Dependence of the current-voltage characteristics of a non-transferred DC cascaded plasma torch used for nanoparticle synthesis, on the plasma current and the plasma argon gas flow rate are reported in this paper. The...Dependence of the current-voltage characteristics of a non-transferred DC cascaded plasma torch used for nanoparticle synthesis, on the plasma current and the plasma argon gas flow rate are reported in this paper. The potential structure inside the torch and its dependence on the plasma current and gas flow rate are also investigated. The arc voltage is seen to exhibit negative characteristic for a current below 150 A and positive characteristic above that current value. The voltage drop near the electrodes is found to decrease with the increase in plasma current. 25~ of the total voltage is dropped near the cathode at a plasma current of 50 A and a argon plasma gas flow rate of 10 liter per minute (LPM), and it decreases to 12% with the current increasing to 300 A, and to 17% with a gas flow rate of 25 LPM. The variation in the torch efficiency with the gas flow rate and plasma current is also reported. The efficiency of the torch is found to be between 36% and 48%. In addition, the plasma gas temperature at various positions of the reactor and for different currents and voltages are measured by calorimetric estimation with a heat balance technique.展开更多
It is recognized that standing wave effects appearing in large-area,very-high-frequency capacitively coupled plasma(CCP)reactors cause center-high plasma non-uniformity.Using a high-frequency magnetic probe,we present...It is recognized that standing wave effects appearing in large-area,very-high-frequency capacitively coupled plasma(CCP)reactors cause center-high plasma non-uniformity.Using a high-frequency magnetic probe,we present a direct experimental diagnostic of the nonlinear standing waves and bulk ohmic electron power absorption dynamics in low pressure CCP discharges for different driving frequencies of 13.56,30,and 60 MHz.The design,principle,calibration,and validation of the probe are described in detail.Spatial structures of the harmonics of the magnetic field,determined by the magnetic probe,were used to calculate the distributions of the harmonic current and the corresponding ohmic electron power deposition,providing insights into the behavior of nonlinear harmonics.At a low driving frequency,i.e.13.56 MHz,no remarkable nonlinear standing waves were identified and the bulk ohmic electron power absorption was observed to be negligible.The harmonic magnetic field/current was found to increase dramatically with the driving frequency,due to decreased sheath reactance and more remarkable nonlinear standing waves at a higher driving frequency,leading to the enhancements of the ohmic heating and the plasma density in the bulk,specifically at the electrode center.At a high driving frequency,i.e.60 MHz,the high-order harmonic current density and the corresponding ohmic electron power absorption exhibited a similar node structure,with the main peak on axis,and one or more minor peaks between the electrode center and the edge,contributing to the center-high profile of the plasma density.展开更多
The Global Reaction Model describes a set of chemical reactions that can potentially occur during the process of obtaining silicon rich oxide (SRO) films, regardless of the technique used to grow such films which are ...The Global Reaction Model describes a set of chemical reactions that can potentially occur during the process of obtaining silicon rich oxide (SRO) films, regardless of the technique used to grow such films which are an outside stoichiometry material. Particularly, chemical reactions that occur during the process of growing of SRO films by LPCVD technique are highlighted in this model. We suggest and evaluate either some types of molecules or resulting nanostructures and we predict theoretically, by applying the density functional theory, the contribution that they may have to the phenomenon of luminescence which is measured in SRO films. Also, we have calculated the opto-electronic properties of SRO films. The suggested model provides enough information required to identify the molecular structures resulting from the presence of defects in SRO films and also those corresponding to charged structures. It is also possible to detect the molecular structures which are modified due to the effect of heat treatment, and identify the presence of different oxidation states inclusive the formation of siloxanes.展开更多
The development of new fabrication techniques for capacitors with high storage capabilities, called super capacitors, requires appropriated equipment in order to obtain the device's electric behaviours. There is seve...The development of new fabrication techniques for capacitors with high storage capabilities, called super capacitors, requires appropriated equipment in order to obtain the device's electric behaviours. There is several equipment to perform this analysis operating with alternating or continuum voltage. However, the elevated cost of this equipment makes purchasing it impossible in many laboratories. In this work, we present the development and construction of a low-cost impedance spectrometer that allows for the analysis of the capacitor's electric behaviour without taking too much time. The analysis is performed by alternating voltage and current measurements as a function of the frequency in the range of 0.001 Hz to 100 kHz. The capacitance and electric behaviour of some commercial capacitors are shown in this work, thereby proving the efficiency of the developed equipment.展开更多
The carbon and nickel oxide/carbon composite electrodes were prepared by plasma jet and magnetron sput-tering techniques. The investigations were performed to evaluate the influence of the Ar/C2H2 ratio on the specifi...The carbon and nickel oxide/carbon composite electrodes were prepared by plasma jet and magnetron sput-tering techniques. The investigations were performed to evaluate the influence of the Ar/C2H2 ratio on the specific capacitance values of carbon and NiO/carbon electrodes. The obtained electrodes were investigated by scanning electron microscopy, Raman scattering spectroscopy (RS), and X-ray diffraction techniques. The surface of the carbon electrodes became less porous and more homogenous with increasing Ar/C2H2. The RS results indicated that the fraction of the sp2 carbon sites increased with increasing Ar/C2H2 ratio. The increase of the Ar/C2H2 ratio increased the capacitance values from 0.73 up to 3.8 F/g. Meanwhile, after the deposition of the nickel oxide on the carbon, the capacitance increased ten and more times and varied in the range of 7.6-86.1 F/g.展开更多
文摘Dependence of the current-voltage characteristics of a non-transferred DC cascaded plasma torch used for nanoparticle synthesis, on the plasma current and the plasma argon gas flow rate are reported in this paper. The potential structure inside the torch and its dependence on the plasma current and gas flow rate are also investigated. The arc voltage is seen to exhibit negative characteristic for a current below 150 A and positive characteristic above that current value. The voltage drop near the electrodes is found to decrease with the increase in plasma current. 25~ of the total voltage is dropped near the cathode at a plasma current of 50 A and a argon plasma gas flow rate of 10 liter per minute (LPM), and it decreases to 12% with the current increasing to 300 A, and to 17% with a gas flow rate of 25 LPM. The variation in the torch efficiency with the gas flow rate and plasma current is also reported. The efficiency of the torch is found to be between 36% and 48%. In addition, the plasma gas temperature at various positions of the reactor and for different currents and voltages are measured by calorimetric estimation with a heat balance technique.
基金financially supported by National Natural Science Foundation of China(NSFC)(Nos.12005035 and 11935005)China Postdoctoral Science Foundation(Nos.2020M670741 and 2021T140085)+2 种基金Fundamental Research Funds for the Central Universities(No.DUT20LAB201)National Science Foundation(No.PHY-1500518)Department of Energy Office of Fusion Energy Science(No.DE-SC0001939)for financial support。
文摘It is recognized that standing wave effects appearing in large-area,very-high-frequency capacitively coupled plasma(CCP)reactors cause center-high plasma non-uniformity.Using a high-frequency magnetic probe,we present a direct experimental diagnostic of the nonlinear standing waves and bulk ohmic electron power absorption dynamics in low pressure CCP discharges for different driving frequencies of 13.56,30,and 60 MHz.The design,principle,calibration,and validation of the probe are described in detail.Spatial structures of the harmonics of the magnetic field,determined by the magnetic probe,were used to calculate the distributions of the harmonic current and the corresponding ohmic electron power deposition,providing insights into the behavior of nonlinear harmonics.At a low driving frequency,i.e.13.56 MHz,no remarkable nonlinear standing waves were identified and the bulk ohmic electron power absorption was observed to be negligible.The harmonic magnetic field/current was found to increase dramatically with the driving frequency,due to decreased sheath reactance and more remarkable nonlinear standing waves at a higher driving frequency,leading to the enhancements of the ohmic heating and the plasma density in the bulk,specifically at the electrode center.At a high driving frequency,i.e.60 MHz,the high-order harmonic current density and the corresponding ohmic electron power absorption exhibited a similar node structure,with the main peak on axis,and one or more minor peaks between the electrode center and the edge,contributing to the center-high profile of the plasma density.
文摘The Global Reaction Model describes a set of chemical reactions that can potentially occur during the process of obtaining silicon rich oxide (SRO) films, regardless of the technique used to grow such films which are an outside stoichiometry material. Particularly, chemical reactions that occur during the process of growing of SRO films by LPCVD technique are highlighted in this model. We suggest and evaluate either some types of molecules or resulting nanostructures and we predict theoretically, by applying the density functional theory, the contribution that they may have to the phenomenon of luminescence which is measured in SRO films. Also, we have calculated the opto-electronic properties of SRO films. The suggested model provides enough information required to identify the molecular structures resulting from the presence of defects in SRO films and also those corresponding to charged structures. It is also possible to detect the molecular structures which are modified due to the effect of heat treatment, and identify the presence of different oxidation states inclusive the formation of siloxanes.
文摘The development of new fabrication techniques for capacitors with high storage capabilities, called super capacitors, requires appropriated equipment in order to obtain the device's electric behaviours. There is several equipment to perform this analysis operating with alternating or continuum voltage. However, the elevated cost of this equipment makes purchasing it impossible in many laboratories. In this work, we present the development and construction of a low-cost impedance spectrometer that allows for the analysis of the capacitor's electric behaviour without taking too much time. The analysis is performed by alternating voltage and current measurements as a function of the frequency in the range of 0.001 Hz to 100 kHz. The capacitance and electric behaviour of some commercial capacitors are shown in this work, thereby proving the efficiency of the developed equipment.
基金partly funded by the European Union (European Regional Development Fund) PlasTEP|# 033| KST 770123
文摘The carbon and nickel oxide/carbon composite electrodes were prepared by plasma jet and magnetron sput-tering techniques. The investigations were performed to evaluate the influence of the Ar/C2H2 ratio on the specific capacitance values of carbon and NiO/carbon electrodes. The obtained electrodes were investigated by scanning electron microscopy, Raman scattering spectroscopy (RS), and X-ray diffraction techniques. The surface of the carbon electrodes became less porous and more homogenous with increasing Ar/C2H2. The RS results indicated that the fraction of the sp2 carbon sites increased with increasing Ar/C2H2 ratio. The increase of the Ar/C2H2 ratio increased the capacitance values from 0.73 up to 3.8 F/g. Meanwhile, after the deposition of the nickel oxide on the carbon, the capacitance increased ten and more times and varied in the range of 7.6-86.1 F/g.