In this study,the neutral gas distribution and steady-state discharge under different discharge channel lengths were studied via numerical simulations.The results show that the channel with a length of 22 mm has the a...In this study,the neutral gas distribution and steady-state discharge under different discharge channel lengths were studied via numerical simulations.The results show that the channel with a length of 22 mm has the advantage of comprehensive discharge performance.At this time,the magnetic field intensity at the anode surface is 10%of the peak magnetic field intensity.Further analysis shows that the high-gas-density zone moves outward due to the shortening of the channel length,which optimizes the matching between the gas flow field and the magnetic field,and thus increases the ionization rate.The outward movement of the main ionization zone also reduces the ion loss on the wall surface.Thus,the propellant utilization efficiency can reach a maximum of 96.8%.Moreover,the plasma potential in the main ionization zone will decrease with the shortening of the channel.The excessively short-channel will greatly reduce the voltage utilization efficiency.The thrust is reduced to a minimum of 46.1 m N.Meanwhile,because the anode surface is excessively close to the main ionization zone,the discharge reliability is also difficult to guarantee.It was proved that the performance of Hall thrusters can be optimized by shortening the discharge channel appropriately,and the specific design scheme of short-channel of HEP-1350 PM was defined,which serves as a reference for the optimization design of Hall thruster with large height–radius ratio.The shortchannel design also helps to reduce the thruster axial dimension,further consolidating the advantages of lightweight and large thrust-to-weight ratio of the Hall thruster with large height–radius ratio.展开更多
Hollow cathodes are widely used as electron sources and neutralizers in ion and Hall electric propulsion.Special applications such as commercial aerospace and gravitational wave detection require hollow cathodes with ...Hollow cathodes are widely used as electron sources and neutralizers in ion and Hall electric propulsion.Special applications such as commercial aerospace and gravitational wave detection require hollow cathodes with a very wide discharge current range.In this paper,a heater is used to compensate for the temperature drop of the emitter at low current.The self-sustained current can be extended from 0.6 to 0.1 A with a small discharge oscillation and ion energy when the flow rate is constant.This is also beneficial for long-life operation.However,when the discharge current is high(>1 A),heating can cause discharge oscillation,discharge voltage and ion energy to increase,f urther,combined with a rapid decline of pressure inside the cathode and an increase in the temperature in the cathode orifice plate,electron emission in die orifice and outside the orifice increases and the plasma density in the orifice decreases.This leads to a change in the cathode discharge mode.展开更多
基金This work is funded by the Defense Industrial Technology Development Program(No.JCKY2019603B005)National Natural Science Foundation of China(Nos.52076054,51777045)the Hunan Science and Technology Innovation Project(No.2019RS1102).
文摘In this study,the neutral gas distribution and steady-state discharge under different discharge channel lengths were studied via numerical simulations.The results show that the channel with a length of 22 mm has the advantage of comprehensive discharge performance.At this time,the magnetic field intensity at the anode surface is 10%of the peak magnetic field intensity.Further analysis shows that the high-gas-density zone moves outward due to the shortening of the channel length,which optimizes the matching between the gas flow field and the magnetic field,and thus increases the ionization rate.The outward movement of the main ionization zone also reduces the ion loss on the wall surface.Thus,the propellant utilization efficiency can reach a maximum of 96.8%.Moreover,the plasma potential in the main ionization zone will decrease with the shortening of the channel.The excessively short-channel will greatly reduce the voltage utilization efficiency.The thrust is reduced to a minimum of 46.1 m N.Meanwhile,because the anode surface is excessively close to the main ionization zone,the discharge reliability is also difficult to guarantee.It was proved that the performance of Hall thrusters can be optimized by shortening the discharge channel appropriately,and the specific design scheme of short-channel of HEP-1350 PM was defined,which serves as a reference for the optimization design of Hall thruster with large height–radius ratio.The shortchannel design also helps to reduce the thruster axial dimension,further consolidating the advantages of lightweight and large thrust-to-weight ratio of the Hall thruster with large height–radius ratio.
文摘Hollow cathodes are widely used as electron sources and neutralizers in ion and Hall electric propulsion.Special applications such as commercial aerospace and gravitational wave detection require hollow cathodes with a very wide discharge current range.In this paper,a heater is used to compensate for the temperature drop of the emitter at low current.The self-sustained current can be extended from 0.6 to 0.1 A with a small discharge oscillation and ion energy when the flow rate is constant.This is also beneficial for long-life operation.However,when the discharge current is high(>1 A),heating can cause discharge oscillation,discharge voltage and ion energy to increase,f urther,combined with a rapid decline of pressure inside the cathode and an increase in the temperature in the cathode orifice plate,electron emission in die orifice and outside the orifice increases and the plasma density in the orifice decreases.This leads to a change in the cathode discharge mode.