Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,i...Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present study provide a reference that could facilitate the sustainable utilization of ecosystem services in the typical fragile areas of Northwest China.展开更多
We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It cha...We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It characterizes the process of infectious disease transmission among residents between communities through the SE2IHR model considering two types of infectors. By depicting a more fine-grained social structure and combining further simulation experiments, the study validates the crucial role of various prevention and control measures implemented by communities as primary executors in controlling the epidemic. Research shows that the geographical boundaries of communities and the social interaction patterns of residents have a significant impact on the spread of the epidemic, where early detection, isolation and treatment strategies at community level are essential for controlling the spread of the epidemic. In addition, the study explores the collaborative governance model and institutional advantages of communities and residents in epidemic prevention and control.展开更多
Gauge length influences the biomechanical properties of herbaceous roots such as tensile resistance,tensile strength and Young’s modulus.However,the extent to which and how these biomechanical properties of herbaceou...Gauge length influences the biomechanical properties of herbaceous roots such as tensile resistance,tensile strength and Young’s modulus.However,the extent to which and how these biomechanical properties of herbaceous roots are influenced remain unknown.To better understand the behavior of roots in tension under different conditions and to illustrate these behaviors,uniaxial tensile tests were conducted on the Poa araratica roots as the gauge length increased from 20 mm to 80 mm.Subsequently,ANOVA was used to test the impact of the significant influences of gauge length on the biomechanical properties,nonlinear regression was applied to establish the variation in the biomechanical properties with gauge length to answer the question of the extent to which the biomechanical properties are influenced,and Weibull models were subsequently introduced to illustrate how the biomechanical properties are influenced by gauge length.The results reveal that(1)the variation in biomechanical properties with root diameter depends on both the gauge length and the properties themselves;(2)the gauge length significantly impacts most of the biomechanical properties;(3)the tensile resistance,tensile strength,and tensile strain at cracks decrease as the gauge length increases,with values decreasing by 20%-300%,while Young’s modulus exhibits the opposite trend,with a corresponding increase of 30%;and(4)the Weibull distribution is suitable for describing the probability distribution of these biomechanical properties;the Weibull modulus for both tensile resistance and tensile strain at cracks linearly decrease with gauge length,whereas those for tensile strength and Young’s modulus exhibit the opposite trend.The tensile resistance,tensile strength,and tensile strain at the cracks linearly decrease with increasing gauge length,while the tensile strength and Young’s modulus linearly increase with increasing gauge length.展开更多
This study focuses on a DN50 pipeline-type Savonius hydraulic turbine.The torque variation of the turbine in a rotation cycle is analyzed theoretically in the framework of the plane potential flow theory.Related numer...This study focuses on a DN50 pipeline-type Savonius hydraulic turbine.The torque variation of the turbine in a rotation cycle is analyzed theoretically in the framework of the plane potential flow theory.Related numerical simulations show that the change in turbine torque is consistent with the theoretical analysis,with the main power zone and the secondary power zone exhibiting a positive torque.In contrast,the primary resistance zone and the secondary resistance zone are characterized by a negative torque.Analytical relationships between the turbine’s internal flow angleθ,the deflector’s inclination angleα0,and the coverage angleαof the power zone are introduced,and a method for calculating the optimal number of blades is proposed to maximize the power zone.Results are presented about performance tests conducted on five groups of hydraulic turbines with the blade number ranging from 3 to 7.Such results indicate that both the turbine’s recovery power and efficiency attain the highest values when the blade number is 4,which is in agreement with the number of blades calculated by the proposed method.Additionally,the study examines the effects of the flow rate on turbine parameters and the projected energy generation and cost savings for a specific pipeline configuration.展开更多
The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software.The identification of malevolent code within financial software is vital for protecting both the financia...The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software.The identification of malevolent code within financial software is vital for protecting both the financial system and individual clients.Nevertheless,present detection models encounter limitations in their ability to identify malevolent code and its variations,all while encompassing a multitude of parameters.To overcome these obsta-cles,we introduce a lean model for classifying families of malevolent code,formulated on Ghost-DenseNet-SE.This model integrates the Ghost module,DenseNet,and the squeeze-and-excitation(SE)channel domain attention mechanism.It substitutes the standard convolutional layer in DenseNet with the Ghost module,thereby diminishing the model’s size and augmenting recognition speed.Additionally,the channel domain attention mechanism assigns distinctive weights to feature channels,facilitating the extraction of pivotal characteristics of malevolent code and bolstering detection precision.Experimental outcomes on the Malimg dataset indicate that the model attained an accuracy of 99.14%in discerning families of malevolent code,surpassing AlexNet(97.8%)and The visual geometry group network(VGGNet)(96.16%).The proposed model exhibits reduced parameters,leading to decreased model complexity alongside enhanced classification accuracy,rendering it a valuable asset for categorizing malevolent code.展开更多
Under the background of new infrastructure,the Yellow River Basin’s superior growth cannot be separated originating with the synergistic effect of scientific and technological inventiveness and ecological civilizatio...Under the background of new infrastructure,the Yellow River Basin’s superior growth cannot be separated originating with the synergistic effect of scientific and technological inventiveness and ecological civilization construction.In light of the coupling coordination analysis of the coordination effect of provincial high-tech industry agglomeration and resource carrying capacity in the Yellow River Basin from 2009 to 2021,The evolution of the geographical and temporal pattern of development was investigated using the Moran index and kernel density estimation.The results show that the agglomeration of high-tech industries in the Yellow River Basin presents a development trend of seek improvement in stability,and there is a good coupling and coordination throughout the progression of scientific and technological innovation and the loading capacity of the resource,from the viewpoint of a time series.From the perspective of spatial pattern distribution,the whole basin aims at the lower reaches,accelerates the optimization of digital industry and promotes Yellow River Basin development of superior quality through innovation support and increase of input,and based on policy guidance.展开更多
The traceability system can effectively reduce the food safety risks, however, it is confronted with various problems during its implementation. In this context, the paper carries out a case study of consumers in Weif...The traceability system can effectively reduce the food safety risks, however, it is confronted with various problems during its implementation. In this context, the paper carries out a case study of consumers in Weifang, Shandong Province, and studies their willingness to pay the traceable pork with different quality information. The results indicate that, the consumers show high expectations towards the introduction of traceability system, and they tend to buy the traceable pork only with breeding and slaughter information; their behaviors of purchase are greatly influenced by the following factors: the consumers education, age, income, attention on food safety and whether there are pregnant family members, etc..展开更多
Long-term kinematic research of slow- moving debris slide is rare despite of the widespread global distribution of this kind. This paper presents a study of the kinematics and mechanism of the Jinpingzi debris slide l...Long-term kinematic research of slow- moving debris slide is rare despite of the widespread global distribution of this kind. This paper presents a study of the kinematics and mechanism of the Jinpingzi debris slide located on the Jinsha river bank in southwest China. This debris slide is known to have a volume of 27×106 ms in active state for at least one century. Field survey and geotechnical investigation were carried out to define the structure of the landslide. The physical and mechanical properties of the landslide materials were obtained by in-situ and laboratory tests. Additionally, surface and subsurface displacements, as well as groundwater level fluctuations, were monitored since 2005. Movement features, especially the response of the landslide movement to rainfall, were analysed. Relationships between resisting forces and driving forces were analysed by using the limit equilibrium method assuming rigid-plastic frictional slip. The results confirmed a viscous comoonent in the long-term continuous movement resulting in the quasioverconsolidated state of the slip zone with higher strength parameters than some other types of slowmoving landslides. Both surface and subsurface displacements showed an advancing pattern by the straight outwardly inclined (rather than gently or reversely inclined) slip zone, which resulted in low resistance to the entire sliding mass. The average surface displacement rate from 2005 to 2016 was estimated to be 0.19-0.87 mm/d. Basal sliding on the silty clay seam accounted for most of the deformation with different degrees of internal deformation in different parts. Rainfall was the predominant factor affecting the kinematics of Jinpingzi landslide while the role of groundwater level, though positive, was not significant. The response of the groundwater level to rainfall infiltration was not apparent. Unlike some shallow slow-moving earth flows or mudslides, whose behaviors are directly related to the phreatic groundwater level, the mechanism for Jinpingzi landslide kinematics is more likely related to the changing weight of the sliding mass and the downslope seepage pressure in the shallow soil mass resulting from rainfall events.展开更多
The loading on U-steel yieldable support cannot be organically combined withthe law of strata behaviors from the surrounding rocks of roadway. In order to effectivelysolve the problem, U-steel yieldable support with b...The loading on U-steel yieldable support cannot be organically combined withthe law of strata behaviors from the surrounding rocks of roadway. In order to effectivelysolve the problem, U-steel yieldable support with backfill material and the performancerequirements of backfill material were analyzed on the basis of structural mechanics. Themechanical properties of backfill material selected were tested in the laboratory, and thetest results show that the ratio of the backfill material complies with the requirements ofbackfill technology; it can effectively optimize the relationship between the support and thesurrounding rock, and the filling layer can avoid the partial stress concentration and fullyimprove the support performance. Compared with U-steel yieldable support with ganguefilling, the filed application shows that the supporting result of U-steel yieldable supportwith backfill technology is satisfactory, the stress on U-steel yieldable support with backfilltechnology decreases greatly and distributes uniformly, convergence of the surroundingrock of roadway is decreased by more than 50%, and the surrounding rocks of roadwayare controlled effectively.展开更多
As the agricultural heritage,Hani terrace is not only culturally authentic and non- renew able,but has its ow n characteristics. Firstly,it is a kind of economic and social mode of production. Secondly,it reflects the...As the agricultural heritage,Hani terrace is not only culturally authentic and non- renew able,but has its ow n characteristics. Firstly,it is a kind of economic and social mode of production. Secondly,it reflects the idea of harmonious and sustainable development betw een human beings and nature. T hirdly,the participation of human beings — or farmers is important. As a result,to exploit and protect the agricultural heritage,it is crucial to balance systematic protection and sustainable development in order to realize dynamic protection. In addition,the agricultural heritage shall be treated as the driving agent to coordinate the social and economic development. T hrough analyzing the characteristics of the agricultural heritage and the concept of protecting the agricultural heritage,this paper proposes to promote the protection of agricultural authenticity by alternative tourism development in order to balance the development and realize the sustainability of the agricultural dynamic system.展开更多
The beam-to-column semirigid connection in a steel frame structure is represented by a zero-length rotational spring at the end of the beam element. The beam-to-column semirigid connection behavior is represented by i...The beam-to-column semirigid connection in a steel frame structure is represented by a zero-length rotational spring at the end of the beam element. The beam-to-column semirigid connection behavior is represented by its moment-rotation relationship. Several traditional mathematical models have been proposed to fit the moment-rotation curves from the experimental database,but they may be more reliable within certain ranges. In this paper, the intellectualized analytical model is proposed in the semirigid connections for top and seat angles with double web angles using the feed-forward back-propagation artificial neural network (BP-ANN) technique. the intellectualized analytical model from experimental results based on BP-ANN is more reliable and it is a better choice to the moment-rotation curves for beam-to-column semirigid connection. The results are found to provide effectiveness to the experimental response that is satisfactory for use in steel structural engineering design.展开更多
innovation driven development strategy,as a national strategy of our country,has attracted wide attention in the academic field,and it is very rich in theory and practice of innovation driven development.But innovatio...innovation driven development strategy,as a national strategy of our country,has attracted wide attention in the academic field,and it is very rich in theory and practice of innovation driven development.But innovation driven development,as a national strategy,is a long-term,not only from institutional and policy perspective,but also need to build a theoretical framework of relatively rich,can practice on the guiding role of theory.展开更多
Objective:Using network pharmacology to explore the target and mechanism of Chuanxiong Rhizoma and Acori Tatarinowii Rhizoma in the treatment of vascular dementia(VaD),so as to provide a reference for treating VaD thr...Objective:Using network pharmacology to explore the target and mechanism of Chuanxiong Rhizoma and Acori Tatarinowii Rhizoma in the treatment of vascular dementia(VaD),so as to provide a reference for treating VaD through them.Methods:Traditional Chinese medicine systems pharmacology database and analysis platform were used to screen the main active ingredients and targets of Chuanxiong Rhizoma and Acori Tatarinowii Rhizoma.By means of Gene Cards and Online Mendelian Inheritance in Man(OMIM),targets of VaD were collected.The intersecting targets were obtained by using the Venn map.The String online database was used to build a protein-protein interactions Network and the Metascape database was used to perform GO function enrichment analysis and KEGG pathway enrichment analysis.A“drug-ingredient-target-pathway”network was constructed by Cytoscape software.Autodock vina software was used to conduct molecular docking between targets.Results:A total of 7 active ingredients in Chuanxiong Rhizoma and 4 active ingredients in Acori Tatarinowii Rhizoma were screened.There were 42 active targets of Chuanxiong Rhizoma and 70 active targets of Acori Tatarinowii Rhizoma and 1152 disease targets.After deleting the repeat value,51 drugs targets were obtained.After the intersection,with a total of 25 targets.According to GO and KEGG enrichment analysis,the main biological processes involved include cellular response to lipid,negative regulation of apoptotic signaling pathway,blood circulation,response to a steroid hormone,etc.The main pathways include pathways in cancer,PI3K-Akt signaling pathway,and AGE-RAGE signaling pathway in diabetic complications,etc.Molecular docking showed that the most active docking combinations were AKT1 and Perlolyrine,RELA and FA,MAPK14 and FA,respectively.Conclusion:Chuanxiong Rhizoma and Acori Tatarinowii Rhizoma play an important role in the treatment of VaD mainly by anti-inflammatory and anti-apoptosis.展开更多
Our previous study found that large-leaf yellow tea(LYT)had interesting hypoglycemic activity in high-fat diet-induced obese mice and highly safety in healthy mice. To study the anti-diabetic potential of LYT, the pre...Our previous study found that large-leaf yellow tea(LYT)had interesting hypoglycemic activity in high-fat diet-induced obese mice and highly safety in healthy mice. To study the anti-diabetic potential of LYT, the present study further investigated the preventive effects and mechanisms of action of LYT administration on diabetes and diabetic nephropathy in high-fat diet plus streptozotocin-induced diabetic mice. Results showed that LYT infusions(1/100 and 1/50, m/V)as drinking fluid for 4 weeks reduced diabetic polydipsia and polyuria, enhanced glucose tolerance and insulin sensitivity, and lowered fasting blood glucose level. The underlying mechanisms involve downregulation of gluconeogenesis(lower protein levels of TXNIP and FBP and enzyme activity of FBP), upregulation of lipid catabolism(higher protein levels of CPT-1α and PPARα), downregulation of lipogenesis(lower protein level of SREBP-1), and modification of the structure and abundance of gut microbiota to modulate metabolic homeostasis. Moreover, LYT administration prevented diabetic nephropathy, possibly due to reduced glucose-caused osmotic diuresis and lowered levels of renal PKC-β2, NLRP3 as well as membrane PKC-α, AQP2 and glycosylated AQP2 proteins. Taken together, LYT exhibits the activities in alleviating diabetic symptoms, ameliorating glucose and lipid dysmetabolism and fatty liver, and preventing diabetic nephropathy in diabetic mice. These activities may be explored for the prevention and treatment of diabetes in humans.展开更多
The diagnosis of COVID-19 requires chest computed tomography(CT).High-resolution CT images can provide more diagnostic information to help doctors better diagnose the disease,so it is of clinical importance to study s...The diagnosis of COVID-19 requires chest computed tomography(CT).High-resolution CT images can provide more diagnostic information to help doctors better diagnose the disease,so it is of clinical importance to study super-resolution(SR)algorithms applied to CT images to improve the reso-lution of CT images.However,most of the existing SR algorithms are studied based on natural images,which are not suitable for medical images;and most of these algorithms improve the reconstruction quality by increasing the network depth,which is not suitable for machines with limited resources.To alleviate these issues,we propose a residual feature attentional fusion network for lightweight chest CT image super-resolution(RFAFN).Specifically,we design a contextual feature extraction block(CFEB)that can extract CT image features more efficiently and accurately than ordinary residual blocks.In addition,we propose a feature-weighted cascading strategy(FWCS)based on attentional feature fusion blocks(AFFB)to utilize the high-frequency detail information extracted by CFEB as much as possible via selectively fusing adjacent level feature information.Finally,we suggest a global hierarchical feature fusion strategy(GHFFS),which can utilize the hierarchical features more effectively than dense concatenation by progressively aggregating the feature information at various levels.Numerous experiments show that our method performs better than most of the state-of-the-art(SOTA)methods on the COVID-19 chest CT dataset.In detail,the peak signal-to-noise ratio(PSNR)is 0.11 dB and 0.47 dB higher on CTtest1 and CTtest2 at×3 SR compared to the suboptimal method,but the number of parameters and multi-adds are reduced by 22K and 0.43G,respectively.Our method can better recover chest CT image quality with fewer computational resources and effectively assist in COVID-19.展开更多
Background:Chinese medicine is widely applied in Asian and Western countries for its outstanding therapeutic effect,but there are still unsolved problems such as unclear active ingredients and pharmacological effects....Background:Chinese medicine is widely applied in Asian and Western countries for its outstanding therapeutic effect,but there are still unsolved problems such as unclear active ingredients and pharmacological effects.The application of nano/microparticle technology in Chinese medicine may become a promising strategy to solve this problem in the near future(provided that more efforts are made to in-depth exploration).In this work,a comprehensive analysis of the field was carried out from a bibliometrics perspective,and further the publishing trends and research hotspots were figured out.Methods:The articles or reviews from 2000 to 2020 were retrieved in the database of Web of Science Core Collection.The documents were processed by Clarivate Analytic,Visualization of Similarities viewer,Statistical Analysis Toolkit for Informetrics and bibliometric online platform,and the data were visualized.Finally,a bibliometric summary,citation analysis results and research trends were described.Results:A bibliometric analysis of 773 articles of interest showed that research in this field had continued to grow in recent years,with a high degree of interdisciplinary integration.Secondly,this field attached great importance to the quantitative analysis of Chinese medicine combined with nano/micro particle technology.Chinese medicine,nanoparticles and liposomes were the most accessed keywords.China was the main contributing country,and the top-10 contributing organizations were all located in China.Co-authorship was a common phenomenon in this field.Conclusion:The published literature on the application of nano/micro particle technology in Chinese medicine was summarized.The results suggested that bibliometric analysis could predict possible directions for future research in this field.展开更多
Objective The activation state of microglia is known to occupy a central position in the pathophysiological process of cerebral inflammation.Autophagy is a catabolic process responsible for maintaining cellular homeos...Objective The activation state of microglia is known to occupy a central position in the pathophysiological process of cerebral inflammation.Autophagy is a catabolic process responsible for maintaining cellular homeostasis.In recent years,autophagy has been demonstrated to play an important role in neuroinflammation.Resolvin D1(RvD1)is a promising therapeutic mediator that has been shown to exert substantial anti-inflammatory and proresolving activities.However,whether RvD1-mediated resolution of inflammation in microglia is related to autophagy regulation needs further investigation.The present study aimed to explore the effect of RvD1 on microglial autophagy and its corresponding pathways.Methods Mouse microglial cells(BV-2)were cultured,treated with RvD1,and examined by Western blotting,confocal immunofluorescence microscopy,transmission electron microscopy,and flow cytometry.Results RvD1 promoted autophagy in both BV-2 cells and mouse primary microglia by favoring the maturation of autophagosomes and their fusion with lysosomes.Importantly,RvD1 had no significant effect on the activation of mammalian target of rapamycin(mTOR)signaling.Furthermore,RvD1-induced mTOR-independent autophagy was confirmed by observing reduced cytoplasmic calcium levels and suppressed calcium/calmodulin-dependent protein kinase II(CaMK II)activation.Moreover,by downregulating ATG5,the increased phagocytic activity induced by RvD1 was demonstrated to be tightly controlled by ATG5-dependent autophagy.Conclusion The present work identified a previously unreported mechanism responsible for the role of RvD1 in microglial autophagy,highlighting its therapeutic potential against neuroinflammation.展开更多
“The Fundamental Rights and obligations of Citizens”, the title of Chapter II of the current Constitution of PRC, and the stipulation that citizens must fulfill certain obligations while enjoying rights have trigger...“The Fundamental Rights and obligations of Citizens”, the title of Chapter II of the current Constitution of PRC, and the stipulation that citizens must fulfill certain obligations while enjoying rights have triggered many debates. Considering the historical origin, constitutional philosophy, and the text and structure of the Constitution, the special provisions of the current Constitution are influenced by the principle of consistency of rights and obligations. The principle of consistency of rights and obligations in the Constitution is of complex connotation. Therefore, although the principle of consistency of rights and obligations effectively connects the public and private spheres, it ignores the diversity and differences of the interests and elements contained in the Constitution, the asymmetry of the normative status of fundamental rights and fundamental obligations,and the right of citizens to self-determination of personal interests.The principle of consistency of rights and obligations should be purposefully narrowed and concretized: In the context of public-private integration and risk society prevention, the principle of consistency of rights and obligations can be used as a supplement to the functional system of the Constitution;in the field of fundamental political obligations, the principle of consistency of rights and obligations should be in line with the requirements of the state to respect and protect human rights;in the field of fundamental social obligations, the exercise of fundamental rights by individuals is protected by the Constitution as long as they comply with the law and do not infringe upon the interests of the social community. The principle of the consistency of rights and obligations is only used as the negative constituents of the determination of rights and the basis for the effect against a third party of fundamental rights.展开更多
AIM: To observe the effect of solanine on the membrane potential of mitochondria in HepG2 cells and [Ca^2+]i in the cells, and to uncover the mechanism by which solanine induces apoptosis.METHODS: HepG2 cells were ...AIM: To observe the effect of solanine on the membrane potential of mitochondria in HepG2 cells and [Ca^2+]i in the cells, and to uncover the mechanism by which solanine induces apoptosis.METHODS: HepG2 cells were double stained with AO/EB, and morphological changes of the cells were observed using laser confocal scanning microscopy (LCSM). HepG2 cells were stained with TMRE, and change in the membrane potential of mitochondria in the cells were observed using LCSM. HepG2 cells were double stained with Fluo-3/AM, and change of [Ca^2+]i in the cells were observed using LCSM. HepG2 cells were double stained with TMRE and Fluo-3/AM, and both the change in membrane potential of mitochondria and that of [Ca^2+]i in the cells were observed using LCSM.RESULTS: Cells in treated groups showed typical signs of apoptosis. Staining with TMRE showed that solanine could lower membrane potential; staining with Fluo-3/AM showed that solanine could increase the concentration of Ca^2+ in tumor cells; and those of double staining with TMRE and Fluo-3/AM showed that solanine could increase the concentration of Ca^2+ in the cells at the same time as it lowered the membrane potential of mitochondria.CONCLUSION: Solanine opens up the PT channels in the membrane by lowering the membrane potential, leading to Ca^2+ being transported down its concentration gradient, which in turn leads to the rise of the concentration of Ca^2+ in the cell, turning on the mechanism for apoptosis.展开更多
The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,t...The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,the energy change of large-scale coal rock in the mine site is hardly calculated accurately,making it difficult to monitor coal-rock systematic failure and collapse from the perspective of energy.By the energy dissipation EMR monitoring system,we studied the damage and failure of coal and rock with bursting liability from the energy dissipation point using the geophysical method-EMR,and explored the energy dissipation characteristics during uniaxial compression and their main influencing factors.The results show that under displacement-control loading mode,there are 2 types of energy dissipation trends for both coal and rock with bursting liability.The type Ⅰ trend is a steady increase one during the whole process,therein,the energy dissipation of rock samples is accelerated at the peak load.The type Ⅱ trend energy is a W-shaped fluctuating one containing 6 stages.Under load-control loading mode,there is one energy dissipation trend of shock downward-steady rise.Besides that,rock samples also present a trend of 4 stages.The energy dissipation characteristics of coal and rockduring loading failure process can be used as effective criteria to assess whether they are in a stable or destructive stage.The factors influencing energy dissipation in the loading failure process of coal and rock mainly include strength,homogeneity,and energy input efficiency.展开更多
基金This research was funded by the Key Laboratory for Sustainable Development of Xinjiang's Historical and Cultural Tourism,Xinjiang University,China(LY2022-06)the Tianchi Talent Project.
文摘Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present study provide a reference that could facilitate the sustainable utilization of ecosystem services in the typical fragile areas of Northwest China.
基金Project supported by the Ministry of Education of China in the later stage of philosophy and social science research(Grant No.19JHG091)the National Natural Science Foundation of China(Grant No.72061003)+1 种基金the Major Program of National Social Science Fund of China(Grant No.20&ZD155)the Guizhou Provincial Science and Technology Projects(Grant No.[2020]4Y172)。
文摘We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It characterizes the process of infectious disease transmission among residents between communities through the SE2IHR model considering two types of infectors. By depicting a more fine-grained social structure and combining further simulation experiments, the study validates the crucial role of various prevention and control measures implemented by communities as primary executors in controlling the epidemic. Research shows that the geographical boundaries of communities and the social interaction patterns of residents have a significant impact on the spread of the epidemic, where early detection, isolation and treatment strategies at community level are essential for controlling the spread of the epidemic. In addition, the study explores the collaborative governance model and institutional advantages of communities and residents in epidemic prevention and control.
基金financially supported by the Key R&D Program of Shaanxi Province(2023-YBSF-324)Shaanxi Provincial Department of Education Services Local Special Plan Project(23JC019)National Natural Science of Foundation of China(42267024).
文摘Gauge length influences the biomechanical properties of herbaceous roots such as tensile resistance,tensile strength and Young’s modulus.However,the extent to which and how these biomechanical properties of herbaceous roots are influenced remain unknown.To better understand the behavior of roots in tension under different conditions and to illustrate these behaviors,uniaxial tensile tests were conducted on the Poa araratica roots as the gauge length increased from 20 mm to 80 mm.Subsequently,ANOVA was used to test the impact of the significant influences of gauge length on the biomechanical properties,nonlinear regression was applied to establish the variation in the biomechanical properties with gauge length to answer the question of the extent to which the biomechanical properties are influenced,and Weibull models were subsequently introduced to illustrate how the biomechanical properties are influenced by gauge length.The results reveal that(1)the variation in biomechanical properties with root diameter depends on both the gauge length and the properties themselves;(2)the gauge length significantly impacts most of the biomechanical properties;(3)the tensile resistance,tensile strength,and tensile strain at cracks decrease as the gauge length increases,with values decreasing by 20%-300%,while Young’s modulus exhibits the opposite trend,with a corresponding increase of 30%;and(4)the Weibull distribution is suitable for describing the probability distribution of these biomechanical properties;the Weibull modulus for both tensile resistance and tensile strain at cracks linearly decrease with gauge length,whereas those for tensile strength and Young’s modulus exhibit the opposite trend.The tensile resistance,tensile strength,and tensile strain at the cracks linearly decrease with increasing gauge length,while the tensile strength and Young’s modulus linearly increase with increasing gauge length.
基金Gansu Outstanding Youth Fund(20JR10RA203)Gansu Province Youth Doctor Fund(2023QB-033)+1 种基金National Natural Science Foundation of China(52169019)the Gansu Industry-University Support Fund(2020C-20).
文摘This study focuses on a DN50 pipeline-type Savonius hydraulic turbine.The torque variation of the turbine in a rotation cycle is analyzed theoretically in the framework of the plane potential flow theory.Related numerical simulations show that the change in turbine torque is consistent with the theoretical analysis,with the main power zone and the secondary power zone exhibiting a positive torque.In contrast,the primary resistance zone and the secondary resistance zone are characterized by a negative torque.Analytical relationships between the turbine’s internal flow angleθ,the deflector’s inclination angleα0,and the coverage angleαof the power zone are introduced,and a method for calculating the optimal number of blades is proposed to maximize the power zone.Results are presented about performance tests conducted on five groups of hydraulic turbines with the blade number ranging from 3 to 7.Such results indicate that both the turbine’s recovery power and efficiency attain the highest values when the blade number is 4,which is in agreement with the number of blades calculated by the proposed method.Additionally,the study examines the effects of the flow rate on turbine parameters and the projected energy generation and cost savings for a specific pipeline configuration.
基金funded by National Natural Science Foundation of China(under Grant No.61905201)。
文摘The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software.The identification of malevolent code within financial software is vital for protecting both the financial system and individual clients.Nevertheless,present detection models encounter limitations in their ability to identify malevolent code and its variations,all while encompassing a multitude of parameters.To overcome these obsta-cles,we introduce a lean model for classifying families of malevolent code,formulated on Ghost-DenseNet-SE.This model integrates the Ghost module,DenseNet,and the squeeze-and-excitation(SE)channel domain attention mechanism.It substitutes the standard convolutional layer in DenseNet with the Ghost module,thereby diminishing the model’s size and augmenting recognition speed.Additionally,the channel domain attention mechanism assigns distinctive weights to feature channels,facilitating the extraction of pivotal characteristics of malevolent code and bolstering detection precision.Experimental outcomes on the Malimg dataset indicate that the model attained an accuracy of 99.14%in discerning families of malevolent code,surpassing AlexNet(97.8%)and The visual geometry group network(VGGNet)(96.16%).The proposed model exhibits reduced parameters,leading to decreased model complexity alongside enhanced classification accuracy,rendering it a valuable asset for categorizing malevolent code.
基金supported by the 2021 Research and Practice Project of Higher Education Teaching Reform in Henan Province(Grant No.2021SJGLX072Y).
文摘Under the background of new infrastructure,the Yellow River Basin’s superior growth cannot be separated originating with the synergistic effect of scientific and technological inventiveness and ecological civilization construction.In light of the coupling coordination analysis of the coordination effect of provincial high-tech industry agglomeration and resource carrying capacity in the Yellow River Basin from 2009 to 2021,The evolution of the geographical and temporal pattern of development was investigated using the Moran index and kernel density estimation.The results show that the agglomeration of high-tech industries in the Yellow River Basin presents a development trend of seek improvement in stability,and there is a good coupling and coordination throughout the progression of scientific and technological innovation and the loading capacity of the resource,from the viewpoint of a time series.From the perspective of spatial pattern distribution,the whole basin aims at the lower reaches,accelerates the optimization of digital industry and promotes Yellow River Basin development of superior quality through innovation support and increase of input,and based on policy guidance.
基金Supported by the Youth Project for Humanities and Social Sciences of Ministry of Education in 2012(12YJC630326 and 12XJJC790003)
文摘The traceability system can effectively reduce the food safety risks, however, it is confronted with various problems during its implementation. In this context, the paper carries out a case study of consumers in Weifang, Shandong Province, and studies their willingness to pay the traceable pork with different quality information. The results indicate that, the consumers show high expectations towards the introduction of traceability system, and they tend to buy the traceable pork only with breeding and slaughter information; their behaviors of purchase are greatly influenced by the following factors: the consumers education, age, income, attention on food safety and whether there are pregnant family members, etc..
文摘Long-term kinematic research of slow- moving debris slide is rare despite of the widespread global distribution of this kind. This paper presents a study of the kinematics and mechanism of the Jinpingzi debris slide located on the Jinsha river bank in southwest China. This debris slide is known to have a volume of 27×106 ms in active state for at least one century. Field survey and geotechnical investigation were carried out to define the structure of the landslide. The physical and mechanical properties of the landslide materials were obtained by in-situ and laboratory tests. Additionally, surface and subsurface displacements, as well as groundwater level fluctuations, were monitored since 2005. Movement features, especially the response of the landslide movement to rainfall, were analysed. Relationships between resisting forces and driving forces were analysed by using the limit equilibrium method assuming rigid-plastic frictional slip. The results confirmed a viscous comoonent in the long-term continuous movement resulting in the quasioverconsolidated state of the slip zone with higher strength parameters than some other types of slowmoving landslides. Both surface and subsurface displacements showed an advancing pattern by the straight outwardly inclined (rather than gently or reversely inclined) slip zone, which resulted in low resistance to the entire sliding mass. The average surface displacement rate from 2005 to 2016 was estimated to be 0.19-0.87 mm/d. Basal sliding on the silty clay seam accounted for most of the deformation with different degrees of internal deformation in different parts. Rainfall was the predominant factor affecting the kinematics of Jinpingzi landslide while the role of groundwater level, though positive, was not significant. The response of the groundwater level to rainfall infiltration was not apparent. Unlike some shallow slow-moving earth flows or mudslides, whose behaviors are directly related to the phreatic groundwater level, the mechanism for Jinpingzi landslide kinematics is more likely related to the changing weight of the sliding mass and the downslope seepage pressure in the shallow soil mass resulting from rainfall events.
文摘The loading on U-steel yieldable support cannot be organically combined withthe law of strata behaviors from the surrounding rocks of roadway. In order to effectivelysolve the problem, U-steel yieldable support with backfill material and the performancerequirements of backfill material were analyzed on the basis of structural mechanics. Themechanical properties of backfill material selected were tested in the laboratory, and thetest results show that the ratio of the backfill material complies with the requirements ofbackfill technology; it can effectively optimize the relationship between the support and thesurrounding rock, and the filling layer can avoid the partial stress concentration and fullyimprove the support performance. Compared with U-steel yieldable support with ganguefilling, the filed application shows that the supporting result of U-steel yieldable supportwith backfill technology is satisfactory, the stress on U-steel yieldable support with backfilltechnology decreases greatly and distributes uniformly, convergence of the surroundingrock of roadway is decreased by more than 50%, and the surrounding rocks of roadwayare controlled effectively.
基金This paper is the phased achievement of the key program of the social science fund of the Education Department of Yunnan Province-R esearch on the Bridgehead Strategy of the Yunnan Frontier culture(N o.:2012Z059)
文摘As the agricultural heritage,Hani terrace is not only culturally authentic and non- renew able,but has its ow n characteristics. Firstly,it is a kind of economic and social mode of production. Secondly,it reflects the idea of harmonious and sustainable development betw een human beings and nature. T hirdly,the participation of human beings — or farmers is important. As a result,to exploit and protect the agricultural heritage,it is crucial to balance systematic protection and sustainable development in order to realize dynamic protection. In addition,the agricultural heritage shall be treated as the driving agent to coordinate the social and economic development. T hrough analyzing the characteristics of the agricultural heritage and the concept of protecting the agricultural heritage,this paper proposes to promote the protection of agricultural authenticity by alternative tourism development in order to balance the development and realize the sustainability of the agricultural dynamic system.
文摘The beam-to-column semirigid connection in a steel frame structure is represented by a zero-length rotational spring at the end of the beam element. The beam-to-column semirigid connection behavior is represented by its moment-rotation relationship. Several traditional mathematical models have been proposed to fit the moment-rotation curves from the experimental database,but they may be more reliable within certain ranges. In this paper, the intellectualized analytical model is proposed in the semirigid connections for top and seat angles with double web angles using the feed-forward back-propagation artificial neural network (BP-ANN) technique. the intellectualized analytical model from experimental results based on BP-ANN is more reliable and it is a better choice to the moment-rotation curves for beam-to-column semirigid connection. The results are found to provide effectiveness to the experimental response that is satisfactory for use in steel structural engineering design.
文摘innovation driven development strategy,as a national strategy of our country,has attracted wide attention in the academic field,and it is very rich in theory and practice of innovation driven development.But innovation driven development,as a national strategy,is a long-term,not only from institutional and policy perspective,but also need to build a theoretical framework of relatively rich,can practice on the guiding role of theory.
基金supported by National Key R&D Program of(China2019YFC1708502).
文摘Objective:Using network pharmacology to explore the target and mechanism of Chuanxiong Rhizoma and Acori Tatarinowii Rhizoma in the treatment of vascular dementia(VaD),so as to provide a reference for treating VaD through them.Methods:Traditional Chinese medicine systems pharmacology database and analysis platform were used to screen the main active ingredients and targets of Chuanxiong Rhizoma and Acori Tatarinowii Rhizoma.By means of Gene Cards and Online Mendelian Inheritance in Man(OMIM),targets of VaD were collected.The intersecting targets were obtained by using the Venn map.The String online database was used to build a protein-protein interactions Network and the Metascape database was used to perform GO function enrichment analysis and KEGG pathway enrichment analysis.A“drug-ingredient-target-pathway”network was constructed by Cytoscape software.Autodock vina software was used to conduct molecular docking between targets.Results:A total of 7 active ingredients in Chuanxiong Rhizoma and 4 active ingredients in Acori Tatarinowii Rhizoma were screened.There were 42 active targets of Chuanxiong Rhizoma and 70 active targets of Acori Tatarinowii Rhizoma and 1152 disease targets.After deleting the repeat value,51 drugs targets were obtained.After the intersection,with a total of 25 targets.According to GO and KEGG enrichment analysis,the main biological processes involved include cellular response to lipid,negative regulation of apoptotic signaling pathway,blood circulation,response to a steroid hormone,etc.The main pathways include pathways in cancer,PI3K-Akt signaling pathway,and AGE-RAGE signaling pathway in diabetic complications,etc.Molecular docking showed that the most active docking combinations were AKT1 and Perlolyrine,RELA and FA,MAPK14 and FA,respectively.Conclusion:Chuanxiong Rhizoma and Acori Tatarinowii Rhizoma play an important role in the treatment of VaD mainly by anti-inflammatory and anti-apoptosis.
基金supported by the Open Fund of State Key Laboratory of Tea Plant Biology and Utilization (SKLTOF20200127 and SKLT0F20200108)the Open Fund of Key Laboratory of Tea Plant Resources Comprehensive Development in South Henan Province (HNKLTOF2020005)the Zhejiang Provincial Basic Public Welfare Research Program Project (LGF20H280007)。
文摘Our previous study found that large-leaf yellow tea(LYT)had interesting hypoglycemic activity in high-fat diet-induced obese mice and highly safety in healthy mice. To study the anti-diabetic potential of LYT, the present study further investigated the preventive effects and mechanisms of action of LYT administration on diabetes and diabetic nephropathy in high-fat diet plus streptozotocin-induced diabetic mice. Results showed that LYT infusions(1/100 and 1/50, m/V)as drinking fluid for 4 weeks reduced diabetic polydipsia and polyuria, enhanced glucose tolerance and insulin sensitivity, and lowered fasting blood glucose level. The underlying mechanisms involve downregulation of gluconeogenesis(lower protein levels of TXNIP and FBP and enzyme activity of FBP), upregulation of lipid catabolism(higher protein levels of CPT-1α and PPARα), downregulation of lipogenesis(lower protein level of SREBP-1), and modification of the structure and abundance of gut microbiota to modulate metabolic homeostasis. Moreover, LYT administration prevented diabetic nephropathy, possibly due to reduced glucose-caused osmotic diuresis and lowered levels of renal PKC-β2, NLRP3 as well as membrane PKC-α, AQP2 and glycosylated AQP2 proteins. Taken together, LYT exhibits the activities in alleviating diabetic symptoms, ameliorating glucose and lipid dysmetabolism and fatty liver, and preventing diabetic nephropathy in diabetic mice. These activities may be explored for the prevention and treatment of diabetes in humans.
基金supported by the General Project of Natural Science Foundation of Hebei Province of China(H2019201378)the Foundation of the President of Hebei University(XZJJ201917)the Special Project for Cultivating Scientific and Technological Innovation Ability of University and Middle School Students of Hebei Province(2021H060306).
文摘The diagnosis of COVID-19 requires chest computed tomography(CT).High-resolution CT images can provide more diagnostic information to help doctors better diagnose the disease,so it is of clinical importance to study super-resolution(SR)algorithms applied to CT images to improve the reso-lution of CT images.However,most of the existing SR algorithms are studied based on natural images,which are not suitable for medical images;and most of these algorithms improve the reconstruction quality by increasing the network depth,which is not suitable for machines with limited resources.To alleviate these issues,we propose a residual feature attentional fusion network for lightweight chest CT image super-resolution(RFAFN).Specifically,we design a contextual feature extraction block(CFEB)that can extract CT image features more efficiently and accurately than ordinary residual blocks.In addition,we propose a feature-weighted cascading strategy(FWCS)based on attentional feature fusion blocks(AFFB)to utilize the high-frequency detail information extracted by CFEB as much as possible via selectively fusing adjacent level feature information.Finally,we suggest a global hierarchical feature fusion strategy(GHFFS),which can utilize the hierarchical features more effectively than dense concatenation by progressively aggregating the feature information at various levels.Numerous experiments show that our method performs better than most of the state-of-the-art(SOTA)methods on the COVID-19 chest CT dataset.In detail,the peak signal-to-noise ratio(PSNR)is 0.11 dB and 0.47 dB higher on CTtest1 and CTtest2 at×3 SR compared to the suboptimal method,but the number of parameters and multi-adds are reduced by 22K and 0.43G,respectively.Our method can better recover chest CT image quality with fewer computational resources and effectively assist in COVID-19.
基金the financial supports from the Fundamental Research Funds for the Central Universities(No.21621012)the National Natural Science Foundation of China(No.82104070).
文摘Background:Chinese medicine is widely applied in Asian and Western countries for its outstanding therapeutic effect,but there are still unsolved problems such as unclear active ingredients and pharmacological effects.The application of nano/microparticle technology in Chinese medicine may become a promising strategy to solve this problem in the near future(provided that more efforts are made to in-depth exploration).In this work,a comprehensive analysis of the field was carried out from a bibliometrics perspective,and further the publishing trends and research hotspots were figured out.Methods:The articles or reviews from 2000 to 2020 were retrieved in the database of Web of Science Core Collection.The documents were processed by Clarivate Analytic,Visualization of Similarities viewer,Statistical Analysis Toolkit for Informetrics and bibliometric online platform,and the data were visualized.Finally,a bibliometric summary,citation analysis results and research trends were described.Results:A bibliometric analysis of 773 articles of interest showed that research in this field had continued to grow in recent years,with a high degree of interdisciplinary integration.Secondly,this field attached great importance to the quantitative analysis of Chinese medicine combined with nano/micro particle technology.Chinese medicine,nanoparticles and liposomes were the most accessed keywords.China was the main contributing country,and the top-10 contributing organizations were all located in China.Co-authorship was a common phenomenon in this field.Conclusion:The published literature on the application of nano/micro particle technology in Chinese medicine was summarized.The results suggested that bibliometric analysis could predict possible directions for future research in this field.
基金the National Natural Science Foundation of China(No.81902016).
文摘Objective The activation state of microglia is known to occupy a central position in the pathophysiological process of cerebral inflammation.Autophagy is a catabolic process responsible for maintaining cellular homeostasis.In recent years,autophagy has been demonstrated to play an important role in neuroinflammation.Resolvin D1(RvD1)is a promising therapeutic mediator that has been shown to exert substantial anti-inflammatory and proresolving activities.However,whether RvD1-mediated resolution of inflammation in microglia is related to autophagy regulation needs further investigation.The present study aimed to explore the effect of RvD1 on microglial autophagy and its corresponding pathways.Methods Mouse microglial cells(BV-2)were cultured,treated with RvD1,and examined by Western blotting,confocal immunofluorescence microscopy,transmission electron microscopy,and flow cytometry.Results RvD1 promoted autophagy in both BV-2 cells and mouse primary microglia by favoring the maturation of autophagosomes and their fusion with lysosomes.Importantly,RvD1 had no significant effect on the activation of mammalian target of rapamycin(mTOR)signaling.Furthermore,RvD1-induced mTOR-independent autophagy was confirmed by observing reduced cytoplasmic calcium levels and suppressed calcium/calmodulin-dependent protein kinase II(CaMK II)activation.Moreover,by downregulating ATG5,the increased phagocytic activity induced by RvD1 was demonstrated to be tightly controlled by ATG5-dependent autophagy.Conclusion The present work identified a previously unreported mechanism responsible for the role of RvD1 in microglial autophagy,highlighting its therapeutic potential against neuroinflammation.
文摘“The Fundamental Rights and obligations of Citizens”, the title of Chapter II of the current Constitution of PRC, and the stipulation that citizens must fulfill certain obligations while enjoying rights have triggered many debates. Considering the historical origin, constitutional philosophy, and the text and structure of the Constitution, the special provisions of the current Constitution are influenced by the principle of consistency of rights and obligations. The principle of consistency of rights and obligations in the Constitution is of complex connotation. Therefore, although the principle of consistency of rights and obligations effectively connects the public and private spheres, it ignores the diversity and differences of the interests and elements contained in the Constitution, the asymmetry of the normative status of fundamental rights and fundamental obligations,and the right of citizens to self-determination of personal interests.The principle of consistency of rights and obligations should be purposefully narrowed and concretized: In the context of public-private integration and risk society prevention, the principle of consistency of rights and obligations can be used as a supplement to the functional system of the Constitution;in the field of fundamental political obligations, the principle of consistency of rights and obligations should be in line with the requirements of the state to respect and protect human rights;in the field of fundamental social obligations, the exercise of fundamental rights by individuals is protected by the Constitution as long as they comply with the law and do not infringe upon the interests of the social community. The principle of the consistency of rights and obligations is only used as the negative constituents of the determination of rights and the basis for the effect against a third party of fundamental rights.
基金Supported by the National Natural Science Foundation of China, No. 30400591 the Heilongjiang Province Natural Science Foundation, No. D2004-13, D200505 Harbin City Young Scientist Foundation, No. 2004AFQXJ035
文摘AIM: To observe the effect of solanine on the membrane potential of mitochondria in HepG2 cells and [Ca^2+]i in the cells, and to uncover the mechanism by which solanine induces apoptosis.METHODS: HepG2 cells were double stained with AO/EB, and morphological changes of the cells were observed using laser confocal scanning microscopy (LCSM). HepG2 cells were stained with TMRE, and change in the membrane potential of mitochondria in the cells were observed using LCSM. HepG2 cells were double stained with Fluo-3/AM, and change of [Ca^2+]i in the cells were observed using LCSM. HepG2 cells were double stained with TMRE and Fluo-3/AM, and both the change in membrane potential of mitochondria and that of [Ca^2+]i in the cells were observed using LCSM.RESULTS: Cells in treated groups showed typical signs of apoptosis. Staining with TMRE showed that solanine could lower membrane potential; staining with Fluo-3/AM showed that solanine could increase the concentration of Ca^2+ in tumor cells; and those of double staining with TMRE and Fluo-3/AM showed that solanine could increase the concentration of Ca^2+ in the cells at the same time as it lowered the membrane potential of mitochondria.CONCLUSION: Solanine opens up the PT channels in the membrane by lowering the membrane potential, leading to Ca^2+ being transported down its concentration gradient, which in turn leads to the rise of the concentration of Ca^2+ in the cell, turning on the mechanism for apoptosis.
基金supported by Youth Science Foundation of the National Natural Science Foundation of China(No.51104156)the Fundamental Research Funds for the Central Universities of China(No.2013QNB02)the 12th Five Year National Science and Technology Support Key Project of China(Nos. 2012BAK04B07-2 and 2012BAK09B01-04)
文摘The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,the energy change of large-scale coal rock in the mine site is hardly calculated accurately,making it difficult to monitor coal-rock systematic failure and collapse from the perspective of energy.By the energy dissipation EMR monitoring system,we studied the damage and failure of coal and rock with bursting liability from the energy dissipation point using the geophysical method-EMR,and explored the energy dissipation characteristics during uniaxial compression and their main influencing factors.The results show that under displacement-control loading mode,there are 2 types of energy dissipation trends for both coal and rock with bursting liability.The type Ⅰ trend is a steady increase one during the whole process,therein,the energy dissipation of rock samples is accelerated at the peak load.The type Ⅱ trend energy is a W-shaped fluctuating one containing 6 stages.Under load-control loading mode,there is one energy dissipation trend of shock downward-steady rise.Besides that,rock samples also present a trend of 4 stages.The energy dissipation characteristics of coal and rockduring loading failure process can be used as effective criteria to assess whether they are in a stable or destructive stage.The factors influencing energy dissipation in the loading failure process of coal and rock mainly include strength,homogeneity,and energy input efficiency.