measured. Preliminary experimental results revealed that the light conversion efficiency of a 1.5%–2.7% increase in Si-based cell was achieved.展开更多
The goal of this work is aimed to improve the power conversion efficiency of single crystalline silicon-based photovoltaic (PV) cells by using the solar spectral conversion principle, which employed a down-convertin...The goal of this work is aimed to improve the power conversion efficiency of single crystalline silicon-based photovoltaic (PV) cells by using the solar spectral conversion principle, which employed a down-converting phosphor to convert a high-energy ultraviolet photon to the less energetic red-emitting photons to improve the spectral response of Si solar cells. In this study, the surface of silicon solar cells was coated with a red-emitting KCaGd(PO4)2:Eu3+ phosphor by using the screen-printing technique. In addition to the investigation on the microstructure using scanning electron microscopy (SEM), we measured the short circuit current (Isc), open circuit voltage (Voc), and power conversion efficiency (η) of spectral-conversion cells and compared with those of bare solar cells as a reference. Preliminary experimental results revealed that in an optimized PV cell, an enhancement of (0.64+0.01)% (from 16.03% to 16.67%) in Δη of a Si-based PV cell was achieved.展开更多
A blue phosphor Ca2PO4Cl:Eu2+(CAP:Eu2+) was synthesized by solid state reaction.The Ca2PO4Cl:Eu2+ exhibited high quantum efficiency and excellent thermal stability.The luminescent intensity of Ca2PO4Cl:Eu2+ was found ...A blue phosphor Ca2PO4Cl:Eu2+(CAP:Eu2+) was synthesized by solid state reaction.The Ca2PO4Cl:Eu2+ exhibited high quantum efficiency and excellent thermal stability.The luminescent intensity of Ca2PO4Cl:Eu2+ was found to be 128% under excitation at 380 nm,149% under 400 nm,and 247% under 420 nm as high as that of BaMgAl10O17:Eu2+.The optimal doping concentration was observed to 11 mol.% of CAP:Eu2+.The energy transfer between Eu2+ ions in CAP were occurred via electric multipolar interaction,and the critical transfer distance was estimated to be 1.26 nm.A mixture of blue-emitting Ca2PO4Cl:Eu2+,green-emitting(Ba,Sr)2SiO4:Eu2+ and red-emitting CaAlSiN3:Eu2+ phosphors were selected in conjunction with 400 nm chip to fabricate white LED devices.The average color-rendering index Ra and correlated color temperature(Tc) of the white LEDs were found to be 93.4 and 4590 K,respectively.The results indicated that it was a promising candidate as a blue-emitting phosphor for the near-UV white light-emitting diodes.展开更多
基金Project supported by National Science Council of Taiwan, R.O.C. (NSC94-2113-M-009-001)
文摘In an effort to develop new green-emitting PDP phosphors with high efficiency, investigated were the synthesis, VUV photoluminescence (PL) spectra, optical properties, and chromaticity of Ca(La1-x-yTbxGdy. )4Si3O13 phosphors by using synchrotron radiation. Upon analysis of the VUV spectroscopic and chromaticity investigations on the new greenemitting VUV phosphors, were an optimized composition achieved. The PLE spectral studies show that Ca ( La1-x-y TbxGdy)4Si3O13 exhibit significant absorption in the VUV range. The VUV PL intensity was found to enhance with Gd3+-doping. Furthermore, the 1931 CIE chromaticity coordinates of Ca(La,Gd)4Si3O13:Tb were found to be (0.286, 0.548), as compared to (0.230, 0.712) for Zn2SiP4:Mn2+ as a reference. The potential application of Ca(La,Gd)4Si3O13:Tb as a new green-emitting PDP phosphor are being currently improving and evaluating.
基金the National Science Council of Taiwan (NSC95 -2113-M-009-024-MY3)
文摘The synthesis, composition optimization, VUV Photoluminescence (PL) spectra, and optical properties, of (Y,Gd)(V,P)O4∶Eu3+ phosphors were investigated by synchrotron radiation. The VUV PLE spectra and the correlation among VUV PL intensity, λem, and Eu3+, Gd3+, and P-content were established. The PLE spectral studies showed that (Y,Gd)(V,P)O4∶Eu3+ exhibited significant absorption in the VUV range. The VUV PL intensity was found to enhance with PO43- and Gd3+-doping. Furthermore, the chromaticity characteristics of (Y,Gd)(V,P)O4∶Eu3+ were also found to be (0.6614, 0.3286) and compared against (Y, Gd)BO3∶Eu3+ as a reference. Based on the characterization results, we are currently improving and evaluating the potential application of (Y,Gd)(V,P)O4∶Eu3+ as a new red-emitting PDP phosphor.
基金Project supported by National Science Council of Taiwan (NSC98-2113-M-009-005-MY3)
文摘The goal of this work was aimed to improve the power conversion efficiency of single crystalline silicon-based photovoltaic cells by using the solar spectral conversion principle, which employs an up-conversion phosphor to convert a low energy infrared photon to the more energetic visible photons to improve the spectral response. In this study, the surface of multicrystalline silicon solar cells was coated with an up-conversion molybdate phosphor to improve the spectral response of the solar cell in the near-infrared spectral range. The short circuit current (Isc), open circuit voltage (Voc), and conversion efficiency (η) of spectral conversion cells were measured. Preliminary experimental results revealed that the light conversion efficiency of a 1.5%–2.7% increase in Si-based cell was achieved.
基金Project supported by National Science Council of Taiwan (NSC98-2113-M-009-005-MY3)
文摘The goal of this work is aimed to improve the power conversion efficiency of single crystalline silicon-based photovoltaic (PV) cells by using the solar spectral conversion principle, which employed a down-converting phosphor to convert a high-energy ultraviolet photon to the less energetic red-emitting photons to improve the spectral response of Si solar cells. In this study, the surface of silicon solar cells was coated with a red-emitting KCaGd(PO4)2:Eu3+ phosphor by using the screen-printing technique. In addition to the investigation on the microstructure using scanning electron microscopy (SEM), we measured the short circuit current (Isc), open circuit voltage (Voc), and power conversion efficiency (η) of spectral-conversion cells and compared with those of bare solar cells as a reference. Preliminary experimental results revealed that in an optimized PV cell, an enhancement of (0.64+0.01)% (from 16.03% to 16.67%) in Δη of a Si-based PV cell was achieved.
基金Project supported by Industrial Technology Research Institute under contract (9301XS1J31)the National Science Council of Taiwan under Contract (NSC98-2113-M-009-005-MY3) (T.-M.C.)
文摘A blue phosphor Ca2PO4Cl:Eu2+(CAP:Eu2+) was synthesized by solid state reaction.The Ca2PO4Cl:Eu2+ exhibited high quantum efficiency and excellent thermal stability.The luminescent intensity of Ca2PO4Cl:Eu2+ was found to be 128% under excitation at 380 nm,149% under 400 nm,and 247% under 420 nm as high as that of BaMgAl10O17:Eu2+.The optimal doping concentration was observed to 11 mol.% of CAP:Eu2+.The energy transfer between Eu2+ ions in CAP were occurred via electric multipolar interaction,and the critical transfer distance was estimated to be 1.26 nm.A mixture of blue-emitting Ca2PO4Cl:Eu2+,green-emitting(Ba,Sr)2SiO4:Eu2+ and red-emitting CaAlSiN3:Eu2+ phosphors were selected in conjunction with 400 nm chip to fabricate white LED devices.The average color-rendering index Ra and correlated color temperature(Tc) of the white LEDs were found to be 93.4 and 4590 K,respectively.The results indicated that it was a promising candidate as a blue-emitting phosphor for the near-UV white light-emitting diodes.